Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 140(5): 1267-1279, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28335020

RESUMO

Progressive encephalopathy with oedema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is an early childhood onset, severe autosomal recessive encephalopathy characterized by extreme cerebellar atrophy due to almost total granule neuron loss. By combining homozygosity mapping in Finnish families with Sanger sequencing of positional candidate genes and with exome sequencing a homozygous missense substitution of leucine for serine at codon 31 in ZNHIT3 was identified as the primary cause of PEHO syndrome. ZNHIT3 encodes a nuclear zinc finger protein previously implicated in transcriptional regulation and in small nucleolar ribonucleoprotein particle assembly and thus possibly to pre-ribosomal RNA processing. The identified mutation affects a highly conserved amino acid residue in the zinc finger domain of ZNHIT3. Both knockdown and genome editing of znhit3 in zebrafish embryos recapitulate the patients' cerebellar defects, microcephaly and oedema. These phenotypes are rescued by wild-type, but not mutant human ZNHIT3 mRNA, suggesting that the patient missense substitution causes disease through a loss-of-function mechanism. Transfection of cell lines with ZNHIT3 expression vectors showed that the PEHO syndrome mutant protein is unstable. Immunohistochemical analysis of mouse cerebellar tissue demonstrated ZNHIT3 to be expressed in proliferating granule cell precursors, in proliferating and post-mitotic granule cells, and in Purkinje cells. Knockdown of Znhit3 in cultured mouse granule neurons and ex vivo cerebellar slices indicate that ZNHIT3 is indispensable for granule neuron survival and migration, consistent with the zebrafish findings and patient neuropathology. These results suggest that loss-of-function of a nuclear regulator protein underlies PEHO syndrome and imply that establishment of its spatiotemporal interaction targets will be the basis for developing therapeutic approaches and for improved understanding of cerebellar development.


Assuntos
Edema Encefálico/genética , Edema Encefálico/patologia , Cerebelo/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Atrofia Óptica/genética , Atrofia Óptica/patologia , Espasmos Infantis/genética , Espasmos Infantis/patologia , Animais , Complexo do Signalossomo COP9 , Movimento Celular/genética , Movimento Celular/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Cerebelo/metabolismo , Edema/complicações , Edema/genética , Exoma/genética , Edição de Genes , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Microcefalia/complicações , Microcefalia/genética , Mutação de Sentido Incorreto/genética , Mutação de Sentido Incorreto/fisiologia , Neurônios/metabolismo , Proteínas Nucleares/biossíntese , Análise de Sequência de DNA , Fatores de Transcrição/biossíntese , Peixe-Zebra
2.
Hum Mutat ; 36(1): 106-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385192

RESUMO

Variants in cullin 4B (CUL4B) are a known cause of syndromic X-linked intellectual disability. Here, we describe an additional 25 patients from 11 families with variants in CUL4B. We identified nine different novel variants in these families and confirmed the pathogenicity of all nontruncating variants. Neuroimaging data, available for 15 patients, showed the presence of cerebral malformations in ten patients. The cerebral anomalies comprised malformations of cortical development (MCD), ventriculomegaly, and diminished white matter volume. The phenotypic heterogeneity of the cerebral malformations might result from the involvement of CUL-4B in various cellular pathways essential for normal brain development. Accordingly, we show that CUL-4B interacts with WDR62, a protein in which variants were previously identified in patients with microcephaly and a wide range of MCD. This interaction might contribute to the development of cerebral malformations in patients with variants in CUL4B.


Assuntos
Encéfalo/patologia , Proteínas Culina/genética , Proteínas Culina/metabolismo , Malformações do Desenvolvimento Cortical/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas do Tecido Nervoso/metabolismo , Adolescente , Adulto , Proteínas de Ciclo Celular , Células Cultivadas , Criança , Pré-Escolar , Estudos de Associação Genética , Células HEK293 , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical/metabolismo , Malformações do Desenvolvimento Cortical/patologia , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Pessoa de Meia-Idade , Linhagem , Análise de Sequência de DNA , Adulto Jovem
3.
Nat Genet ; 37(12): 1309-11, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16282978

RESUMO

We identified the gene underlying Marinesco-Sjögren syndrome, which is characterized by cerebellar ataxia, progressive myopathy and cataracts. We identified four disease-associated, predicted loss-of-function mutations in SIL1, which encodes a nucleotide exchange factor for the heat-shock protein 70 (HSP70) chaperone HSPA5. These data, together with the similar spatial and temporal patterns of tissue expression of Sil1 and Hspa5, suggest that disturbed SIL1-HSPA5 interaction and protein folding is the primary pathology in Marinesco-Sjögren syndrome.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas/metabolismo , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/metabolismo , Chaperona BiP do Retículo Endoplasmático , Finlândia , Deleção de Genes , Fatores de Troca do Nucleotídeo Guanina/análise , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Músculo Esquelético/química , Mutação , Dobramento de Proteína
4.
Duodecim ; 130(21): 2202-5, 2014.
Artigo em Fi | MEDLINE | ID: mdl-25582014

RESUMO

Normal function of the thyroid gland is the cornerstone of a child's mental development and physical growth. We describe a Finnish family, in which the diagnosis of three brothers became clear after investigations that lasted for more than 30 years. Two of the sons have already died. DNA analysis of the third one, a 16-year-old boy, revealed in exome sequencing of the complete X chromosome a mutation in the SLC16A2 gene, i.e. MCT8, coding for a thyroid hormone transport protein. Allan-Herndon-Dudley syndrome was thus shown to be the cause of multiple disabilities.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Transportadores de Ácidos Monocarboxílicos/genética , Hipotonia Muscular/genética , Atrofia Muscular/genética , Adolescente , Cromossomos Humanos X , Exoma , Finlândia , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/mortalidade , Hipotonia Muscular/mortalidade , Atrofia Muscular/mortalidade , Mutação , Linhagem , Análise de Sequência de DNA , Simportadores
5.
Neurogenetics ; 14(2): 123-32, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23456260

RESUMO

We describe a founder mutation in the gene encoding ganglioside-induced differentiation associated-protein 1 (GDAP1), leading to amino acid change p.H123R, as a common cause of autosomal dominant axonal Charcot-Marie-Tooth (CMT2) neuropathy in Finland. The mutation explains up to 14 % of CMT2 in Finland, where most patients with axonal neuropathy have remained without molecular diagnosis. Only three families out of 28 were found to carry putative disease mutations in the MFN2 gene encoding mitofusin 2. In addition, the MFN2 variant p.V705I was commonly found in our patients, but we provide evidence that this previously described mutation is a common polymorphism and not pathogenic. GDAP1-associated polyneuropathy caused predominantly a mild and slowly progressive phenotype. Besides distal leg muscle weakness, most patients showed mild proximal weakness, often with asymmetry and pes cavus. Our findings broaden the understanding of GDAP1 mutations in CMT2 phenotypes and provide support for the use of whole-exome sequencing in CMT gene diagnostics.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Adolescente , Adulto , Axônios/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Criança , Finlândia , GTP Fosfo-Hidrolases/genética , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Linhagem , Fenótipo , Polineuropatias/etiologia , Polineuropatias/genética , Adulto Jovem
6.
Am J Med Genet A ; 155A(4): 875-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21595003

RESUMO

Recently, three children with a microduplication in 17p13 including the PAFAH1B1 gene that encodes LIS1 were reported. LIS1 overexpression has earlier been shown to affect brain development by causing migrational defects and reductions in brain volume [Bi et al., 2009]. Here, we report an additional patient with a microduplication on chromosome 17p13.1p13.3 including the PAFAH1B1 gene, that was inserted into the long arm of chromosome 4. The patient had psychomotor and growth retardation, dysmorphic features, small ventricular septal defect (VSD), and immunoglobulin abnormality. Only subtle abnormalities in brain MRI scan were seen. Interestingly, the facial features of our patient closely resemble those previously reported in 17p trisomy patients.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Duplicação Cromossômica/genética , Cromossomos Humanos Par 17/genética , Proteínas Associadas aos Microtúbulos/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Pré-Escolar , Cromossomos Humanos Par 4/genética , Feminino , Humanos , Fenótipo , Radiografia
7.
Clin Endocrinol (Oxf) ; 72(4): 481-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19673927

RESUMO

OBJECTIVE: Mutations in the low-density lipoprotein receptor-related protein 5 gene (LRP5) underlie osteoporosis-pseudoglioma syndrome. Animal models implicate a role for LRP5 in lipid and glucose homeostasis. The objective was to evaluate metabolic consequences of LRP5 mutations in humans. DESIGN AND PATIENTS: Thirteen Finnish individuals with homozygous or heterozygous LRP5 mutations were assessed for bone health, glucose and lipid metabolism, and for serum serotonin concentration. Results were compared with findings in family members without mutations. MEASUREMENTS: Bone mineral density (BMD), vertebral morphology, oral and intravenous glucose tolerance tests, lipid profile and serum serotonin concentrations. RESULTS: Two individuals were homozygous for R570W, one compound heterozygous for R570W and R1036Q, and 10 were heterozygous (six for R570W, three for R1036Q and one for R925C). Subjects with two LRP5 mutations had multiple spinal fractures and low BMD. Subjects with one mutation had significantly lower median lumbar spine (P = 0.004) and femoral neck (P = 0.005) BMD Z-scores, and more often vertebral fractures than the 18 individuals without mutations. Of the 12 subjects with LRP5 mutation six had diabetes and one had impaired glucose tolerance. Intravenous glucose tolerance tests suggested impaired beta-cell function; no insulin resistance was observed. Prevalence of hypercholesterolaemia was similar in mutation positive and negative subjects. Serum serotonin concentrations showed a trend towards higher concentrations in subjects with LRP5 mutation. CONCLUSIONS: We found high prevalence of osteoporosis and abnormal glucose metabolism in subjects with LRP5 mutation(s). Further studies are needed to establish the role of LRP5 in glucose and lipid metabolism.


Assuntos
Hipercolesterolemia/genética , Proteínas Relacionadas a Receptor de LDL/genética , Osteoporose/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Densidade Óssea/genética , Feminino , Colo do Fêmur/metabolismo , Glioma/genética , Intolerância à Glucose/genética , Humanos , Metabolismo dos Lipídeos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Vértebras Lombares/metabolismo , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Síndrome
8.
Duodecim ; 126(11): 1286-94, 2010.
Artigo em Fi | MEDLINE | ID: mdl-20681351

RESUMO

In Finland about 120 babies are born with cleft lip and palate per year. The largest group is those with isolated cleft palate (60%) and only one fourth have complete cleft lip and palate. The clefts are closed under one year of age. Clefts affect appearance, occlusion and speech and the final outcome can only be assessed at the end of the growth. Centralisation of services and a multidisciplinary team approach has a bigger influence on the final outcome than different treatment protocols, the comparative advantages of which remain unproven. Good documentation is important to assess the level of treatment outcomes.


Assuntos
Fenda Labial/cirurgia , Fissura Palatina/cirurgia , Finlândia , Humanos , Lactente , Equipe de Assistência ao Paciente , Resultado do Tratamento
9.
J Neurol ; 253(3): 301-6, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16151599

RESUMO

BACKGROUND: Marinesco-Sjögren syndrome (MSS) is an autosomal recessive multiorgan disorder showing clinical and genetic heterogeneity. The key features of MSS include cerebellar ataxia, early bilateral cataracts, delayed motor development, and varying degrees of mental retardation. Patients with a subtype of MSS with myoglobinuria and neuropathy have been linked to chromosome 18qter, and recently a locus for classical MSS has been localized on chromosome 5q31. OBJECTIVES: To determine the importance of myopathy in this disorder apart from the CNS based disability and to establish the pattern of muscle involvement and degree of its severity. METHODS: Muscle computed tomography (CT) investigations were carried out in nine Finnish MSS patients homozygous for markers around the MSS locus on chromosome 5q31. RESULTS: Patients with severe clinical disability showed severe and generalized muscle degeneration. Muscle CT findings in patients with relatively severe clinical picture were characterized by severe involvement of the posterior thoracic and pelvic muscles, and almost all thigh muscles. In the legs the peronei and posterior compartment muscles were severely degenerated. The group of patients with moderate severity of disease showed the same pattern of involved muscle, albeit with lower degree of muscle degeneration. CONCLUSIONS: Patients with MSS linked to chromosome 5q31 have a severe progressive myopathy, the extent of which may remain largely unrecognized because of the CNS involvement.


Assuntos
Músculo Esquelético/patologia , Doenças Musculares/patologia , Degenerações Espinocerebelares/patologia , Tomógrafos Computadorizados , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Musculares/complicações , Índice de Gravidade de Doença , Degenerações Espinocerebelares/complicações
10.
Neurol Genet ; 2(1): e46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27066583

RESUMO

OBJECTIVE: To identify the molecular genetic basis of a syndrome characterized by rapidly progressing cerebral atrophy, intractable seizures, and intellectual disability. METHODS: We performed exome sequencing in the proband and whole-genome single nucleotide polymorphism genotyping (copy number variant analysis) in the proband-parent trio. We used heterologous expression systems to study the functional consequences of identified mutations. RESULTS: The search for potentially deleterious recessive or de novo variants yielded compound heterozygous missense (c.1202G>A, p.Cys401Tyr) and frameshift deletion (c.2396delG, p.Ser799IlefsTer96) mutations in ADAM22, which encodes a postsynaptic receptor for LGI1. The deleterious effect of the mutations was observed in cell surface binding and immunoprecipitation assays, which revealed that both mutant proteins failed to bind to LGI1. Furthermore, immunoprecipitation assays showed that the frameshift mutant ADAM22 also did not bind to the postsynaptic scaffolding protein PSD-95. CONCLUSIONS: The mutations identified abolish the LGI1-ADAM22 ligand-receptor complex and are thus a likely primary cause of the proband's epilepsy syndrome, which is characterized by unusually rapidly progressing cortical atrophy starting at 3-4 months of age. These findings are in line with the implicated role of the LGI1-ADAM22 complex as a key player in nervous system development, specifically in functional maturation of postnatal synapses. Because the frameshift mutation affects an alternatively spliced exon with highest expression in postnatal brain, the combined effect of the mutations is likely to be hypomorphic rather than complete loss of function. This is compatible with the longer survival of the patient compared to Lgi1 (-/-) and Adam22 (-/-) mice, which develop lethal seizures during the first postnatal weeks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA