Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419226

RESUMO

The development of nanotechnology based on graphene and its derivatives has aroused great scientific interest because of their unusual properties. Graphene (GN) and its derivatives, such as reduced graphene oxide (rGO), exhibit antitumor effects on glioblastoma multiforme (GBM) cells in vitro. The antitumor activity of rGO with different contents of oxygen-containing functional groups and GN was compared. Using FTIR (fourier transform infrared) analysis, the content of individual functional groups (GN/exfoliation (ExF), rGO/thermal (Term), rGO/ammonium thiosulphate (ATS), and rGO/ thiourea dioxide (TUD)) was determined. Cell membrane damage, as well as changes in the cell membrane potential, was analyzed. Additionally, the gene expression of voltage-dependent ion channels (clcn3, clcn6, cacna1b, cacna1d, nalcn, kcne4, kcnj10, and kcnb1) and extracellular receptors was determined. A reduction in the potential of the U87 glioma cell membrane was observed after treatment with rGO/ATS and rGO/TUD flakes. Moreover, it was also demonstrated that major changes in the expression of voltage-dependent ion channel genes were observed in clcn3, nalcn, and kcne4 after treatment with rGO/ATS and rGO/TUD flakes. Furthermore, the GN/ExF, rGO/ATS, and rGO/TUD flakes significantly reduced the expression of extracellular receptors (uPar, CD105) in U87 glioblastoma cells. In conclusion, the cytotoxic mechanism of rGO flakes may depend on the presence and types of oxygen-containing functional groups, which are more abundant in rGO compared to GN.


Assuntos
Canais de Cloreto/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Grafite/farmacologia , Canais Iônicos/genética , Proteínas de Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Receptores de Superfície Celular/genética , Linhagem Celular Tumoral , Células , Canais de Cloreto/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Grafite/química , Humanos , Canais Iônicos/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Oxirredução , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Materials (Basel) ; 17(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38793515

RESUMO

Chromium- and cobalt-based alloys, as well as chrome-nickel steels, are most used in dental prosthetics. Unfortunately, these alloys, especially nickel-based alloys, can cause allergic reactions. A disadvantage of these alloys is also insufficient corrosion resistance. To improve the properties of these alloys, amorphous Si (C,N) coatings were deposited on the surfaces of metal specimens. This paper characterizes coatings of silicon carbide nitrides, deposited by the magnetron sputtering method on the surface of nickel-chromium alloys used in dental prosthetics. Depending on the deposition parameters, coatings with varying carbon to nitrogen ratios were obtained. The study analyzed their structure and chemical and phase composition. In addition, a study of surface wettability and surface roughness was performed. Based on the results obtained, it was found that amorphous coatings of Si (C,N) type with thicknesses of 2 to 4.5 µm were obtained. All obtained coatings increase the value of surface free energy. The study showed that Si (C,N)-type films can be used in dental prosthetics as protective coatings.

3.
J Biomed Mater Res B Appl Biomater ; 111(2): 314-330, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056675

RESUMO

Alginate-gelatin hydrogels are the most commonly used materials for 3D bioprinting. Their printability depends on their properties, and these derive from the way they are prepared and their very composition. Therefore, the aim of the study was to investigate the type of solvent (deionized water, phosphate buffer, and culture medium) and contents of gelatin in the composition of hydrogel (2% wt/vol alginate, 6% and 9% wt/vol of gelatin) on their biological, physicochemical, and mechanical properties, as well as printability and the ability of cells to proliferate in the printed structures. The results obtained revealed that all the manufactured hydrogel materials are biocompatible. The use of deionized water as a solvent results in the highest degree of cross-linking of hydrogels, thus obtaining a polymer with the highest rigidity. Moreover, an increase in gelatin content leads to an increase in the Young's modulus value, irrespectively of the solvent in which the hydrogels were prepared. Based on the chemical structure, it is more reasonable to use a culture medium for bioink preparation due to free NH and NH2 groups being present, which are ligands for cell attachment and their proliferation. For the selected material (2A9GM), the printability and high viability of the cells after printing were confirmed. In this case, the concentration of the cross-linking agent influences gelatin amount release and calcium ions release, and these two processes determine the change in the viability of the cells encapsulated in the bioink.


Assuntos
Gelatina , Hidrogéis , Gelatina/farmacologia , Gelatina/química , Hidrogéis/farmacologia , Hidrogéis/química , Cálcio , Sobrevivência Celular , Solventes/farmacologia , Impressão Tridimensional , Alginatos/farmacologia , Alginatos/química , Íons , Água , Alicerces Teciduais/química , Engenharia Tecidual/métodos
4.
Membranes (Basel) ; 13(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36984706

RESUMO

Graphene transfer onto ceramics, like Si/SiO2, is well-developed and described in the literature. However, it is problematic for other ceramic materials (e.g., Al2O3 and ZrO2), especially porous ones. In this case, it is mainly due to poor adhesion to the substrate, resulting in strong degradation of the graphene. For these reasons, the research topic of this study was undertaken. This article presents research on the development of the methodology of graphene transfer onto ceramic Al2O3 surfaces. Polycrystalline graphene chemical vapour deposition (CVD) monolayer and quasimonocrystalline high-strength metallurgical graphene (HSMG®) synthesised on liquid copper were used. When developing the transfer methodology, the focus was on solving the problem of graphene adhesion to the surface of this type of ceramic, and thus reducing the degree of graphene deterioration at the stage of producing a ceramic-graphene composite, which stands in the way of its practical use. Plasma and chemical ceramic surface modification were applied to change its hydrophobicity, and thus to improve the adhesion between the graphene and ceramic. The modification included the use of dielectric barrier discharge (DBD) plasma, oxygen plasma (RF PACVD method - Radio Frequency Plasma Assisted Chemical Vapour Deposition), and hydrofluoric acid treatment. Changes in surface properties caused by the modifications were determined by measuring the contact angle and (in the case of chemical modification) measuring the degree of surface development. The effectiveness of the applied surface preparation methodology was evaluated based on the damage degree of CVD and HSMG® graphene layer transferred onto modified Al2O3 using optical microscopy and Raman spectroscopy. The best average ID/IG ratio for the transferred HSMG® graphene was obtained after oxygen plasma modification (0.63 ± 0.18) and for CVD, graphene DBD plasma was the most appropriate method (0.17 ± 0.09). The total area of graphene defects after transfer to Al2O3 was the smallest for HSMG® graphene after modification with O2 plasma (0.251 mm2/cm2), and for CVD graphene after surface modification with DBD plasma (0.083 mm2/cm2).

5.
Materials (Basel) ; 15(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35329533

RESUMO

This paper presents the tribological properties of silicon and oxygen incorporated diamond-like carbon coatings tested in simulated body fluid and bovine serum albumin environments. The tests were performed using a ball-on-disc tribometer with an AISI316L steel counterbody. The wear tracks and wear scars were analyzed using optical microscopy and a nanoindenter. The interaction between the coating and the working environment was analyzed by Fourier transform infrared spectroscopy, whereas changes in the chemical structure before and after the tribological tests were compared with the use of Raman spectroscopy. Our study showed that the tribological parameters are governed by the presence of oxygen rather than the changing concentration of silicon. Both of the spectroscopy results confirm this statement, indicating that coatings with low concentrations of silicon and oxygen appear to be better candidates for biological applications in terms of wear resistance.

6.
Materials (Basel) ; 14(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540630

RESUMO

Doping of graphene and a controlled induction of disturbances in the graphene lattice allows the production of numerous active sites for lithium ions on the surface and edges of graphene nanolayers and improvement of the functionality of the material in lithium-ion batteries (LIBs). This work presents the process of introducing boron and fluorine atoms into the structure of the reduced graphene during hydrothermal reaction with boron fluoride tetrahydrofuran (BF3·THF). The described process is a simple, one-step synthesis with little to no side products. The synthesized materials showed an irregular, porous structure, with an average pore size of 3.44-3.61 nm (total pore volume (BJH)) and a multi-layer structure and a developed specific surface area at the level of 586-660 m2/g (analysis of specific surface Area (BET)). On the external surfaces, the occurrence of irregular particles with a size of 0.5 to 10 µm was observed, most probably the effect of doping the graphene structure and the formation of sp3 hybridization defects. The obtained materials show the ability to store electric charge due to the development of the specific surface area. Based on cyclic voltammetry, the tested material showed a capacity of 450-550 mAh/g (charged up to 2.5 V).

7.
Membranes (Basel) ; 11(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34564495

RESUMO

Graphene has been considered as a material that may overcome the limitations of polymer semi-permeable membranes in water treatment technology. However, monolayer graphene still suffers from defects that cause leakage. Here, we report a method of sealing defects in graphene transferred onto porous polymer substrate via reduced graphene oxide (rGO). The influence of various reducing agents (e.g., vitamin C, hydrazine) on the properties of rGO was investigated by SEM, Raman, FTIR, and XRD. Subsequently, membranes based on graphene/reduced graphene oxide were tested in a forward osmosis system using sodium chloride (NaCl). The effect of the effectiveness of the reduction of graphene oxide, the type and number of attached groups, the change in the distance between the rGO flakes, and the structure of this material were examined in terms of filtration efficiency. As a result, semi-permeable centimetre-scale membranes with ion blocking efficiency of up to 90% and water flux of 20 mL h-1 m-2 bar-1 were proposed.

8.
Nanomaterials (Basel) ; 11(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802987

RESUMO

The presented work shows the results of the functionalization of the graphene surface obtained by the growth on the liquid bimetallic matrices method. We used glutathione (GSH) as a peptide model, which allowed us to optimize the procedure to obtain high process efficiency. To establish the amount of GSH attached to the graphene surface, the Folina-Ciocalteu method was used, which allows the assessment of the concentration of colored reaction products with peptide bonds without the disadvantages of most methods based on direct colored reaction of peptide bonds. Samples surface morphology, quality of graphene and chemical structure in the subsequent stages of surface modification were tested-for this purpose Raman spectroscopy, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) were used.

9.
Materials (Basel) ; 13(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560293

RESUMO

Acrylate polymer-based bone cements constitute the most popular bonding agents used in regenerative surgery. Due to their inferior biocompatibility, however, these materials are often enriched with ceramic additives including hydroxyapatite (HAp). The aim of this paper was to perform a comparative study of the acrylate cements filled with different content (3-21%) of nano- and microscale hydroxyapatite. The work concerns a comparison of times and temperatures of the cross-linking reaction, as well as morphology, glass transition temperature, and principal mechanical properties of the resulting composites. Before being used as a filler, both HAp forms were subjected to an in-depth characterization of their morphology, specific surface area, pore size distribution, and wettability as well as chemical composition and structure. For that purpose, such analytical techniques as scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, tensiometry, Brunauer-Emmett-Teller surface area analysis, differential scanning calorimetry, Shore D hardness test, and Charpy impact test were used. The results indicated a drop of cross-linking temperature and an extension of setting time with the addition of µHAp. The µHAp-filled acrylate composites were characterized by a globular surface morphology, higher glass transition temperature, and lower hardness and impact strength compared to nHAp-filled materials. This relationship was evident at higher nHAp concentrations.

10.
Nanomaterials (Basel) ; 9(6)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146416

RESUMO

Diamond-like carbon (DLC) coatings are well known as protective coatings for biomedical applications. Furthermore, the incorporation of different elements, such as silicon (Si), in the carbon matrix changes the bio-functionality of the DLC coatings. This has also been proven by the results obtained in this work. The Si-DLC coatings were deposited on the Ti6Al7Nb alloy, which is commonly used in clinical practice, using the magnetron sputtering method. According to the X-ray photoelectron spectroscopy (XPS) analysis, the content of silicon in the examined coatings varied from ~2 at.% up to ~22 at.%. Since the surface characteristics are key factors influencing the cell response, the results of the cells' proliferation and viability assays (live/dead and XTT (colorimetric assays using tetrazolium salt)) were correlated with the surface properties. The surface free energy (SFE) measurements, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the polarity and wettability of the surfaces examined increase with increasing Si concentration, and therefore the adhesion and proliferation of cells was enhanced. The results obtained revealed that the biocompatibility of Si-doped DLC coatings, regardless of the Si content, remains at a very high level (the observed viability of endothelial cells is above 70%).

11.
Nanomaterials (Basel) ; 8(11)2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400638

RESUMO

A laser system with a wavelength of 1064 nm was used to generate sp² carbon on the surfaces of nanodiamond particles (NDPs). The modified by microplasma NDPs were analysed using FT-IR and Raman spectroscopy. Raman spectra confirmed that graphitization had occurred on the surfaces of the NDPs. The extent of graphitization depended on the average power used in the laser treatment process. FT-IR analysis revealed that the presence of C=C bonds in all spectra of the laser-modified powder. The characteristic peaks for olefinic bonds were much more intense than in the case of untreated powder and grew in intensity as the average laser power increased. The olefinized nanodiamond powder was further functionalized using aromatic amines via in situ generated diazonium salts. It was also found that isokinetic mixtures of structurally diverse aromatic amines containing different functional groups (acid, amine) could be used to functionalize the surfaces of the laser-modified nanoparticles leading to an amphiphilic carbon nanomaterial. This enables one-step orthogonal functionalization and opens the possibility of selectively incorporating molecules with diverse biological activities on the surfaces of NDPs. Modified NDPs with amphiphilic properties resulting from the presence carboxyl and amine groups were used to incorporate simultaneously folic acid (FA-CONH-(CH2)5-COOH) and 5(6)-carboxyfluorescein (FL-CONH-(CH2)2-NH2) derivatives on the surface of material under biocompatible procedures.

12.
Mater Sci Eng C Mater Biol Appl ; 63: 462-74, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27040240

RESUMO

Since the biological response of the body towards an implanted material is mainly governed by its surface properties, biomaterials are improved by various kinds of coatings. Their role is to provide good mechanical and biological characteristics, and exclude some disadvantages like post-implantation infections. This phenomenon may be reduced by introduction of silver as an antibacterial agent. This study evaluates the Ag-DLC films synthesized by the hybrid RF PACVD/MS method according to the patent number PL401955-A1 worked out inter alia by the authors. Such tests as XPS, SEM, EDS, AFM, FTIR, Raman and ICP-TOF-MS were used to determine surface properties of the coatings. The obtained results were correlated with the biological response estimated on the basis of cells viability assay (osteoblast cells line Saos-2) and bacterial colonization test (Escherichia coli strain DH5α). Results showed that the hybrid RF PACVD/MS method allows one to get tight coating preventing the diffusion of harmful elements from the metallic substrate. Ag concentration increases with the growing power density, it occurs in metallic state, does not create chemical bonds and is evenly dispersed within the DLC matrix in the form of nanoscale silver clusters. Increasing silver content above 2at.% improves bactericidal properties, but decreases cell viability.


Assuntos
Materiais Revestidos Biocompatíveis/química , Diamante/química , Prata/química , Carbono/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA