Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Avian Pathol ; 50(4): 327-338, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34013789

RESUMO

H9N2 low-pathogenic avian influenza (LPAI) viruses have long been circulating in the world poultry industry, resulting in substantial economic losses. In addition to bird health consequences, viruses from specific lineages such as G1 and Y280 are also known to have the potential to cause a pandemic within the human population. In South Korea, after introducing inactivated H9N2 vaccines in 2007, there were no field outbreaks of H9N2 LPAI since 2009. However, in June 2020, an H9N2 virus was isolated from an outbreak in a Korean chicken farm. This strain was distinct from the predominant Korean/Y439 lineage and was believed to be part of the Y280-like lineage. Since the first case of this new H9N2 LPAI, nine more cases of field infections in poultry farms were documented through July and December of 2020. Phylogenetic analysis of the haemagglutinin (HA) and neuraminidase genes of these case isolates revealed that all strains were grouped with exotic Y280-like strains that did not previously exist in South Korea and were emerging into a new cluster. Serological assays also confirmed the existence of antibodies to Y280-like viruses in field sera collected from infected birds, and that they had seroconverted. Further analysis of the receptor-binding region in the HA protein also revealed that these isolates harboured a human-like motif that could potentially affect mammals and humans, demonstrating a possible public health risk. This is the first report of field cases caused by Y280-like H9N2 LPAI in the Korean poultry industry.RESEARCH HIGHLIGHTS Field outbreaks caused by Y280-like H9N2 avian influenza viruses were confirmed.A human-like motif was found at the HA receptor-binding region of all isolates.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Fazendas , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Filogenia , Aves Domésticas
2.
Chemistry ; 26(2): 548-557, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31657858

RESUMO

9,9'-Spirobifluorene-based closo-o-carboranyl (SFC1 and SFC2) compounds and their nido-derivatives (nido-SFC1 and nido-SFC2) were prepared and characterized. The two closo-compounds displayed major absorption bands assignable to π-π* transitions involving the spirobifluorene group, as well as weak intramolecular charge-transfer (ICT) transitions between the o-carboranes and their spirobifluorene moieties. The nido-compounds exhibited slightly blueshifted absorption bands resulting from the absence of the ICT transitions corresponding to the o-carborane moieties due to the anionic character of the nido-o-carboranes. While SFC1 exhibited only high-energy emissions in THF at 298 K (only from locally excited (LE) states assignable to π-π* transitions on the spirobifluorene group), remarkable emissions in the low-energy region were observed in the rigid state such as in THF at 77 K and in the film state. SFC2 displayed intense emissions in the low-energy region in all states. The fact that neither of the nido-derivatives of SFC1 and SFC2 exhibited low-energy emissions and the TD-DFT calculation results of each closo-compound clearly verified that the low-energy emission was based on ICT-based radiative decay. The conformational barriers from each relative energy calculation upon changing the dihedral angles around the o-carborane cages for both compounds confirmed that the rotation of the o-carborane cages and terminal phenyl rings for SFC1 is freer than that for SFC2.

3.
Molecules ; 25(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455846

RESUMO

Closo-o-carboranyl compounds bearing the ortho-type perfectly distorted or planar terphenyl rings (closo-DT and closo-PT, respectively) and their nido-derivatives (nido-DT and nido-PT, respectively) were synthesized and fully characterized using multinuclear NMR spectroscopy and elemental analysis. Although the emission spectra of both closo-compounds exhibited intriguing emission patterns in solution at 298 and 77 K, in the film state, closo-DT mainly exhibited a π-π* local excitation (LE)-based emission in the high-energy region, whereas closo-PT produced an intense emission in the low-energy region corresponding to an intramolecular charge transfer (ICT) transition. In particular, the positive solvatochromic effect of closo-PT and theoretical calculation results at the first excited (S1) optimized structure of both closo-compounds strongly suggest that these dual-emissive bands at the high- and low-energy can be assigned to each π-π* LE and ICT transition. Interestingly, both the nido-compounds, nido-DT and nido-PT, exhibited the only LE-based emission in solution at 298 K due to the anionic character of the nido-o-carborane cages, which cannot cause the ICT transitions. The specific emissive features of nido-compounds indicate that the emissive color of closo-PT in solution at 298 K is completely different from that of nido-PT. As a result, the deboronation of closo-PT upon exposure to increasing concentrations of fluoride anion exhibits a dramatic ratiometric color change from orange to deep blue via turn-off of the ICT-based emission. Consequently, the color change response of the luminescence by the alternation of the intrinsic electronic transitions via deboronation as well as the structural feature of terphenyl rings indicates the potential of the developed closo-o-carboranyl compounds that exhibit the intense ICT-based emission, as naked-eye-detectable chemodosimeters for fluoride ion sensing.


Assuntos
Ácidos Borônicos/química , Fluoretos/química , Compostos de Flúor/química , Compostos de Terfenil/química , Boranos/química , Cristalografia por Raios X , Fluoretos/isolamento & purificação , Compostos de Flúor/isolamento & purificação , Modelos Moleculares , Estrutura Molecular
4.
Molecules ; 24(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731632

RESUMO

9,9'-Spirobifluorene-based o-carboranyl compounds C1 and C2 were prepared and fully characterized by multinuclear nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. The solid-state structure of C1 was also determined by single-crystal X-ray diffractometry. The two carboranyl compounds display major absorption bands that are assigned to π-π* transitions involving their spirobifluorene groups, as well as weak intramolecular charge-transfer (ICT) transitions between the o-carboranes and their spirobifluorene groups. While C1 only exhibited high-energy emissions (λem = ca. 350 nm) in THF at 298 K due to locally excited (LE) states assignable to π-π* transitions involving the spirobifluorene group alone, a remarkable emission in the low-energy region was observed in the rigid state, such as in THF at 77 K or the film state. Furthermore, C2 displays intense dual emissive patterns in both high- and low-energy regions in all states. Electronic transitions that were calculated by time-dependent-DFT (TD-DFT) for each compound based on ground (S0) and first-excited (S1) state optimized structures clearly verify that the low-energy emissions are due to ICT-based radiative decays. Calculated energy barriers that are based on the relative energies associated with changes in the dihedral angle around the o-carborane cages in C1 and C2 clearly reveal that the o-carborane cage in C1 rotates more freely than that in C2. All of the molecular features indicate that ICT-based radiative decay is only available to the rigid state in the absence of structural fluctuations, in particular the free-rotation of the o-carborane cage.


Assuntos
Boranos/química , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Termodinâmica
5.
Avian Pathol ; 40(6): 565-72, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22107090

RESUMO

Newcastle disease virus (NDV) is one of the most important infectious agents in the poultry industry, and vaccines against it have been widely used for prevention and control. Live vaccines, which can replicate in the respiratory and digestive systems, have been especially needed in areas with outbreaks of viscerotropic velogenic Newcastle disease. Towards the goal of searching for a new live vaccine candidate, avian paramyxovirus type 1 (APMV-1) was isolated from the faeces of wild birds. Three APMV-1 strains thus isolated were characterized in terms of phylogeny, pathogenicity, immunogenicity and tissue tropism, and on the basis of these analyses were classified as lentogenic genotype I NDV. CBU2179, one of the three APMV-1 strains, was selected and was evaluated in terms of its efficacy and safety in specific pathogen-free chickens and commercial broilers. The manufactured trial vaccine from this strain, also called CBU2179, induced similar immune responses to those of VG/GA and B1 commercial vaccines, and provided 100% protection against challenge from viscerotropic velogenic NDV, KJW/49 strain (the official challenge strain in Korea). Also, the CBU2179 virus was re-isolated and persisted as long as or longer than other vaccine strains in both the respiratory and alimentary tracts. Therefore, the CBU2179 strain may represent a good candidate for a live Newcastle disease vaccine to protect chickens against viscerotropic velogenic NDV.


Assuntos
Patos/virologia , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Filogenia , Vacinas Virais/genética , Vacinas Virais/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Galinhas , Análise por Conglomerados , Fezes/virologia , Modelos Genéticos , Dados de Sequência Molecular , Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Organismos Livres de Patógenos Específicos
6.
Chem Sci ; 12(24): 8411-8423, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34221322

RESUMO

In this paper, we propose a strategic molecular design of closo-o-carborane-based donor-acceptor dyad system that exhibits thermally activated delayed fluorescence (TADF) in the solution state at ambient temperature. Planar 9,9-dimethyl-9H-fluorene-based compounds with closo- and nido-o-carborane cages appended at the C2-, C3-, and C4-positions of each fluorene moiety (closo-type: 2FC, 3FC, 4FC, and 4FCH, and nido-type: nido-4FC = [nido-form of 4FC]·[NBu4]) were prepared and characterized. The solid-state molecular structure of 4FC exhibited a significantly distorted fluorene plane, which suggests the existence of severe intramolecular steric hindrance. In photoluminescence measurements, 4FC exhibits a noticeable intramolecular charge transition (ICT)-based emission in all states (solution at 298 K and 77 K, and solid states); however, emissions by other closo-compounds were observed in only the rigid state (solution at 77 K and film). Furthermore, nido-4FC did not exhibit emissive traces in any state. These observations verify that all radiative decay processes correspond to ICT transitions triggered by closo-o-carborane, which acts as an electron acceptor. Relative energy barriers calculated by TD-DFT as dihedral angles around o-carborane cages change in closo-compounds, which indicates that the structural formation of 4FC is nearly fixed around its S0-optimized structure. This differs from that for other closo-compounds, wherein the free rotation of their o-carborane cages occurs easily at ambient temperature. Such rigidity in the structural geometry of 4FC results in ICT-based emission in solution at 298 K and enhancement of quantum efficiency and radiative decay constants compared to those for other closo-compounds. Furthermore, 4FC displays short-lived (∼0.5 ns) and long-lived (∼30 ns) PL decay components in solution at 298 K and in the film state, respectively, which can be attributed to prompt fluorescence and TADF, respectively. The calculated energy difference (ΔE ST) between the first excited singlet and triplet states of the closo-compounds demonstrate that the TADF characteristic of 4FC originates from a significantly small ΔE ST maintained by the rigid structural fixation around its S0-optimized structure. Furthermore, the strategic molecular design of the o-carborane-appended π-conjugated (D-A) system, which forms a rigid geometry due to severe intramolecular steric hindrance, can enhance the radiative efficiency for ICT-based emission and trigger the TADF nature.

7.
Chem Commun (Camb) ; 55(96): 14518-14521, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31737876

RESUMO

To clarify the relationship between planarity and intramolecular charge transfer (ICT), two o-carboranyl compounds (TCB and FCB) containing different ortho-type terphenyl rings, namely, perfectly distorted or planar phenyl rings, were synthesised and fully characterised. Although the emission spectra of both compounds presented intriguing dual-emission patterns in solution at 298 or 77 K and in the film state, distorted TCB mostly showed locally excited emission, whereas planar FCB demonstrated intense emission corresponding to an ICT transition. Interestingly, the emission efficiencies and radiative decay constants of terphenyl-based o-carboranyl compounds were gradually enhanced by increasing the planarity of the terphenyl groups. These results verify the existence of a strong relationship between the planarity of appended aryl groups and ICT-based radiative decay in o-carborane-substituted compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA