Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(23): 15761-15770, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38825888

RESUMO

Layered magnets are stand-out materials because of their range of functional properties that can be controlled by external stimuli. Regretfully, the class of such compounds is rather narrow, prompting the search for new members. Graphitization─stabilization of layered graphitic structures in the 2D limit─is being discussed for cubic materials. We suggest the phenomenon to extend beyond cubic structures; it can be employed as a viable route to a variety of layered materials. Here, the idea of graphitization is put into practice to produce a new layered magnet, GdAlSi. The honeycomb material, based on graphene-like layers AlSi, is studied both experimentally and theoretically. Epitaxial films of GdAlSi are synthesized on silicon; the critical thickness for the stability of the layered polymorph is around 20 monolayers. Notably, the layered polymorph of GdAlSi demonstrates ferromagnetism, in contrast to the nonlayered, tetragonal polymorph. The ferromagnetism is further supported by electron transport measurements revealing negative magnetoresistance and the anomalous Hall effect. The results show that graphitization can be a powerful tool in the design of functional layered materials.

2.
Small ; : e2402189, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973106

RESUMO

2D magnets are expected to give new insights into the fundamentals of magnetism, host novel quantum phases, and foster development of ultra-compact spintronics. However, the scarcity of 2D magnets often makes a bottleneck in the research efforts, prompting the search for new magnetic systems and synthetic routes. Here, an unconventional approach is adopted to the problem, graphenization - stabilization of layered honeycomb materials in the 2D limit. Tetragonal GdAlSi, stable in the bulk, in ultrathin films gives way to its layered counterpart - graphene-like anionic AlSi layers coupled to Gd cations. A series of inch-scale films of layered GdAlSi on silicon is synthesized, down to a single monolayer, by molecular beam epitaxy. Graphenization induces an easy-plane ferromagnetic order in GdAlSi. The magnetism is controlled by low magnetic fields, revealing its 2D nature. Remarkably, it exhibits a non-monotonic evolution with the number of monolayers. The results provide a fresh platform for research on 2D magnets by design.

3.
Small ; 19(39): e2302065, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259278

RESUMO

Layered materials exhibit a plethora of fascinating properties. The challenge is to make the materials into epitaxial films, preferably integrated with mature technological platforms to facilitate their potential applications. Progress in this direction can establish the film thickness as a valuable parameter to control various phenomena, superconductivity in particular. Here, a synthetic route to epitaxial films of SrAlSi, a layered superconducting electride, on silicon is designed. A set of films ranging in thickness is synthesized employing a silicene-based template. Their structure and superconductivity are explored by a combination of techniques. Two regimes of TC dependence on the film thickness are identified, the coherence length being the crossover parameter. The results can be extended to syntheses of other honeycomb-lattice ternary compounds on Si or Ge exhibiting superconducting, magnetic, and other properties.

4.
Small ; 19(28): e2301295, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36971277

RESUMO

Imprinting magnetism into graphene may lead to unconventional electron states and enable the design of spin logic devices with low power consumption. The ongoing active development of 2D magnets suggests their coupling with graphene to induce spin-dependent properties via proximity effects. In particular, the recent discovery of submonolayer 2D magnets on surfaces of industrial semiconductors provides an opportunity to magnetize graphene coupled with silicon. Here, synthesis and characterization of large-area graphene/Eu/Si(001) heterostructures combining graphene with a submonolayer magnetic superstructure of Eu on silicon are reported. Eu intercalation at the interface of the graphene/Si(001) system results in a Eu superstructure different from those formed on pristine Si in terms of symmetry. The resulting system graphene/Eu/Si(001) exhibits 2D magnetism with the transition temperature controlled by low magnetic fields. Negative magnetoresistance and the anomalous Hall effect in the graphene layer provide evidence for spin polarization of the carriers. Most importantly, the graphene/Eu/Si system seeds a class of graphene heterostructures based on submonolayer magnets aiming at applications in graphene spintronics.

5.
Nanoscale ; 16(10): 5302-5312, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372414

RESUMO

Intrinsic 2D magnets have recently been established as a playground for studies on fundamentals of magnetism, quantum phases, and spintronic applications. The inherent instability at low dimensionality often results in coexistence and/or competition of different magnetic orders. Such instability of magnetic ordering may manifest itself as phase-separated states. In 4f 2D materials, magnetic phase separation is expressed in various experiments; however, the experimental evidence is circumstantial. Here, we employ a high-sensitivity MFM technique to probe the spatial distribution of magnetic states in the paradigmatic 4f 2D ferromagnet EuGe2. Below the ferromagnetic transition temperature, we discover the phase-separated state and follow its evolution with temperature and magnetic field. The characteristic length-scale of magnetic domains amounts to hundreds of nanometers. These observations strongly shape our understanding of the magnetic states in 2D materials at the monolayer limit and contribute to engineering of ultra-compact spintronics.

6.
Nanoscale Horiz ; 8(6): 803-811, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36987577

RESUMO

2D magnets have recently emerged as a host for unconventional phases and related phenomena. The prominence of 2D magnetism stems from its high amenability to external stimuli and structural variations. The low dimensionality facilitates competition between magnetic orders which may give rise to exchange bias, in particular in magnetic heterostructures. Here, we propose a strategy for the search of exchange bias state in 2D individual compounds. We track the evolution of magnetic orders driven by the number of monolayers in a system exhibiting antiferromagnetism in the multilayer and ferromagnetism in the monolayer limit. The material, EuSi2, has the structure of multilayer silicene intercalated by Eu. A strong intrinsic exchange bias effect accompanies the dimensional crossover. Comparison with silicene-based GdSi2 and germanene-based EuGe2 suggests the competition between magnetic orders to be a common property of this class of materials that may be useful in spintronic applications.

7.
Nanoscale ; 14(34): 12377-12385, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-35972030

RESUMO

2D magnetic materials are at the forefront of research on fundamentals of magnetism; they exhibit unconventional phases and properties controlled by external stimuli. 2D magnets offer a solution to the problem of miniaturization of spintronic devices. A technological target of materials science is to find suitable magnetic materials and scale their thickness down as much as possible, a single monolayer being a natural limit. However, magnetism does not halt at one monolayer - it may persist beyond this boundary, to sparse but regular lattices of magnetic atoms. Here, we report 2D magnetic phases of Eu on the Ge(110) surface. We synthesized two submonolayer structures Eu/Ge(110) employing molecular beam epitaxy. The phases, identified by electron diffraction, differ in the surface density of Eu atoms. At low temperature, they exhibit magnetic ordering with magnetic moments lying in-plane. Strong dependence of the effective magnetic transition temperature on weak magnetic fields points at the 2D nature of the observed magnetism. The results are set against those on the Eu/Si system. The study of Eu/Ge(110) magnets demonstrates that a variety of substrates of different structure and symmetry can host submonolayer 2D magnetic phases, suggesting the phenomenon to be rather general.

8.
ACS Nano ; 16(11): 19482-19490, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36278843

RESUMO

The inherent malleability of 2D magnetism provides access to unconventional quantum phases, in particular those with coexisting magnetic orders. Incidentally, in a number of materials, the magnetic state in the bulk undergoes a fundamental change when the system is pushed to the monolayer limit. Therefore, a competition of magnetic states can be expected in the crossover region. Here, an exchange bias state is observed at the crossover from 3D antiferromagnetism to 2D ferromagnetism driven by the number of monolayers in the metalloxene GdSi2. The material constitutes a stack of alternating monolayers of Gd and silicene, the Si analogue of graphene. The exchange bias manifests itself as a shift of the hysteresis loop signifying coupling of magnetic systems, as evidenced by magnetization studies. Two features distinguish the phenomenon: (i) it is intrinsic, i.e. it is detected in an individual compound; (ii) the exchange bias field, 1.5 kOe, is unusually high, which is conducive to applications. The results suggest magnetic derivatives of 2D-Xenes to be prospective materials for ultracompact spintronics.

9.
Mater Horiz ; 9(11): 2854-2862, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36056695

RESUMO

Silicene, a Si-based analogue of graphene, holds a high promise for electronics because of its exceptional properties but a high chemical reactivity makes it a very challenging material to work with. The silicene lattice can be stabilized by active metals to form stoichiometric compounds MSi2. Being candidate topological semimetals, these materials provide an opportunity to probe layer dependence of unconventional electronic structures. It is demonstrated here that in the silicene compound SrSi2, the number of monolayers controls the electronic state. A series of films ranging from bulk-like multilayers down to a single monolayer have been synthesized on silicon and characterized with a combination of techniques - from electron and X-ray diffraction to high-resolution electron microscopy. Transport measurements reveal evolution of the chiral anomaly in bulk SrSi2 to weak localization in ultrathin films down to 3 monolayers followed by 3D and 2D strong localization in 2 and 1 monolayers, respectively. The results outline the range of stability of the chiral state, important for practical applications, and shed light on the localization phenomena in the limit of a few monolayers.

10.
ACS Appl Mater Interfaces ; 13(35): 41926-41932, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34436853

RESUMO

Coupling various functional properties in one material is always a challenge, more so if the material should be nanostructured for practical applications. Magnetism and high carrier mobility are key components for spintronic applications but rather difficult to bundle together. Here, we establish EuAl2Si2 as a layered antiferromagnet supporting high carrier mobility. Its topotactic synthesis via a sacrificial two-dimensional template results in epitaxial nanoscale films on silicon. Their outstanding structural quality and atomically sharp interfaces are demonstrated by diffraction and microscopy techniques. EuAl2Si2 films exhibit extreme magnetoresistance and a carrier mobility of above 10,000 cm2 V-1 s-1. The marriage of these properties and magnetism makes EuAl2Si2 a promising spintronic material. Importantly, the seamless integration of EuAl2Si2 with silicon technology is particularly appealing for applications.

11.
ACS Nano ; 15(7): 12034-12041, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34128650

RESUMO

Intrinsic two-dimensional (2D) magnetism has been demonstrated in various materials scaled down to a single monolayer. However, the question is whether 2D magnetism extends beyond the monolayer limit, to chemical species formed by sparse but regular 2D arrays of magnetic atoms. Here we show that sub-monolayer superstructures of Eu atoms self-assembled on the silicon surface exhibit strong magnetic signals. Robust easy-plane magnetism is discovered in both one- and two-dimensionally ordered structures with Eu coverage of half monolayer and above. The emergence of 2D magnetism manifests itself by a strong dependence of the effective transition temperature on weak magnetic fields. The results constitute a versatile platform for miniaturization of 2D magnetic systems and seed an expandable class of atomically thin magnets for applications in information technologies.

12.
ACS Appl Mater Interfaces ; 10(24): 20767-20774, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29806934

RESUMO

Addition of magnetism to spectacular properties of graphene may lead to novel topological states and design of spin logic devices enjoying low power consumption. A significant progress is made in defect-induced magnetism in graphene-selective elimination of p z orbitals (by vacancies or adatoms) at triangular sublattices tailors graphene magnetism. Proximity to a magnetic insulator is a less invasive way, which is being actively explored now. Integration of graphene with the ferromagnetic semiconductor EuO has much to offer, especially in terms of proximity-induced spin-orbit interactions. Here, we synthesize films of EuO on graphene using reactive molecular beam epitaxy. Their quality is attested by electron and X-ray diffraction, cross-sectional electron microscopy, and Raman and magnetization measurements. Studies of electron transport reveal a magnetic transition at TC* ≈ 220 K, well above the Curie temperature 69 K of EuO. Up to TC*, the dependence R xy( B) is strongly nonlinear, suggesting the presence of the anomalous Hall effect. The role of synthesis conditions is highlighted by studies of an overdoped structure. The results justify the use of the EuO/graphene system in spintronics.

13.
Nat Commun ; 9(1): 1672, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700295

RESUMO

The appeal of ultra-compact spintronics drives intense research on magnetism in low-dimensional materials. Recent years have witnessed remarkable progress in engineering two-dimensional (2D) magnetism via defects, edges, adatoms, and magnetic proximity. However, intrinsic 2D ferromagnetism remained elusive until recent discovery of out-of-plane magneto-optical response in Cr-based layers, stimulating the search for 2D magnets with tunable and diverse properties. Here we employ a bottom-up approach to produce layered structures of silicene (a Si counterpart of graphene) functionalized by rare-earth atoms, ranging from the bulk down to one monolayer. We track the evolution from the antiferromagnetism of the bulk to intrinsic 2D in-plane ferromagnetism of ultrathin layers, with its characteristic dependence of the transition temperature on low magnetic fields. The emerging ferromagnetism manifests itself in the electron transport. The discovery of a class of robust 2D magnets, compatible with the mature Si technology, is instrumental for engineering new devices and understanding spin phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA