Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37976400

RESUMO

BACKGROUND AND AIMS: HCV infection can be successfully managed with antiviral therapies; however, progression to chronic liver disease states, including NAFLD, is common. There is currently no reliable in vitro model for investigating host-viral interactions underlying the link between HCV and NAFLD; although liver organoids (LOs) show promise, they currently lack nonparenchymal cells, which are key to modeling disease progression. APPROACH AND RESULTS: Here, we present a novel, multicellular LO model using a coculture system of macrophages and LOs differentiated from the same human pluripotent stem cells (PSCs). The cocultured macrophages shifted toward a Kupffer-like cell type, the liver-resident macrophages present in vivo , providing a suitable model for investigating NAFLD pathogenesis. With this multicellular Kupffer-like cell-containing LO model, we found that HCV infection led to lipid accumulation in LOs by upregulating host lipogenesis, which was more marked with macrophage coculture. Reciprocally, long-term treatment of LOs with fatty acids upregulated HCV amplification and promoted inflammation and fibrosis. Notably, in our Kupffer-like cell-containing LO model, the effects of 3 drugs for NASH that have reached phase 3 clinical trials exhibited consistent results with the clinical outcomes. CONCLUSIONS: Taken together, we introduced a multicellular LO model consisting of hepatocytes, Kupffer-like cells, and HSCs, which recapitulated host-virus intercommunication and intercellular interactions. With this novel model, we present a physiologically relevant system for the investigation of NAFLD progression in patients with HCV.

2.
Biotechnol Bioeng ; 120(5): 1241-1253, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36639871

RESUMO

Hepatic stellate cells (HSCs) play an important role in liver fibrosis; however, owing to the heterogeneity and limited supply of primary HSCs, the development of in vitro liver fibrosis models has been impeded. In this study, we established and characterized a novel human HSC line (LSC-1), and applied it to various types of three-dimensional (3D) co-culture systems with differentiated HepaRG cells. Furthermore, we compared LSC-1 with a commercially available HSC line on conventional monolayer culture. LSC-1 exhibited an overall upregulation of the expression of fibrogenic genes along with increased levels of matrix and adhesion proteins, suggesting a myofibroblast-like or transdifferentiated state. However, activated states reverted to a quiescent-like phenotype when cultured in different 3D culture formats with a relatively soft microenvironment. Additionally, LSC-1 exerted an overall positive effect on co-cultured differentiated HepaRG, which significantly increased hepatic functionality upon long-term cultivation compared with that achieved with other HSC line. In 3D spheroid culture, LSC-1 exhibited enhanced responsiveness to transforming growth factor beta 1 exposure that is caused by a different matrix-related protein expression mechanism. Therefore, the LSC-1 line developed in this study provides a reliable candidate model that can be used to address unmet needs, such as development of antifibrotic therapies.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Humanos , Células Estreladas do Fígado/metabolismo , Técnicas de Cocultura , Cirrose Hepática/metabolismo , Fígado/metabolismo , Linhagem Celular
3.
Biotechnol Bioeng ; 117(6): 1864-1876, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32162676

RESUMO

Although primary human hepatocytes (PHHs) are the gold standard in drug efficacy and metabolism studies, long-term survival of PHHs and maintenance of their hepatic function are still challenging. In this study, we focused on the effect of the initial microenvironment on upregulation and long-term preservation of hepatic function of PHHs encapsulated within biodegradable hydrogel systems. PHHs were encapsulated in RGD-functionalized hybrid hydrogels with various degrees of degradability, and their hepatic functionality was analyzed. Regardless of the hydrogel elastic modulus, the combination with nondegradable hydrogels had a predominantly negative effect on the prompt engraftment of PHHs, whereas a degradable hydrogel with intermediate initial degradability was most effective in maintaining hepatic function. Efficient network formation by PHHs and cocultured cells, along with the control of hydrogel degradation, governed the hepatic functionality at an early stage and upon long-term cultivation. Under optimized conditions, expression of genes involved in biological processes such as focal adhesions, cell survival, cytoskeleton formation, and extracellular matrix interactions was significantly higher than that in a control with relatively delayed initial degradation. Thus, we suggest that the orchestrated control of initial cellular remodeling may play an important role in the maintenance of hepatic function in a three-dimensional PHH culture.


Assuntos
Materiais Biocompatíveis/química , Células Imobilizadas/citologia , Hepatócitos/citologia , Hidrogéis/química , Técnicas de Cultura de Células/métodos , Linhagem Celular , Células Cultivadas , Células Imobilizadas/metabolismo , Módulo de Elasticidade , Expressão Gênica , Hepatócitos/metabolismo , Humanos , Alicerces Teciduais/química
4.
Cancer Sci ; 110(4): 1453-1463, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30729615

RESUMO

Tumor cells overexpress amino acid transporters to meet the increased demand for amino acids. PQ loop repeat-containing (PQLC)2 is a cationic amino acid transporter that might be involved in cancer progression. Here, we show that upregulation of PQLC2 is critical to gastric cancer (GC) development in vitro and in vivo. Both PQLC2 mRNA and protein were overexpressed in GC tissues, especially of the diffuse type. Overexpression of PQLC2 promoted cell growth, anchorage independence, and tumor formation in nude mice. This was due to activation of MEK/ERK1/2 and PI3K/AKT signaling. Conversely, PQLC2 knockdown caused growth arrest and cell death of cancer cells and suppressed tumor growth in a mouse xenograft model. These results suggest that targeting PQLC2 is an effective strategy for GC treatment.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Neoplasias Gástricas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Sistemas de Transporte de Aminoácidos Básicos/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Inativação Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Estadiamento de Neoplasias , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Hepatol ; 71(5): 970-985, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31299272

RESUMO

BACKGROUND & AIMS: The development of hepatic models capable of long-term expansion with competent liver functionality is technically challenging in a personalized setting. Stem cell-based organoid technologies can provide an alternative source of patient-derived primary hepatocytes. However, self-renewing and functionally competent human pluripotent stem cell (PSC)-derived hepatic organoids have not been developed. METHODS: We developed a novel method to efficiently and reproducibly generate functionally mature human hepatic organoids derived from PSCs, including human embryonic stem cells and induced PSCs. The maturity of the organoids was validated by a detailed transcriptome analysis and functional performance assays. The organoids were applied to screening platforms for the prediction of toxicity and the evaluation of drugs that target hepatic steatosis through real-time monitoring of cellular bioenergetics and high-content analyses. RESULTS: Our organoids were morphologically indistinguishable from adult liver tissue-derived epithelial organoids and exhibited self-renewal. With further maturation, their molecular features approximated those of liver tissue, although these features were lacking in 2D differentiated hepatocytes. Our organoids preserved mature liver properties, including serum protein production, drug metabolism and detoxifying functions, active mitochondrial bioenergetics, and regenerative and inflammatory responses. The organoids exhibited significant toxic responses to clinically relevant concentrations of drugs that had been withdrawn from the market due to hepatotoxicity and recapitulated human disease phenotypes such as hepatic steatosis. CONCLUSIONS: Our organoids exhibit self-renewal (expandable and further able to differentiate) while maintaining their mature hepatic characteristics over long-term culture. These organoids may provide a versatile and valuable platform for physiologically and pathologically relevant hepatic models in the context of personalized medicine. LAY SUMMARY: A functionally mature, human cell-based liver model exhibiting human responses in toxicity prediction and drug evaluation is urgently needed for pre-clinical drug development. Here, we develop a novel human pluripotent stem cell-derived hepatocyte-like liver organoid that is critically advanced in terms of its generation method, functional performance, and application technologies. Our organoids can contribute to the better understanding of liver development and regeneration, and provide insights for metabolic studies and disease modeling, as well as toxicity assessments and drug screening for personalized medicine.


Assuntos
Técnicas de Cultura de Células/métodos , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Organoides/citologia , Acetaminofen/farmacologia , Diferenciação Celular , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/induzido quimicamente , Fígado/metabolismo , Organoides/efeitos dos fármacos , Organoides/metabolismo , Regeneração/efeitos dos fármacos , Transcriptoma
6.
Biotechnol Bioeng ; 116(6): 1496-1508, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30737956

RESUMO

Spheroids, a widely used three-dimensional (3D) culture model, are standard in hepatocyte culture as they preserve long-term hepatocyte functionality and enhance survivability. In this study, we investigated the effects of three operation modes in 3D culture - static, orbital shaking, and under vertical bidirectional flow using spheroid forming units (SFUs) on hepatic differentiation and drug metabolism to propose the best for mass production of functionally enhanced spheroids. Spheroids in SFUs exhibited increased hepatic gene expression, albumin secretion, and cytochrome P450 3A4 (CYP3A4) activity during the differentiation period (12 days). SFUs advantages include facilitated mass production and a relatively earlier peak of CYP3A4 activity. However, CYP3A4 activity was not well maintained under dimethyl sulfoxide (DMSO)-free conditions (13-18 days), dramatically reducing drug metabolism capability. Continued shear stimulation without differentiation stimuli in assay conditions markedly attenuated CYP3A4 activity, which was less severe in static conditions. In this condition, SFU spheroids exhibited dedifferentiation characteristics, such as increased proliferation and Notch signaling genes. We found that the dedifferentiation could be overcome by using the serum-free medium formulation. Therefore, we suggest that SFUs represent the best option for the mass production of functionally improved spheroids and so the serum-free conditions should be maintained during drug metabolism analysis.


Assuntos
Técnicas de Cultura de Células/instrumentação , Hepatócitos/metabolismo , Preparações Farmacêuticas/metabolismo , Esferoides Celulares/metabolismo , Albuminas/metabolismo , Linhagem Celular , Citocromo P-450 CYP3A/metabolismo , Desenho de Equipamento , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Esferoides Celulares/efeitos dos fármacos
7.
Biochim Biophys Acta ; 1863(11): 2584-2593, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27452907

RESUMO

Shikonin derivatives exert powerful cytotoxic effects including induction of apoptosis. Here, we demonstrate the cytotoxic efficacy of shikonin in vivo in xenograft models, which did not affect body weight as well as its reduction of cell viability in vitro using several non-small cell lung cancer (NSCLC) cell lines. We found that inhibition of AKT by shikonin activated the forkhead box (FOX)O3a/early growth response protein (EGR)1 signaling cascade and enhanced the expression of the target gene Bim, leading to apoptosis in lung cancer cells. Overexpression of wild-type or a constitutively active mutant of FOXO3a enhanced shikonin-induced Bim expression. The NAD+-dependent histone deacetylase sirtuin (SIRT)1 amplified the pro-apoptotic effect by deacetylating FOXO3a, which induced EGR1 binding to the Bim promoter and activated Bim expression. Meanwhile, PI3K/AKT activity was enhanced, whereas that of FOXO3a was reduced and p300 was upregulated by treatment with a sublethal dose of shikonin. FOXO3a acetylation was enhanced by p300 overexpression, while shikonin-induced Bim expression was suppressed by p300 overexpression, which promoted cell survival. FOXO3a acetylation was increased by p300 overexpression and treatment with SIRT1 inhibitor, improving cell survival. In addition, shikonin-induced FOXO3a nuclear localization was blocked by AKT activation and SIRT1 inhibition, which blocked Bim expression and conferred resistance to the cytotoxic effects of shikonin. The EGR1 increase induced by shikonin was restored by pretreatment with SIRT1 inhibitor. These results suggest that shikonin induces apoptosis in some lung cancer cells via activation of FOXO3a/EGR1/SIRT1 signaling, and that AKT and p300 negatively regulate this process via Bim upregulation.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteína p300 Associada a E1A/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína Forkhead Box O3/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Naftoquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/antagonistas & inibidores , Células A549 , Acetilação , Animais , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Relação Dose-Resposta a Droga , Proteína p300 Associada a E1A/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Feminino , Proteína Forkhead Box O3/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fatores de Tempo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Stem Cells ; 34(12): 2840-2851, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27428041

RESUMO

The fundamental tenet that aging is irreversible has been challenged by the development of reprogramming technology that can restore molecular and cellular age by reversing the progression of aging. The use of cells from aged individuals as sources for reprogramming or transplantation creates a major barrier in stem cell therapy with respect to cell quality and quantity. Here, we investigated the molecular features underlying senescence and rejuvenation during aged cell reprogramming and identified novel factors that can overcome age-associated barriers. Enzymes, such as nicotinamide nucleotide transhydrogenase (NNT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), that control mitochondrial NAD+ levels appear to be susceptible to aging. In aged cells, mitochondrial NAD+ levels decrease, accompanied by reduced SIRT3 activity; these changes severely impede cell fate transition. However, in cells collected from aged p16 knockout mice, which exhibit delayed cellular senescence, no changes in NNT or NMNAT3 expression were found. Importantly, restoring mitochondrial NAD+ levels by overexpressing NNT and NMNAT3 enhanced reprogramming efficiency of aged somatic cells and extended the lifespan of human mesenchymal stem cells by delaying replicative senescence. These results demonstrate that maintenance of mitochondrial NAD+ levels is critical for reversing the mechanisms of aging and ensuring that cells collected from aged individuals are of high quality. Stem Cells 2016;34:2840-2851.


Assuntos
Reprogramação Celular , Senescência Celular , Mitocôndrias/metabolismo , NAD/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Envelhecimento , Animais , Linhagem da Célula , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos Knockout , NADP Trans-Hidrogenases , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Sirtuína 3/metabolismo
9.
Cancer Cell ; 13(1): 69-80, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18167341

RESUMO

Despite similarities between tumor-initiating cells with stem-like properties (TICs) and normal neural stem cells, we hypothesized that there may be differences in their differentiation potentials. We now demonstrate that both bone morphogenetic protein (BMP)-mediated and ciliary neurotrophic factor (CNTF)-mediated Jak/STAT-dependent astroglial differentiation is impaired due to EZH2-dependent epigenetic silencing of BMP receptor 1B (BMPR1B) in a subset of glioblastoma TICs. Forced expression of BMPR1B either by transgene expression or demethylation of the promoter restores their differentiation capabilities and induces loss of their tumorigenicity. We propose that deregulation of the BMP developmental pathway in a subset of glioblastoma TICs contributes to their tumorigenicity both by desensitizing TICs to normal differentiation cues and by converting otherwise cytostatic signals to proproliferative signals.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Epigênese Genética , Glioblastoma/genética , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Astrócitos/patologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/farmacologia , Citocinas/farmacologia , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos SCID , Fosforilação/efeitos dos fármacos , Complexo Repressor Polycomb 2 , Regiões Promotoras Genéticas/genética , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição/metabolismo
10.
Biochem Biophys Res Commun ; 457(4): 554-60, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25600812

RESUMO

Lysosomes are cytoplasmic compartments that contain many acid hydrolases and play critical roles in the metabolism of a wide range of macromolecules. Deficiencies in lysosomal enzyme activities cause genetic diseases, called lysosomal storage disorders (LSDs). Many mutations have been identified in the genes responsible for LSDs, and the identification of mutations is required for the accurate molecular diagnoses. Here, we analyzed cell lines that were derived from two different LSDs, GM1 gangliosidosis and sialidosis. GM1 gangliosidosis is caused by mutations in the GLB1 gene that encodes ß-galactosidase. A lack of ß-galactosidase activity leads to the massive accumulation of GM1 ganglioside, which results in neurodegenerative pathology. Mutations in the NEU1 gene that encodes lysosomal sialidase cause sialidosis. Insufficient activity of lysosomal sialidase progressively increases the accumulation of sialylated molecules, and various clinical symptoms, including mental retardation, appear. We sequenced the entire coding regions of GLB1 and NEU1 in GM1 gangliosidosis and sialidosis patient cells, respectively. We found the novel mutations p.E186A in GLB1 and p.R347Q in NEU1, as well as many other mutations that have been previously reported. We also demonstrated that patient cells containing the novel mutations showed the molecular phenotypes of the corresponding disease. Further structural analysis suggested that these novel mutation sites are highly conserved and important for enzyme activity.


Assuntos
Gangliosidose GM1/enzimologia , Gangliosidose GM1/genética , Mucolipidoses/enzimologia , Mucolipidoses/genética , Neuraminidase/genética , beta-Galactosidase/genética , Sequência de Aminoácidos , Animais , Fibroblastos/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Neuraminidase/química , Neuraminidase/metabolismo , Alinhamento de Sequência , beta-Galactosidase/química , beta-Galactosidase/metabolismo
11.
Stem Cells ; 31(6): 1121-35, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23526681

RESUMO

Crosstalk between intracellular signaling pathways has been extensively studied to understand the pluripotency of human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells (hiPSCs); however, the contribution of NAD(+) -dependent pathways remains largely unknown. Here, we show that NAD(+) depletion by FK866 (a potent inhibitor of NAD(+) biosynthesis) was fatal in hPSCs, particularly when deriving pluripotent cells from somatic cells and maintaining pluripotency. NAD and its precursors (nicotinamide [NAM] and nicotinic acid) fully replenished the NAD(+) depletion by FK866 in hPSCs. However, only NAM effectively enhanced the reprogramming efficiency and kinetics of hiPSC generation and was also significantly advantageous for the maintenance of undifferentiated hPSCs. Our molecular and functional studies reveal that NAM lowers the barriers to reprogramming by accelerating cell proliferation and protecting cells from apoptosis and senescence by alleviating oxidative stress, reactive oxygen species accumulation, and subsequent mitochondrial membrane potential collapse. We provide evidence that the positive effects of NAM (occurring at concentrations well above the physiological range) on pluripotency control are molecularly associated with the repression of p53, p21, and p16. Our findings establish that adequate intracellular NAD(+) content is crucial for pluripotency; the distinct effects of NAM on pluripotency may be dependent not only on its metabolic advantage as a NAD(+) precursor but also on the ability of NAM to enhance resistance to cellular stress.


Assuntos
Reprogramação Celular/genética , Niacinamida/genética , Niacinamida/metabolismo , Células-Tronco Pluripotentes/metabolismo , Apoptose/genética , Linhagem Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cinética , Potencial da Membrana Mitocondrial/genética , NAD/genética , NAD/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Niacina/genética , Niacina/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Int J Stem Cells ; 17(2): 120-129, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38773747

RESUMO

Recent amendments to regulatory frameworks have placed a greater emphasis on the utilization of in vitro testing platforms for preclinical drug evaluations and toxicity assessments. This requires advanced tissue models capable of accurately replicating liver functions for drug efficacy and toxicity predictions. Liver organoids, derived from human cell sources, offer promise as a reliable platform for drug evaluation. However, there is a lack of standardized quality evaluation methods, which hinders their regulatory acceptance. This paper proposes comprehensive quality standards tailored for liver organoids, addressing cell source validation, organoid generation, and functional assessment. These guidelines aim to enhance reproducibility and accuracy in toxicity testing, thereby accelerating the adoption of organoids as a reliable alternative or complementary tool to animal testing in drug development. The quality standards include criteria for size, cellular composition, gene expression, and functional assays, thus ensuring a robust hepatotoxicity testing platform.

13.
Toxics ; 12(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38787150

RESUMO

"Organoids", three-dimensional self-organized organ-like miniature tissues, are proposed as intermediary models that bridge the gap between animal and human studies in drug development. Despite recent advancements in organoid model development, studies on toxicity using these models are limited. Therefore, in this study, we aimed to analyze the functionality and gene expression of pre- and post-differentiated human hepatic organoids derived from induced pluripotent stem cells and utilize them for toxicity assessment. First, we confirmed the functional similarity of this hepatic organoid model to the human liver through various functional assessments, such as glycogen storage, albumin and bile acid secretion, and cytochrome P450 (CYP) activity. Subsequently, utilizing these functionally validated hepatic organoids, we conducted toxicity evaluations with three hepatotoxic substances (ketoconazole, troglitazone, and tolcapone), which are well known for causing drug-induced liver injury, and three non-hepatotoxic substances (sucrose, ascorbic acid, and biotin). The organoids effectively distinguished between the toxicity levels of substances with and without hepatic toxicity. We demonstrated the potential of hepatic organoids with validated functionalities and genetic characteristics as promising models for toxicity evaluation by analyzing toxicological changes occurring in hepatoxic drug-treated organoids.

14.
iScience ; 26(9): 107675, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680467

RESUMO

To gain deeper insights into transcriptomes and epigenomes of organoids, liver organoids from two states (expandable and more differentiated) were subjected to single-cell RNA-seq (scRNA-seq) and single-cell ATAC-seq (scATAC-seq) analyses. Mitochondrial gene expression was higher in differentiated than in non-differentiated hepatocytes, with ATAC-seq peaks increasing near the mitochondrial control region. Differentiation of liver organoids resulted in the expression of transcription factors that act as enhancers and repressors. In addition, epigenetic mechanisms regulating the expression of alpha-fetoprotein (AFP) and albumin (ALB) differed in liver organoids and adult liver. Knockdown of PDX1, an essential transcription factor for pancreas development, led to the hepatic maturation of liver organoids through regulation of AFP and ALB expression. This integrative analysis of the transcriptomes and epigenomes of liver organoids at the single-cell level may contribute to a better understanding of the regulatory networks during liver development and the further development of mature in vitro human liver models.

15.
Sci Rep ; 13(1): 22935, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129682

RESUMO

Genetic liver disease modeling is difficult because it is challenging to access patient tissue samples and to develop practical and relevant model systems. Previously, we developed novel proliferative and functional liver organoids from pluripotent stem cells; however, the protocol requires improvement for standardization and reproducible mass production. Here, we improved the method such that it is suitable for scalable expansion and relatively homogenous production, resulting in an efficient and reproducible process. Moreover, three medium components critical for long-term expansion were defined. Detailed transcriptome analysis revealed that fibroblast growth factor signaling, the essential pathway for hepatocyte proliferation during liver regeneration, was mainly enriched in proliferative liver organoids. Short hairpin RNA-mediated knockdown of FGFR4 impaired the generation and proliferation of organoids. Finally, glycogen storage disease type Ia (GSD1a) patient-specific liver organoids were efficiently and reproducibly generated using the new protocol. They well maintained disease-specific phenotypes such as higher lipid and glycogen accumulation in the liver organoids and lactate secretion into the medium consistent with the main pathologic characteristics of patients with GSD1a. Therefore, our newly established liver organoid platform can provide scalable and practical personalized disease models and help to find new therapies for incurable liver diseases including genetic liver diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Hepatopatias , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular , Fígado/metabolismo , Organoides/metabolismo , Hepatopatias/patologia
16.
Arthritis Rheum ; 63(10): 3010-21, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21953087

RESUMO

OBJECTIVE: This study was undertaken to generate and characterize human induced pluripotent stem cells (PSCs) from patients with osteoarthritis (OA) and to examine whether these cells can be developed into disease-relevant cell types for use in disease modeling and drug discovery. METHODS: Human synovial cells isolated from two 71-year-old women with advanced OA were characterized and reprogrammed into induced PSCs by ectopic expression of 4 transcription factors (Oct-4, SOX2, Klf4, and c-Myc). The pluripotency status of each induced PSC line was validated by comparison with human embryonic stem cells (ESCs). RESULTS: We found that OA patient-derived human synovial cells had human mesenchymal stem cell (MSC)-like characteristics, as indicated by the expression of specific markers, including CD14-, CD19-, CD34-, CD45-, CD44+, CD51+, CD90+, CD105+, and CD147+. Microarray analysis of human MSCs and human synovial cells further determined their unique and overlapping gene expression patterns. The pluripotency of established human induced PSCs was confirmed by their human ESC-like morphology, expression of pluripotency markers, gene expression profiles, epigenetic status, normal karyotype, and in vitro and in vivo differentiation potential. The potential of human induced PSCs to differentiate into distinct mesenchymal cell lineages, such as osteoblasts, adipocytes, and chondrocytes, was further confirmed by positive expression of markers for respective cell types and positive staining with alizarin red S (osteoblasts), oil red O (adipocytes), or Alcian blue (chondrocytes). Functional chondrocyte differentiation of induced PSCs in pellet culture and 3-dimensional polycaprolactone scaffold culture was assessed by chondrocyte self-assembly and histology. CONCLUSION: Our findings indicate that patient-derived synovial cells are an attractive source of MSCs as well as induced PSCs and have the potential to advance cartilage tissue engineering and cell-based models of cartilage defects.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Osteoartrite/patologia , Membrana Sinovial/patologia , Adipócitos/citologia , Adipócitos/metabolismo , Idoso , Antígenos CD/metabolismo , Linhagem da Célula , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Osteoartrite/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Membrana Sinovial/metabolismo
18.
Arch Pharm Res ; 45(6): 390-400, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35661984

RESUMO

Reliable in vitro models with human-derived cells that recapitulate in vivo-like physiologies are required for drug discovery and development to reduce the gap between the results of cell-based drug testing, animal testing, and human clinical trials. Liver organoid models have emerged as novel tools for hepatotoxicity evaluation, liver disease modeling, and drug screening. Liver organoids can be generated from biopsies of liver tissues or pluripotent stem cells and can be applied to various liver diseases, including metabolic associated fatty liver disease, infectious liver disease, genetic liver disease, and liver cancer. This review focuses on recent studies on organoids to model human liver diseases and discusses the advantages and limitations of current liver organoids for translational applications.


Assuntos
Neoplasias Hepáticas , Organoides , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Neoplasias Hepáticas/metabolismo , Modelos Biológicos , Organoides/fisiologia
19.
Cell J ; 24(3): 133-139, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35451583

RESUMO

Objective: Combined hepatocellular-cholangiocarcinoma (cHCC-CC) is a rare type of primary liver cancer with characteristics of both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC). The pathogenesis of cHCCCC is poorly understood due to a shortage of suitable in vitro models. Due to scarce availability of human liver tissue, induced pluripotent stem cells (iPSCs) are a useful alternative source to produce renewable liver cells. For use in the development of liver pathology models, here we successfully developed and evaluated iPSCs from liver fibroblasts of a patient with cHCC-CC. Materials and Methods: In this experimental study, human liver fibroblasts (HLFs) were obtained from the liver biopsy of a 69-year-old male patient with cHCC-CC and transduced with a retroviral cocktail that included four factors - OCT4, SOX2, KLF4, and c-MYC (OSKM). Pluripotency of the iPSCs was determined by alkaline phosphatase (AP) staining, quantitative real-time polymerase chain reaction (PCR), and immunofluorescence. We induced in vitro embryoid body (EB) formation and performed an in vivo teratoma assay to confirm their differentiation capacity into the three germ layers. Results: HLF iPSCs derived from the cHCC-CC patient displayed typical iPSC-like morphology and pluripotency marker expression. The proficiency of the iPSCs to differentiate into three germ layers was assessed both in vitro and in vivo. Compared to normal control iPSCs, differentiated HLF iPSCs showed increased expressions of HCC markers alpha-fetoprotein (AFP) and Dickkopf-1 (DKK1) and the CC marker cytokeratin 7 (CK7), and a decreased expression of the CC tumour suppressor SRY-related HMG-box 17 (SOX17). Conclusion: We established HLF iPSCs using liver fibroblasts from a patient with cHCC-CC for the first time. The HLF iPSCs maintained marker expression in the patient when differentiated into EBs. Therefore, HLF iPSCs may be a sustainable cell source for modelling cHCC-CC and beneficial for understanding liver cancer pathology and developing therapies for cHCC-CC treatment.

20.
Nat Med ; 9(7): 900-6, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12808449

RESUMO

The blood-brain barrier (BBB) is essential for maintaining brain homeostasis and low permeability. BBB maintenance is important in the central nervous system (CNS) because disruption of the BBB may contribute to many brain disorders, including Alzheimer disease and ischemic stroke. The molecular mechanisms of BBB development remain ill-defined, however. Here we report that src-suppressed C-kinase substrate (SSeCKS) decreases the expression of vascular endothelial growth factor (VEGF) through AP-1 reduction and stimulates expression of angiopoietin-1 (Ang-1), an antipermeability factor in astrocytes. Conditioned media from SSeCKS-overexpressing astrocytes (SSeCKS-CM) blocked angiogenesis in vivo and in vitro. Moreover, SSeCKS-CM increased tight junction proteins in endothelial cells, consequently decreasing [3H]sucrose permeability. Furthermore, immunoreactivity to SSeCKS gradually increased during the BBB maturation period, and SSeCKS-expressing astrocytes closely interacted with zonula occludens (ZO)-1-expressing blood vessels in vivo. Collectively, our results suggest that SSeCKS regulates BBB differentiation by modulating both brain angiogenesis and tight junction formation.


Assuntos
Barreira Hematoencefálica/fisiologia , Proteínas de Ciclo Celular , Mitógenos/metabolismo , Neovascularização Fisiológica/fisiologia , Junções Íntimas/fisiologia , Proteínas de Ancoragem à Quinase A , Indutores da Angiogênese/metabolismo , Angiopoietina-1 , Animais , Astrócitos/fisiologia , Vasos Sanguíneos/metabolismo , Encéfalo/embriologia , Encéfalo/metabolismo , Hipóxia Celular , Células Cultivadas , Fatores de Crescimento Endotelial/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Linfocinas/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitógenos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Permeabilidade , Fosfoproteínas/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Sacarose/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , Proteína da Zônula de Oclusão-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA