Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 215, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596656

RESUMO

BACKGROUND: Toll-like receptor 7 (TLR7) is an endosomal TLR activated by single-stranded RNA, including endogenous microRNAs. Although TLR7 is known to promote inflammatory responses in pathophysiological conditions, its role in renal fibrosis has not been investigated. Here, we aim to investigate the inflammatory roles of TLR7 in kidney inflammation and fibrosis. METHODS: TLR7 knockout mice (Tlr7 -/-) subjected to AD-induced kidney injury were utilized to examine the role of TLR7 in kidney fibrosis. To elucidate the role of TLR7 in renal epithelial cells, NRK52E rat renal tubule epithelial cells were employed. RESULTS: Under fibrotic conditions induced by an adenine diet (AD), TLR7 was significantly increased in damaged tubule epithelial cells, where macrophages were highly infiltrated. TLR7 deficiency protected against AD-induced tubular damage, inflammation, and renal fibrosis. Under in vitro conditions, TLR7 activation increased NF-κB activity and induced chemokine expression, whereas TLR7 inhibition effectively blocked NF-κB activation. Furthermore, among the known TLR7 endogenous ligands, miR-21 was significantly upregulated in the tubular epithelial regions. In NRK52E cells, miR-21 treatment induced pro-inflammatory responses, which could be blocked by a TLR7 inhibitor. When the TLR7 inhibitor, M5049, was administered to the AD-induced renal fibrosis model, TLR7 inhibition significantly attenuated AD-induced renal inflammation and fibrosis. CONCLUSIONS: Overall, activation of TLR7 by endogenous miR-21 in renal epithelial cells contributes to inflammatory responses in a renal fibrosis model, suggesting a possible therapeutic target for the treatment of renal fibrosis. Video Abstract.


Assuntos
Nefropatias , MicroRNAs , Receptor 7 Toll-Like , Animais , Camundongos , Ratos , Adenina , Células Epiteliais , Inflamação , MicroRNAs/genética , NF-kappa B , Transdução de Sinais , Nefropatias/genética , Nefropatias/patologia , Fibrose
2.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902313

RESUMO

The peroxisome proliferator-activated receptor (PPAR) nuclear receptor has been an interesting target for the treatment of chronic diseases. Although the efficacy of PPAR pan agonists in several metabolic diseases has been well studied, the effect of PPAR pan agonists on kidney fibrosis development has not been demonstrated. To evaluate the effect of the PPAR pan agonist MHY2013, a folic acid (FA)-induced in vivo kidney fibrosis model was used. MHY2013 treatment significantly controlled decline in kidney function, tubule dilation, and FA-induced kidney damage. The extent of fibrosis determined using biochemical and histological methods showed that MHY2013 effectively blocked the development of fibrosis. Pro-inflammatory responses, including cytokine and chemokine expression, inflammatory cell infiltration, and NF-κB activation, were all reduced with MHY2013 treatment. To demonstrate the anti-fibrotic and anti-inflammatory mechanisms of MHY2013, in vitro studies were conducted using NRK49F kidney fibroblasts and NRK52E kidney epithelial cells. In the NRK49F kidney fibroblasts, MHY2013 treatment significantly reduced TGF-ß-induced fibroblast activation. The gene and protein expressions of collagen I and α-smooth muscle actin were significantly reduced with MHY2013 treatment. Using PPAR transfection, we found that PPARγ played a major role in blocking fibroblast activation. In addition, MHY2013 significantly reduced LPS-induced NF-κB activation and chemokine expression mainly through PPARß activation. Taken together, our results suggest that administration of the PPAR pan agonist effectively prevented renal fibrosis in both in vitro and in vivo models of kidney fibrosis, implicating the therapeutic potential of PPAR agonists against chronic kidney diseases.


Assuntos
Nefropatias , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Nefropatias/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças , PPAR gama/metabolismo , Quimiocinas/metabolismo , Fibrose , Fibroblastos/metabolismo
3.
J Am Chem Soc ; 143(42): 17577-17586, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34648708

RESUMO

Plants use energy from the sun yet also require protection against the generation of deleterious photoproducts from excess energy. Photoprotection in green plants, known as nonphotochemical quenching (NPQ), involves thermal dissipation of energy and is activated by a series of interrelated factors: a pH drop in the lumen, accumulation of the carotenoid zeaxanthin (Zea), and formation of arrays of pigment-containing antenna complexes. However, understanding their individual contributions and their interactions has been challenging, particularly for the antenna arrays, which are difficult to manipulate in vitro. Here, we achieved systematic and discrete control over the array size for the principal antenna complex, light-harvesting complex II, using near-native in vitro membranes called nanodiscs. Each of the factors had a distinct influence on the level of dissipation, which was characterized by measurements of fluorescence quenching and ultrafast chlorophyll-to-carotenoid energy transfer. First, an increase in array size led to a corresponding increase in dissipation; the dramatic changes in the chlorophyll dynamics suggested that this is due to an allosteric conformational change of the protein. Second, a pH drop increased dissipation but exclusively in the presence of protein-protein interactions. Third, no Zea dependence was identified which suggested that Zea regulates a distinct aspect of NPQ. Collectively, these results indicate that each factor provides a separate type of control knob for photoprotection, which likely enables a flexible and tunable response to solar fluctuations.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Zeaxantinas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Transferência de Energia , Concentração de Íons de Hidrogênio , Luz , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Nanoestruturas/química , Ligação Proteica , Multimerização Proteica , Spinacia oleracea/química , Tilacoides/química , Tilacoides/metabolismo , Xantofilas/metabolismo
4.
Phys Chem Chem Phys ; 23(35): 19511-19524, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524278

RESUMO

Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles. The utility of these systems was limited by significant LHCII quenching due to protein-protein interactions and heterogeneous lipid structures. Here, we organise TR and LHCII into a lipid nanodisc, which provides a homogeneous, well-controlled platform to study the interactions between TR molecules and single LHCII complexes. Fluorescence spectroscopy determined that TR-to-LHCII energy transfer has an efficiency of at least 60%, resulting in a 262% enhancement of LHCII fluorescence in the 525-625 nm range, two-fold greater than in the previous system. Ultrafast transient absorption spectroscopy revealed two time constants of 3.7 and 128 ps for TR-to-LHCII energy transfer. Structural modelling and theoretical calculations indicate that these timescales correspond to TR-lipids that are loosely- or tightly-associated with the protein, respectively, with estimated TR-to-LHCII separations of ∼3.5 nm and ∼1 nm. Overall, we demonstrate that a nanodisc-based biohybrid system provides an idealised platform to explore the photophysical interactions between extrinsic chromophores and membrane proteins with potential applications in understanding more complex natural or artificial photosynthetic systems.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Plantas/metabolismo , Clorofila/química , Cloroplastos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Complexos de Proteínas Captadores de Luz/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Xantenos/química
5.
Opt Express ; 25(16): 18950-18962, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041086

RESUMO

Two-dimensional electronic spectroscopy (2DES) is an incisive tool for disentangling excited state energies and dynamics in the condensed phase by directly mapping out the correlation between excitation and emission frequencies as a function of time. Despite its enhanced frequency resolution, the spectral window of detection is limited to the laser bandwidth, which has often hindered the visualization of full electronic energy relaxation pathways spread over the entire visible region. Here, we describe a high-sensitivity, ultrabroadband 2DES apparatus. We report a new combination of a simple and robust setup for increased spectral bandwidth and shot-to-shot detection. We utilize 8-fs supercontinuum pulses generated by gas filamentation spanning the entire visible region (450 - 800 nm), which allows for a simultaneous interrogation of electronic transitions over a 200-nm bandwidth, and an all-reflective interferometric delay system with angled nanopositioner stages achieves interferometric precision in coherence time control without introducing wavelength-dependent dispersion to the ultrabroadband spectrum. To address deterioration of detection sensitivity due to the inherent instability of ultrabroadband sources, we introduce a 5-kHz shot-to-shot, dual chopping acquisition scheme by combining a high-speed line-scan camera and two optical choppers to remove scatter contributions from the signal. Comparison of 2D spectra acquired by shot-to-shot detection and averaged detection shows a 15-fold improvement in the signal-to-noise ratio. This is the first direct quantification of detection sensitivity on a filamentation-based ultrabroadband 2DES apparatus.

6.
Clin Exp Rheumatol ; 35(5): 837-843, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28375831

RESUMO

OBJECTIVES: The full effect of anti-TNF therapy on new bone formation is still in debate in spondylitis fields. We sought to obtain circulating osteoblast-lineage cells in peripheral blood from ankylosing spondylitis (AS) patients and healthy control subjects, and to evaluate the effect of before and after anti TNF-α therapy on osteoblastogenesis in patients with AS. METHODS: Sixteen male patients with AS slated for infliximab therapy and 19 controls were recruited. We cultured osteoblast-lineage cells from peripheral blood and measured the optical density of their Alizarin red S staining. We also measured serum P1NP (procollagen type 1 N-terminal propeptide) as an early osteoblast differentiation marker, osteocalcin as a late osteoblast differentiation marker, and inflammatory markers. RESULTS: There were significantly more circulating osteoblast-lineage cells in patients than in controls. The number of circulating osteoblast-lineage cells and optical density of Alizarin red S staining decreased 14 weeks after infliximab therapy (p=0.028); serum level of P1NP decreased, but that of osteocalcin increased (p=0.002 and 0.007, respectively). CONCLUSIONS: Our data reveals that first, the circulating osteoblast-lineage cells are recoverable and increased in AS patients, and also that they decrease after infliximab therapy; second, infliximab therapy resolves early inflammation, but allows mature osteoblast differentiation in late inflammation. The culture of osteoblast-lineage cells in peripheral blood may be a candidate for a new modality with which to study spondylitis and other autoimmune diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Produtos Biológicos/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Infliximab/uso terapêutico , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Espondilite Anquilosante/tratamento farmacológico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Anti-Inflamatórios/efeitos adversos , Produtos Biológicos/efeitos adversos , Estudos de Casos e Controles , Células Cultivadas , Humanos , Mediadores da Inflamação/sangue , Infliximab/efeitos adversos , Masculino , Osteoblastos/patologia , Osteocalcina/sangue , Fragmentos de Peptídeos/sangue , Pró-Colágeno/sangue , Espondilite Anquilosante/imunologia , Espondilite Anquilosante/patologia , Fatores de Tempo , Resultado do Tratamento , Fator de Necrose Tumoral alfa/imunologia
7.
Angew Chem Int Ed Engl ; 55(8): 2815-9, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26804451

RESUMO

A diradical approach to obtain stable organic dyes with intense absorption around λ=1100 nm is reported. The para- and meta-quinodimethane-bridged BODIPY dimers BD-1 and BD-2 were synthesized and were found to have a small amount of diradical character. These molecules exhibited very intense absorption at λ=1088 nm (ɛ=6.65×10(5)  M(-1) cm(-1) ) and 1136 nm (ɛ=6.44×10(5)  M(-1) cm(-1) ), respectively, together with large two-photon-absorption cross-sections. Structural isomerization induced little variation in their diradical character but distinctive differences in their physical properties. Moreover, the compounds showed a selective fluorescence turn-on response in the presence of the hydroxyl radical but not with other reactive oxygen species.

8.
Pflugers Arch ; 467(7): 1607-1621, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25095987

RESUMO

In the present study, we explored the effects of a plant alkaloid compound, 1-methoxy-3-methylcarbazole (murrayafoline A, Mu-A), on focal and global Ca(2+) signaling, and the underlying cellular mechanisms. Rapid two-dimensional confocal Ca(2+) imaging and image analysis were used to measure Ca(2+) signals in rat ventricular myocytes. Application of Mu-A (10-100 µM) significantly enhanced the magnitude and rate of Ca(2+) release on depolarization with no change in Ca(2+) transient decay. Focal Ca(2+) release events (Ca(2+) sparks) occurred more often, and their duration and size were greater after the application of Mu-A. In addition, sarcoplasmic reticulum (SR) Ca(2+) loading and fractional release were increased by exposure to Mu-A. All these effects reached steady state within 2-3 min after Mu-A application. The higher occurrence of Ca(2+) sparks in the presence of Mu-A was resistant to SR Ca(2+) clamping, removal of extracellular Ca(2+) and Na(+), and blockade of either protein kinase A, Ca(2+)/calmodulin-dependent protein kinase II, phospholipase C, or inositol 1,4,5-trisphosphate receptors, but it was abolished by the inhibition of protein kinase C (PKC). SR Ca(2+) clamping prevented the Mu-A-induced Ca(2+) spark prolongation and enlargement. The Mu-A-induced enhancement of Ca(2+) transients was also eliminated by PKC blockade. Mu-A enhanced PKC activity in vitro. These results suggest that Mu-A may increase spark occurrence via its direct enhancement of PKC activity and subsequent sensitization of ryanodine receptor clusters and that this mechanism, as well as increased SR Ca(2+) loading, may partly explain larger and more rapid global Ca(2+) releases in the presence of Mu-A during depolarization.


Assuntos
Alcaloides/farmacologia , Sinalização do Cálcio , Carbazóis/farmacologia , Miócitos Cardíacos/metabolismo , Proteína Quinase C/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Retículo Sarcoplasmático/metabolismo , Fosfolipases Tipo C/metabolismo
9.
J Am Chem Soc ; 137(1): 142-5, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25539406

RESUMO

Highly twisted π-conjugated molecules have been attractive but challenging targets. We report here an efficient synthesis of highly twisted diporphyrins with 126° and 136° twist angles that involves an oxidative fusion reaction of planar aminoporphyrin precursors at room temperature. Repeated amination-oxidative fusion sequences provide a unidirectionally twisted tetramer. The twisting angle of the tetramer is 298°.

10.
J Am Chem Soc ; 137(26): 8572-83, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26062868

RESUMO

Research on stable open-shell singlet diradicaloids recently became a hot topic because of their unique optical, electronic, and magnetic properties and promising applications in materials science. So far, most reported singlet diradicaloid molecules have a symmetric structure, while asymmetric diradicaloids with an additional contribution of a dipolar zwitterionic form to the ground state were rarely studied. In this Article, a series of new push-pull type oligo(N-annulated perylene)quinodimethanes were synthesized. Their chain length and solvent-dependent ground states and physical properties were systematically investigated by various experimental methods such as steady-state and transient absorption, two-photon absorption, X-ray crystallographic analysis, electron spin resonance, superconducting quantum interference device, Raman spectroscopy, and electrochemistry. It was found that with extension of the chain length, the diradical character increases while the contribution of the zwitterionic form to the ground state becomes smaller. Because of the intramolecular charge transfer character, the physical properties of this push-pull system showed solvent dependence. In addition, density functional theory calculations on the diradical character and Hirshfeld charge were conducted to understand the chain length and solvent dependence of both symmetric and asymmetric systems. Our studies provided a comprehensive understanding on the fundamental structure- and environment-property relationships in the new asymmetric diradicaloid systems.

11.
Chemistry ; 21(2): 615-30, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25421552

RESUMO

In this work, we have elucidated in detail the folding properties of two perylene bisimide (PBI) foldamers composed of two and three PBI units, respectively, attached to a phenylene ethynylene backbone. The folding behaviors of these new PBI folda-dimer and trimer have been studied by solvent-dependent UV/Vis absorption and 1D and 2D NMR spectroscopy, revealing facile folding of both systems in tetrahydrofuran (THF). In CHCl3 the dimer exists in extended (unfolded) conformation, whereas partially folded conformations are observed in the trimer. Temperature-dependent (1) H NMR spectroscopic studies in [D8 ]THF revealed intramolecular dynamic processes for both PBI foldamers due to, on the one hand, hindered rotation around CN imide bonds and, on the other hand, backbone flapping; the latter process being energetically more demanding as it was observed only at elevated temperature. The structural features of folded conformations of the dimer and trimer have been elucidated by different 2D-NMR spectroscopy (e.g., ROESY and DOSY) in [D8 ]THF. The energetics of folding processes for the PBI dimer and trimer have been assessed by calculations applying various methods, particularly the semiempirical PM6-DH2 and the more sophisticated B97D approach, in which relevant dispersion corrections are included. These calculations corroborate the results of NMR spectroscopic studies. Folding features in the excited states of these PBI foldamers have been characterized by using time-resolved fluorescence and transient absorption spectroscopy in THF and CHCl3 , exhibiting similar solvent-dependent behavior as observed for the ground state. Interestingly, photoinduced electron transfer (PET) process from electron-donating backbone to electron-deficient PBI core for extended, but not for folded, conformations was observed, which can be explained by a fast relaxation of excited PBI stacks in the folded conformation into fluorescent excimer states.

12.
Chemistry ; 21(9): 3708-15, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25606849

RESUMO

Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1 a/1 b with very intense absorption (ε>1.3×10(5) M(-1) cm(-1)) beyond 1250 nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10(-6) and 6.0×10(-6) for 1 a and 1 b, respectively. The NP-substituted porphyrin dimers 2 a/2 b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.

13.
Chemphyschem ; 16(8): 1757-67, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25827823

RESUMO

The excited-state photophysical behavior of a spiral perylene bisimide (PBI) folda-octamer (F8) tethered to an oligophenylene-ethynylene scaffold is comprehensively investigated. Solvent-dependent UV/Vis and fluorescence studies reveal that the degree of folding in this foldamer is extremely sensitive to the solvent, thus giving rise to an extended conformation in CHCl(3) and a folded helical aggregate in methylcyclohexane (MCH). The exciton-deactivation dynamics are largely governed by the supramolecular structure of F8. Femtosecond transient absorption (TA) in the near-infrared region indicates a photoinduced electron-transfer process from the backbone to the PBI core in the extended conformation, whereas excitation power- and polarization-dependent TA measurements combined with computational modeling showed that excitation energy transfer between the unit PBI chromophores is the major deactivation pathway in the folded counterpart.

14.
Faraday Discuss ; 185: 507-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26399996

RESUMO

Foldamer systems comprised of two perylene bisimide (PBI) dyes attached to the conjugated backbones of 1,2-bis(phenylethynyl)benzene and phenylethynyl-bis(phenylene)indane, respectively, were synthesized and investigated with regard to their solvent-dependent properties. UV/Vis absorption and steady-state fluorescence spectra show that both foldamers exist predominantly in a folded H-aggregated state consisting of π-π-stacked PBIs in THF and in more random conformations with weaker excitonic coupling between the PBIs in chloroform. Time-resolved fluorescence spectroscopy and transient absorption spectroscopy reveal entirely different relaxation pathways for the photoexcited molecules in the given solvents, i.e. photoinduced electron transfer leading to charge separated states for the open conformations (in chloroform) and relaxation into excimer states with red-shifted emission for the stacked conformations (in THF). Supported by redox data from cyclic voltammetry and Rehm-Weller analysis we could relate the processes occurring in these solution-phase model systems to the elementary processes in organic solar cells. Accordingly, only if relaxation pathways such as excimer formation are strictly avoided in molecular semiconductor materials, excitons may diffuse over larger distances to the heterojunction interface and produce photocurrent via the formation of electron/hole pairs by photoinduced electron transfer.

15.
J Phys Chem A ; 119(24): 6275-82, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25992707

RESUMO

Broadband laser pulses with ultrashort duration are capable of triggering impulsive excitation of the superposition of vibrational eigenstates, giving rise to quantum beating signals originating from coherent wave packet motions along the potential energy surface. In this work, coherent vibrational wave packet dynamics of an N,N'-bis(2,6-dimethylphenyl)perylene bisimide (DMP-PBI) were investigated by femtosecond broadband pump-probe spectroscopy which features fast and balanced data acquisition with a wide spectral coverage of >200 nm. Clear modulations were observed in the envelope of the stimulated emission decay profiles of DMP-PBI with the oscillation frequencies of 140 and 275 cm(-1). Fast Fourier transform analysis of each oscillatory mode revealed characteristic phase jumps near the maxima of the steady-state fluorescence, indicating that the observed vibrational coherence originates from an excited-state wave packet motion. Quantum calculations of the normal modes at the low-frequency region suggest that low-frequency C-C (C═C) stretching motions accompanied by deformation of the dimethylphenyl substituents are responsible for the manifestation of such coherent wave packet dynamics.

16.
Angew Chem Int Ed Engl ; 54(47): 13980-4, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26350026

RESUMO

Unprecedented neutral perylene-3,4:9,10-tetracarboxylic acid bisimide (PBI) radicals and biradicals were synthesized by facile chemical oxidation of 4-hydroxyaryl-substituted PBIs. Subsequent characterization by optical and magnetic spectroscopic techniques, as well as quantum chemical calculations, revealed an open-shell singlet biradical ground state for the PBI biradical OS-2(..) (〈s(2)〉=1.2191) with a relatively small singlet-triplet energy gap of 0.041 eV and a large singlet biradical character of y=0.72.

17.
Chemistry ; 20(19): 5776-86, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24687815

RESUMO

Perylene bisimide (PBI) derivatives with various alkynyl-phenyl substituents at a single bay position have been synthesised by Sonogashira coupling. NMR spectroscopic studies reveal the unsymmetric nature of the dyads. All of the dyads undergo two reversible reductions, which demonstrates their structural and electrochemical rigidity. The synthesised dyads show a remarkable redshift in their absorption maxima and sharp vibronic progression. Electron-rich substituents facilitate efficient charge transfer from the substituent HOMO to the electron-deficient PBI core. The most interesting spectral signatures were exhibited by a PBI with a strongly electron-donating ethynyl(dimethylaminophenyl) substituent. The steady-state features of this PBI showed a broad absorption that covered almost the whole visible region with no emission. A twisted intramolecular charge-transfer (TICT) process, related to the rotational motion of ethynyl(dimethylaminophenyl) PBI, was also demonstrated. Computational investigations shed light on the coplanarity of the various substituents with respect to the PBI core; the PBI core itself remains flat without any noticeable deformation even after mono-functionalisation. This illustrates that mono-functionalisation exerts meagre steric hindrance on the bay positions relative to disubstituted analogues. Despite several previous reports on the structural characterisation of 1,7-disubstituted PBI derivatives, we present the first structural characterisation of a mono-bay ethynyl-phenyl substituted PBI. The solid-state structure of the phenyl derivative has a flat PBI core without any noticeable steric constraints from the substituents, as predicted. In contrast, single-crystal X-ray analysis for the mono-bromo bay-substituted PBI shows that the bromine substituent is not in the plane of the PBI core.

18.
Chemistry ; 20(36): 11410-20, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25056662

RESUMO

Polycyclic hydrocarbon compounds with a singlet biradical ground state show unique physical properties and promising material applications; therefore, it is important to understand the fundamental structure/biradical character/physical properties relationships. In this study, para-quinodimethane (p-QDM)-bridged quinoidal perylene dimers 4 and 5 with different fusion modes and their corresponding aromatic counterparts, the pericondensed quaterrylenes 6 and 7, were synthesized. Their ground-state electronic structures and physical properties were studied by using various experiments assisted with DFT calculations. The proaromatic p-QDM-bridged perylene monoimide dimer 4 has a singlet biradical ground state with a small singlet/triplet energy gap (-2.97 kcal mol(-1)), whereas the antiaromatic s-indacene-bridged N-annulated perylene dimer 5 exists as a closed-shell quinoid with an obvious intramolecular charge-transfer character. Both of these dimers showed shorter singlet excited-state lifetimes, larger two-photon-absorption cross sections, and smaller energy gaps than the corresponding aromatic quaterrylene derivatives 6 and 7, respectively. Our studies revealed how the fusion mode and aromaticity affect the ground state and, consequently, the photophysical properties and electronic properties of a series of extended polycyclic hydrocarbon compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA