Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Biol Chem ; 300(4): 107199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508309

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV), a highly infectious virus, causes severe losses in the swine industry by regulating the inflammatory response, inducing tissue damage, suppressing the innate immune response, and promoting persistent infection in hosts. Interleukin-13 (IL-13) is a cytokine that plays a critical role in regulating immune responses and inflammation, particularly in immune-related disorders, certain types of cancer, and numerous bacterial and viral infections; however, the underlying mechanisms of IL-13 regulation during PRRSV infection are not well understood. In this study, we demonstrated that PRRSV infection elevates IL-13 levels in porcine alveolar macrophages. PRRSV enhances m6A-methylated RNA levels while reducing the expression of fat mass and obesity associated protein (FTO, an m6A demethylase), thereby augmenting IL-13 production. PRRSV nonstructural protein 9 (nsp9) was a key factor for this modulation. Furthermore, we found that the residues Asp567, Tyr586, Leu593, and Asp595 were essential for nsp9 to induce IL-13 production via attenuation of FTO expression. These insights delineate PRRSV nsp9's role in FTO-mediated IL-13 release, advancing our understanding of PRRSV's impact on host immune and inflammatory responses.


Assuntos
Interleucina-13 , Macrófagos Alveolares , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas não Estruturais Virais , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Interleucina-13/metabolismo , Interleucina-13/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Macrófagos Alveolares/imunologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Regulação para Cima
2.
Microb Pathog ; 184: 106345, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714310

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious and pathogenic agent that causes considerable economic damage in the swine industry. It regulates the inflammatory response, triggers inflammation-induced tissue damage, suppresses the innate immune response, and leads to persistent infection. Interleukin-8 (IL-8), a pro-inflammatory chemokine, plays a crucial role in inflammatory response during numerous bacteria and virus infections. However, the underlying mechanisms of IL-8 regulation during PRRSV infection are not well understood. In this study, we demonstrate that PRRSV-infected PAMs and Marc-145 cells release higher levels of IL-8. We screened the nucleocapsid protein, non-structural protein (nsp) 9, and nsp11 of PRRSV to enhance IL-8 promoter activity via the C/EBPα pathway. Furthermore, we identified that the amino acids Q35A, S36A, R113A, and I115A of the nucleocapsid protein play a crucial role in the induction of IL-8. Through reverse genetics, we generated two mutant viruses (rQ35-2A and rR113A), which showed lower induction of IL-8 in PAMs during infection. This finding uncovers a previously unrecognized role of the PRRSV nucleocapsid protein in modulating IL-8 production and provides insight into an additional mechanism by which PRRSV modulates immune responses and inflammation.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Interleucina-8/genética , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Inflamação , Macrófagos Alveolares/metabolismo
3.
Anim Biotechnol ; 34(7): 2617-2625, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35951546

RESUMO

MircoRNAs (miRNAs) play an important role in skeletal muscle development. Previous study had found that miR-495-3p was differentially expressed in fetal and adult goat skeletal muscle, but its function in myogenic proliferation and differentiation are unclear. Herein, we found the expression of miR-495-3p in C2C12 was downregulated during proliferation stage and upregulated during differentiation stage. Functionally, overexpression of miR-495-3p in C2C12 inhibited proliferation, and promoted myogenic differentiation. Mechanistically, the luciferase reporter assay demonstrated that cadherin 2 (CDH2) was a potential target gene of miR-495-3p. Importantly, overexpression of miR-495-3p inhibited CDH2 expression. Furthermore, knockdown of CDH2 in C2C12 inhibited proliferation and promoted myogenic differentiation. Together, the results showed that miR-495-3p inhibits C2C12 proliferation and promotes myogenic differentiation through targeting CDH2.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Mioblastos/fisiologia , Proliferação de Células/genética , Caderinas/genética , Caderinas/metabolismo , Desenvolvimento Muscular/genética , Diferenciação Celular/genética
4.
Anim Biotechnol ; 34(7): 2514-2526, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35875894

RESUMO

MiR-424-5p was found to be a potential regulator in the proliferation, migration, and invasion of various cancer cells. However, the effects and functional mechanism of miR-424-5p in the process of myogenesis are still unclear. Previously, using microRNA (miRNA) sequencing and expression analysis, we discovered that miR-424-5p was expressed differentially in the different skeletal muscle growth periods of Xuhuai goats. We hypothesized that miR-424-5p might play an important role in skeletal muscle myogenesis. Then, we found that the proliferation ability of the mouse myoblast cell (C2C12 myoblast cell line) was significantly augmented, whereas the C2C12 differentiation was repressed after increasing the expression of miR-424-5p. Mechanistically, HSP90AA1 presented a close interrelation with miR-424-5p, which was predicted as a target gene in the progression of skeletal muscle myogenesis, using transcriptome sequencing, dual luciferase reporter gene detection, and qRT-PCR. The silencing of HSP90AA1 obviously increased C2C12 proliferation and diminished differentiation, which is consistent with the ability of miR-424-5p in C2C12. Altogether, our findings indicated the role of miR-424-5p as a novel potential regulator via HSP90AA1 during muscle myogenesis progression.


Assuntos
MicroRNAs , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Diferenciação Celular/genética , Linhagem Celular , Desenvolvimento Muscular/genética , Cabras/genética , Músculo Esquelético/metabolismo
5.
Anim Biotechnol ; 34(4): 1406-1412, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35075975

RESUMO

Intramuscular fat content is closely related to meat quality traits and has high heritability. miRNAs are a class of small non-coding RNA, which are highly conserved in animals and play important regulatory roles in adipogenesis. Therefore, they can be used as molecular markers for meat quality traits. Herein, we used in vitro model of myoblasts adipogenic differentiation to screen differential miRNAs by RNA-seq. A total of 71 differentially miRNAs were filtered, including 31 up-regulated miRNAs and 40 down-regulated miRNAs. Since, we selected 18 miRNAs for RT-qPCR validation, including some miRNAs likely miR-146a-5p, miR-210-3p, miR-199a, miR-224, and miR-214-3p that play important regulatory roles in adipogenesis. In addition, functional enrichment analysis results revealed that members of miRNA target genes were enriched into insulin signaling pathway and MAPK signaling pathway, which are closely related to adipogenesis. Taken together, these data will contribute to further investigate the function of miRNAs in intramuscular fat deposition. These differentially miRNAs can be developed as biomarkers for animal breeding.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Adipogenia/genética , Perfilação da Expressão Gênica , Transdução de Sinais , Mioblastos/metabolismo , Transcriptoma
6.
FASEB J ; 35(2): e21324, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33421208

RESUMO

The noncoding RNAs play important role in growth and development of mammalian skeletal muscle. Recent work has shown that circRNAs are abundant in skeletal muscle tissue, with significant changes in their expression patterns during muscle development and aging. We identified a novel circRNA called circARID1A that is highly expressed in mice skeletal muscle compare to its linear transcript. Experiments shown that circARID1A significantly inhibited the process of C2C12 cell proliferation and promoted its differentiation. Interactions between circRNA and miRNA were screened by miRNA gene chip sequencing. The results indicated that circARID1A can sponge miR-6368, which was further verified by miRNA sensor and other experiments. Besides, miR-6368 is a commonly expressed miRNA that regulates the expression of several target genes including Tlr4. A mouse model of skeletal muscle injury was successfully established to explore the role of circARID1A in skeletal muscle development and regeneration in vivo. Moreover, we found the overexpression of circARID1A significantly promoted the regeneration of skeletal muscle. The results of our study suggest that circARID1A may regulate skeletal muscle cell development and regeneration by sponging miR-6368.


Assuntos
MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , RNA Circular/metabolismo , RNA Longo não Codificante/metabolismo , Regeneração , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Músculo Esquelético/fisiologia , RNA Circular/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética
7.
Anim Biotechnol ; 33(7): 1613-1619, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34106801

RESUMO

AMPK plays an important role in regulating the metabolism of carbohydrate, lipid and protein in an organism, and is considered to be a key regulator of cellular energy homeostasis. In recent years, attention has been drawn to AMPK subunit polymorphisms and their association with economical traits of domestic animals and fowls. PRKAB1 encodes the ß1 regulatory subunit of AMPK, and it has been reported that PRKAB1 may be applied in breeding programs of meat-type chicken. To date, the polymorphism of goat PRKAB1 gene and its associations remain unknown. In this paper, the polymorphism of PRKAB1 gene was detected in 316 goats of three breeds. A total of four novel single nucleotide polymorphisms (SNPs) of PRKAB1 gene were revealed by sequence analysis. Among them, three were in the coding region (285 C > A, 297 C > A, 309 C > T), and they were all synonymous. One was in the intron (229 A > G). The associations between polymorphic loci and the growth traits of Xuhuai and Haimen goats were analyzed, and significant associations were found in body length index and trunk index (p < 0.05) for Xuhuai breed, while no significant associations in Haimen breed. Our results provide useful information for the improvement and breeding of Chinese native goats.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Animais , Polimorfismo de Nucleotídeo Único/genética , Cabras/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Fenótipo
8.
Anim Biotechnol ; 32(4): 461-469, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32022644

RESUMO

Copy number variation (CNV) as an important source of genetic phenotypic and variation is related to complex phenotypic traits. The aim of this study was to investigate the potential associations of BAG4 (Bcl-2-associated athanogene 4) copy numbers variations with sheep growth traits in three Chinese sheep breeds (CKS, STHS, and HS). BAG4 is located within the stature and udder attachment quantitative trait loci (QTL) in sheep. Expression profiling revealed that the BAG4 gene was widely expressed in the tissues of sheep. The distribution of BAG4 gene copy number showed that the loss of copy number was more dominant in CKS and HS which was different from that in STHS. Statistical analysis revealed that the BAG4 CNV was significantly associated with body height in CKS (p < 0.05), with body slanting length in HS (p < 0.05), and with body height and hip cross height in STHS (p < 0.05). The χ2 values showed significant differences in the BAG4 CNV distribution frequency between varieties. In conclusion, the results establish the association between BAG4 CNV and sheep traits and suggest that BAG4 CNV may be a promising marker for the molecular breeding of Chinese sheep.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Variações do Número de Cópias de DNA , Locos de Características Quantitativas , Ovinos , Animais , China , Fenótipo , Ovinos/genética , Ovinos/crescimento & desenvolvimento
9.
J Cell Mol Med ; 24(13): 7175-7186, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32449295

RESUMO

Adipogenesis is a complex cellular process, which needs a series of molecular events, including long non-coding RNA (lncRNA). In the present study, a novel lncRNA named BADLNCR1 was identified as a regulator during bovine adipocyte differentiation, which plays an inhibitory role in lipid droplet formation and adipogenic marker gene expression. CHIPR-seq data demonstrated a potential competitive binding motif between BADLNCR1 and sterol regulatory element-binding proteins 1 and 2 (SREBP1/2). Dual-luciferase reporter assay indicated target relationship between KLF2 and BADLNCR1. Moreover, after the induction of KLF2, the expression of adipogenic gene reduced, while the expression of BADLNCR1 increased. Real-time quantitative PCR (qPCR) showed that BADLNCR1 negatively regulated mRNA expression of GLRX5 gene, a stimulator of genes that promoted formation of lipid droplets and expression of adipogenic genes. GLRX5 could partially reverse the effect of BADLNCR1 in bovine adipocyte differentiation. Dual-luciferase reporter assay stated that BADLNCR1 significantly reduced the enhancement of C/EBPα on promoter activity of GLRX5 gene. Furthermore, CHIP-PCR and CHIRP-PCR confirmed the suppressing effect of BADLNCR1 on binding of C/EBPα to GLRX5 promoter. Collectively, this study revealed the molecular mechanisms underlying the negative regulation of BADLNCR1 in bovine adipogenic differentiation.


Assuntos
Adipogenia/genética , Glutarredoxinas/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Animais Recém-Nascidos , Sequência de Bases , Bovinos , Genoma , Glutarredoxinas/genética , RNA Longo não Codificante/genética , Transcrição Gênica
10.
Biochem Biophys Res Commun ; 533(4): 1490-1496, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33333715

RESUMO

OBJECTIVES: Understanding the molecular mechanisms of lipid synthesis in the mammary gland is crucial for regulating the level and composition of lipids in milk. This study aimed to investigate the functional and molecular mechanisms of miR-204-5p in mammary epithelial cells to provide a theoretical basis for milk lipid synthesis. METHODS: Real-time quantitative PCR was performed to detect the transcriptional levels of miR-204-5p and related mRNA abundance in mammary epithelial cells. Western blotting was conducted to determine protein expression. Cell proliferation was assessed by Cell Counting Kit-8. A dual-luciferase reporter assay was conducted to verify the targeting relationship between miR-204-5p and SIRT1. siRNA and overexpression plasmids were transfected into mouse HC11 mammary epithelial cells. RESULTS: The abundance of miR-204-5p was much higher in lactating mouse mammary glands than in other tissues, which indicated that miR-204-5p may be involved in regulating milk production. MiR-204-5p affected the expression of ß-casein and milk lipid synthesis in HC11 mouse mammary epithelial cells but did not influence the proliferation of HC11 cells. Overexpression of miR-204-5p significantly increased the number of Oil Red O+ cells, triglyceride accumulation and the expression of markers associated with lipid synthesis, including FASN and PPARγ, whereas inhibition of miR-204-5p had the opposite effect. miR-204-5p promotes lipid synthesis by negatively regulating SIRT1. Overexpression of SIRT1 can repress the promotion of miR-204-5p on lipid synthesis. CONCLUSION: Our findings showed that miR-204-5p can promote the synthesis of milk lipids in mammary epithelial cells by targeting SIRT1.


Assuntos
Lipídeos/biossíntese , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , Sirtuína 1/genética , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Caseínas/biossíntese , Linhagem Celular , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Lactação/genética , Lactação/metabolismo , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Leite/metabolismo , Gravidez , RNA Interferente Pequeno/genética , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/metabolismo , Distribuição Tecidual
11.
J Cell Physiol ; 234(4): 3720-3729, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30317561

RESUMO

Skeletal muscle is the most abundant tissue in the body. The development of skeletal muscle cell is complex and affected by many factors. A sea of microRNAs (miRNAs) have been identified as critical regulators of myogenesis. MiR-208b, a muscle-specific miRNA, was reported to have a connection with fiber type determination. However, whether miR-208b has effect on proliferation of muscle cell was under ascertained. In our study, cyclin-dependent kinase inhibitor 1A (CDKN1A), which participates in cell cycle regulation, was predicted and then validated as one target gene of miR-208b. We found that overexpression of miR-208b increased the expression of cyclin D1, cyclin E1, and cyclin-dependent kinase 2 at the levels of messenger RNA and protein in cattle primary myoblasts in vivo and in vitro. Flow cytometry showed that forced expression of miR-208b increased the percentage of cells at the S phase and decreased the percentage of cells at the G0/G1 phase. These results indicated that miR-208b participates in the cell cycle regulation of cattle primary myoblast cells. 5-Ethynyl-20-deoxyuridine and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed that overexpression of miR-208b promoted the proliferation of cattle primary myoblasts. Therefore, we conclude that miR-208b participates in the cell cycle and proliferation regulation of cattle primary skeletal muscle cell through the posttranscriptional downregulation of CDKN1A.


Assuntos
Ciclo Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , MicroRNAs/metabolismo , Doenças Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Gatos , Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Doenças Musculares/genética , Doenças Musculares/patologia , Mioblastos Esqueléticos/patologia , Processamento Pós-Transcricional do RNA , Transdução de Sinais
12.
J Cell Physiol ; 234(9): 15742-15750, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30793769

RESUMO

Skeletal muscle development is regulated by a series of regulatory factors, and also including noncoding RNA, especially microRNAs (miRNAs). Recently, miR-148a has been found to be involved in murine C2C12 differentiation by targeting ROCK1. However, the function of miR-148a-3p for the proliferation and apoptosis of bovine muscle cells has not been determined. In this study, we found that miR-148a-3p was highly expressed in fetal bovine skeletal muscle and exhibited a decreasing trend in muscle cells during its growth phase. Functional studies indicated that gain of miR-148a-3p inhibited the proliferation of bovine muscle cells and promoted apoptosis. Conversely, interference with miR-148a-3p inhibitor promoted muscle cell proliferation and inhibited its apoptosis. Mechanistically, KLF6 was confirmed as a new potential target gene of miR-148a-3p by TargetScan software prediction and the dual-luciferase assay verification. Additionally, after a gain or loss of KLF6, the function of KLF6 for muscle cell proliferation and apoptosis was opposite to that of miR-148a-3p. Collectively, these findings proposed a novel avenue whereby miR-148a-3p impeded bovine myoblast cell proliferation and promoted apoptosis through the posttranscriptional downregulation of KLF6.

13.
J Cell Physiol ; 234(6): 9839-9848, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30422322

RESUMO

MicroRNAs (miRNAs) have been established to regulate skeletal muscle development in mammals. However, few studies have been conducted on the regulation of proliferation and differentiation of bovine myoblast cells by miRNAs. The aim of our study was to explore the function of miR-483 in cell proliferation and differentiation of bovine myoblast. Here, we found that miR-483 declined in both proliferation and differentiation stages of bovine myoblast cells. During the proliferation phase, the overexpression of miR-483 downregulated the cell cycle-associated genes cyclin-dependent kinase 2 (CDK2), proliferating cell nuclear antigen (PCNA) messenger RNA (mRNA), and the protein levels. At the cellular level, cell cycle, cell counting kit-8, and 5-ethynyl-2´-deoxyuridine results indicated that the overexpression of miR-483 block cell proliferation. During differentiation, the overexpression of miR-483 led to a decrease in the levels of the myogenic marker genes MyoD1 and MyoG mRNA and protein. Furthermore, the immunofluorescence analysis results showed that the number of MyHC-positive myotubes was reduced. In contrast, the opposite experimental results were obtained concerning both proliferation and differentiation after the inhibition of miR-483. Mechanistically, we demonstrated that miR-483 target insulin-like growth factor 1 (IGF1) and downregulated the expression of key proteins in the PI3K/AKT signaling pathway. Altogether, our findings indicate that miR-483 acts as a negative regulator of bovine myoblast cell proliferation and differentiation.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , MicroRNAs/metabolismo , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Bovinos , Regulação para Baixo , Regulação da Expressão Gênica/fisiologia , Fator de Crescimento Insulin-Like I/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transcriptoma
14.
J Cell Physiol ; 233(6): 4643-4651, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29044517

RESUMO

Circular RNAs (circRNAs) have been identified in various tissues and cell types from human, monkey, porcine, and mouse. However, knowledge on circRNAs in bovine muscle development is limited. We downloaded and analyzed the circRNAs sequencing data of bovine skeletal muscle tissue, and further characterized the role of a candidate circRNA (circFUT10) in muscle development. Quantitative real-time PCR (qPCR) and Western blot assays were used to confirm the expression of genes involved in myoblasts differentiation and proliferation. Flow cytometry was performed to assess cell cycle distribution and cell apoptosis. EdU incorporation and CCK-8 assay were performed to demonstrate cell proliferation. We demonstrated that circFUT10 was highly (but differentially) expressed in embryonic and adult skeletal muscle tissue. circFUT10 induced bovine primary myoblasts differentiation and increased the expression of MyoD, MyoG, and MyhC in mRNA and protein levels. circFUT10 increased the number of myoblasts in the G0/G1 phase of the cell cycle, and decreased the proportion of cells in the S-phase. circFUT10 inhibited the proliferation of myoblasts and promoted them apoptosis. Via a luciferase screening assay, circFUT10 is observed to sponge to miR-133a with three potential binding sites. Specifically, we show that circFUT10 regulated myoblasts differentiation and cell survival by directly binding to miR-133a and inhibiting miR-133a activity. Modulation of circFUT10 expression in muscle tissue may emerge as a potential target in breeding strategies attempting to control muscle development in cattle.


Assuntos
Diferenciação Celular , Proliferação de Células , MicroRNAs/metabolismo , Desenvolvimento Muscular , Mioblastos Esqueléticos/metabolismo , RNA/metabolismo , Animais , Apoptose , Bovinos , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , RNA/genética , RNA Circular , Transdução de Sinais
15.
Anim Biotechnol ; 28(2): 104-111, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-27532432

RESUMO

DNA methylation is essential for the regulation of gene expression and important roles in muscle development. To assess the extent of epigenetic modifications and gene expression on the differentially methylated region (DMR) in ZBED6, we simultaneously examined DNA methylation and expression in six tissues from two different developmental stages (fetal bovine and adult bovine). The DNA methylation pattern was compared using bisulfite sequencing polymerase chain reaction (BSP) and combined bisulfite restriction analysis (COBRA). The result of quantitative real-time PCR (qPCR) analysis showed that ZBED6 has a broad tissue distribution and is highly expressed in adult bovine (P < 0.05 or P < 0.01). The DNA methylation level was significantly different in liver, lung and spleen between the two cattle groups (P < 0.05 or P < 0.01). The adult bovine group exhibited a significantly higher mRNA level and lower DNA methylation level than the fetal bovine group in liver, lung, and spleen. No significant association was detected between DNA methylation level and muscle, heart, and kidney at two different stages. In this study, the statistical analyses indicated that DNA methylation patterns are associated with mRNA level in some tissues, these results may be a useful parameter to investigate muscle developmental in cattle and as a model for studies in other species, potentially contributing to an improvement of growth performance selection in beef cattle breeding program.


Assuntos
Envelhecimento/genética , Bovinos/embriologia , Bovinos/fisiologia , Ilhas de CpG/genética , Metilação de DNA , RNA Mensageiro/genética , Proteínas Repressoras/genética , Envelhecimento/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Especificidade de Órgãos/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Estatística como Assunto , Distribuição Tecidual
16.
Acta Biochim Biophys Sin (Shanghai) ; 47(4): 244-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25733534

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding RNAs of 20-25 nucleotides in length. It has been shown that miRNAs play important roles in the proliferation of many types of cells, including myoblasts. In this study, we used real-time quantitative polymerase chain reaction, western blotting, EdU, flow cytometry, and CCK-8 assay to explore the role of miR-125a-5p during the proliferation of C2C12 myoblasts. It was found that the expression of miR-125a-5p was decreased during C2C12 myoblast proliferation. Over-expression of miR-125a-5p inhibited C2C12 myoblast proliferation as indicated by EdU staining, flow cytometry, and CCK8 assay. It was also found that miR-125a-5p could negatively regulate E2F3 expression at posttranscriptional level, via a specific target site in the 3' untranslated region. Knockdown of E2F3 showed a similar inhibitory effect on C2C12 myoblast proliferation. Thus, our findings suggest that miR-125a-5p may act as a negative regulator of C2C12 myoblast proliferation by targeting E2F3.


Assuntos
Proliferação de Células/genética , Fator de Transcrição E2F3/genética , Expressão Gênica , MicroRNAs/genética , Mioblastos/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Western Blotting , Linhagem Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Replicação do DNA/genética , Fator de Transcrição E2F3/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Técnicas de Silenciamento de Genes , Camundongos , Microscopia de Fluorescência , Mutação , Mioblastos/citologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Int J Mol Sci ; 16(8): 17734-45, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26247931

RESUMO

Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI) is regarded as an essential regulator of cell proliferation and differentiation that represses transforming growth factor-ß and enhances Wnt/ß-catenin signaling in various cell types. However, its role in skeletal muscle remains largely unknown. In the current study, we found that the expression level of BAMBI peaked in the early differentiation phase of the C2C12 rodent myoblast cell line. Knockdown of BAMBI via siRNA inhibited C2C12 differentiation, indicated by repressed MyoD, MyoG, and MyHC expression as well as reductions in the differentiation and fusion indices. BAMBI knockdown reduced the activity of Wnt/ß-catenin signaling, as characterized by the decreased nuclear translocation of ß-catenin and the lowered transcription of Axin2, which is a well-documented target gene of the Wnt/ß-catenin signaling pathway. Furthermore, treatment with LiCl, an activator of Wnt/ß-catenin signaling, rescued the reduction in C2C12 differentiation caused by BAMBI siRNA. Taken together, our data suggest that BAMBI is required for normal C2C12 differentiation, and that its role in myogenesis is mediated by the Wnt/ß-catenin pathway.


Assuntos
Diferenciação Celular , Proteínas de Membrana/metabolismo , Mioblastos/metabolismo , Via de Sinalização Wnt , Animais , Proteína Axina , Linhagem Celular , Proteínas de Membrana/genética , Camundongos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/citologia , Miogenina/genética , Miogenina/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , beta Catenina/metabolismo
18.
Mol Cell Biochem ; 395(1-2): 155-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24952481

RESUMO

MicroRNAs are a family of small, non-coding RNAs that regulate gene expression in a sequence-specific manner. Estrogen-related receptor α (ERRα) is an orphan nuclear receptor which plays an important role in adipocyte differentiation. Our previous Solexa sequencing results indicated a high expression of miR-125a in adult pig backfat. In this study, we predicated and experimentally validated ERRα as a target of miR-125a. To explore the role of miR-125a in porcine preadipocytes differentiation, miRNA agomir and antagomir were used to perform miR-125a overexpression or knockdown, respectively. Our results showed that overexpression of miR-125a could dramatically reduce the mRNA expression of adipogenic markers PPARγ, LPL, and aP2, as well as its target gene ERRα. Western blotting showed the protein level of aP2 and ERRα was also significantly down-regulated. The overexpression of miR-125a also led to a notable reduction in lipid accumulation which was detected by Oil Red O staining. In contrast, we observed promoted differentiation of porcine preadipocytes upon miR-125a inhibition. In conclusion, we verified miR-125a inhibits porcine preadipocytes differentiation through targeting ERRα for the first time, which may provide new insights in pork quality improvement and obesity control.


Assuntos
Adipócitos/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores de Estrogênio/genética , Sus scrofa/fisiologia , Adipócitos/citologia , Animais , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Modelos Biológicos , Receptores de Estrogênio/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
19.
Int J Mol Sci ; 15(5): 8526-38, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24830555

RESUMO

MicroRNAs (miRNAs), a class of small non-coding RNAs, have emerged as novel and potent regulators of adipogenesis. However, few miRNAs have been fully investigated in porcine adipogenesis, given the fact that pig is not only an apropos model of human obesity research, but also a staple meat source of human diet. In this study, we showed that miRNA-199a-5p is highly expressed in porcine subcutaneous fat deposits compared to several other tissue types and organs measured alongside. Overexpression of miR-199a-5p in porcine preadipocytes significantly promoted cell proliferation while attenuating the lipid deposition in porcine adipocytes. By target gene prediction and experimental validation, we demonstrated that caveolin-1 (Cav-1) may be a bona fide target of miR-199a-5p in porcine adipocytes, accounting for some of miR-199a-5p's functions. Taken together, our data established a role of miR-199a-5p in porcine preadipocyte proliferation and differentiation, which is at least partially played by downregulating Cav-1.


Assuntos
Adipócitos/citologia , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Adipócitos/metabolismo , Adipogenia , Animais , Sequência de Bases , Caveolina 1/química , Caveolina 1/genética , Caveolina 1/metabolismo , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Humanos , MicroRNAs/química , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Suínos
20.
Anim Biosci ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39210799

RESUMO

Cell growth and metabolism necessitate the involvement of amino acids, which are sensed and integrated by the mammalian target of rapamycin complex 1 (mTORC1). However, the molecular mechanisms underlying amino acid sensing remain poorly understood. Research indicates that amino acids are detected by specific sensors, with the signals being relayed to mTORC1 indirectly. This paper reviews the structures and biological functions of the amino acid sensors identified thus far. Additionally, it evaluates the potential role these sensors play in the developmental changes of the livestock production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA