Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(17): 7838-7844, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37590032

RESUMO

Retaining ferroelectricity in ultrathin films or nanostructures is crucial for miniaturizing ferroelectric devices, but it is a challenging task due to intrinsic depolarization and size effects. In this study, we have shown that it is possible to stably maintain in-plane polarization in an extremely thin, one-unit-cell thick epitaxial Bi2WO6 film. The use of a perfectly lattice-matched NdGaO3 (110) substrate for the Bi2WO6 film minimizes strain and enhances stability. We attribute the residual polarization in this ultrathin film to the crystal stability of the Bi-O octahedral framework against structural distortions. Our findings suggest that ferroelectricity can surpass the critical thickness limit through proper strain engineering, and the Bi2WO6/NdGaO3 (110) system presents a potential platform for designing low-energy consumption, nonvolatile ferroelectric memories.

2.
BMC Bioinformatics ; 23(1): 358, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042415

RESUMO

BACKGROUND: Fractional vegetation coverage (FVC) is a crucial parameter in determining vegetation structure. Automatic measurement of FVC using digital images captured by mobile smart devices is a potential direction for future research on field survey methods in plant ecology, and this algorithm is crucial for accurate FVC measurement. However, there is a lack of insight into the influence of illumination on the accuracy of FVC measurements. Therefore, the main objective of this research is to assess the adaptiveness and performance of different algorithms under varying light conditions for FVC measurements and to deepen our understanding of the influence of illumination on FVC measurement. METHODS AND RESULTS: Based on a literature survey, we selected four algorithms that have been reported to have high accuracy in automatic FVC measurements. The first algorithm (Fun01) identifies green plants based on the combination of [Formula: see text], [Formula: see text], and [Formula: see text] ([Formula: see text], [Formula: see text], and [Formula: see text] are the actual pixel digital numbers from the images based on each RGB channel, [Formula: see text] is the abbreviation of the Excess Green index), the second algorithm (Fun02) is a decision tree that uses color properties to discriminate plants from the background, the third algorithm (Fun03) uses [Formula: see text] ([Formula: see text] is the abbreviation of the Excess Red index) to recognize plants in the image, and the fourth algorithm (Fun04) uses [Formula: see text] and [Formula: see text] to separate the plants from the background. [Formula: see text] is an algorithm used to determine a threshold to transform the image into a binary image for the vegetation and background. We measured the FVC of several surveyed quadrats using these four algorithms under three scenarios, namely overcast sky, solar forenoon, and solar noon. FVC values obtained using the Photoshop-assisted manual identification method were used as a reference to assess the accuracy of the four algorithms selected. Results indicate that under the overcast sky scenario, Fun01 was more accurate than the other algorithms and the MAPE (mean absolute percentage error), BIAS, relBIAS (relative BIAS), RMSE (root mean square error), and relRMSE (relative RMSE) are 8.68%, 1.3, 3.97, 3.13, and 12.33%, respectively. Under the scenario of the solar forenoon, Fun02 (decision tree) was more accurate than other algorithms, and the MAPE, BIAS, relBIAS, RMSE, and relRMSE are 22.70%, - 2.86, - 7.70, 5.00, and 41.23%. Under the solar noon scenario, Fun02 was also more accurate than the other algorithms, and the MAPE, BIAS, relBIAS, RMSE, and relRMSE are 20.60%, - 6.39, - 20.67, 7.30, and 24.49%, respectively. CONCLUSIONS: Given that each algorithm has its own optimal application scenario, among the four algorithms selected, Fun01 (the combination of [Formula: see text], [Formula: see text], and [Formula: see text]) can be recommended for measuring FVC on cloudy days. Fun02 (decision tree) is more suitable for measuring the FVC on sunny days. However, it considerably underestimates the FVC in most cases. We expect the findings of this study to serve as a useful reference for automatic vegetation cover measurements.


Assuntos
Algoritmos , Ecologia , Plantas
3.
Phys Chem Chem Phys ; 23(39): 22526-22531, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34590637

RESUMO

Perovskite SrRuO3 is a unique 4d transition metal oxide with coexisting spin-orbit coupling (SOC) and electron-electron correlation. However, the intrinsic, non-reconstructed surface structure of SrRuO3 has not been reported so far. Here we report an atomic imaging of the non-reconstructed, SrO-terminated SrRuO3 surface by scanning tunneling microscopy/spectroscopy. Moreover, a Kondo resonant behavior is revealed in RuOx clusters located on top of the nonmagnetic SrO surface layer. The density functional theory calculations confirm that RuOx clusters possess localized 4d-electron-involved spin moments and hybridize with the conduction electrons in the metal host, resulting in the appearance of the Kondo resonance features around the Fermi level. Our work demonstrates that artificially-engineered transition metal oxides provide new opportunities to explore the Kondo physics in 4d multi-orbital systems.

4.
Nat Commun ; 14(1): 2757, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179407

RESUMO

Ferroelectricity in ultrathin two-dimensional (2D) materials has attracted broad interest due to potential applications in nonvolatile memory, nanoelectronics and optoelectronics. However, ferroelectricity is barely explored in materials with native centro or mirror symmetry, especially in the 2D limit. Here, we report the first experimental realization of room-temperature ferroelectricity in van der Waals layered GaSe down to monolayer with mirror symmetric structures, which exhibits strong intercorrelated out-of-plane and in-plane electric polarization. The origin of ferroelectricity in GaSe comes from intralayer sliding of the Se atomic sublayers, which breaks the local structural mirror symmetry and forms dipole moment alignment. Ferroelectric switching is demonstrated in nano devices fabricated with GaSe nanoflakes, which exhibit exotic nonvolatile memory behavior with a high channel current on/off ratio. Our work reveals that intralayer sliding is a new approach to generate ferroelectricity within mirror symmetric monolayer, and offers great opportunity for novel nonvolatile memory devices and optoelectronics applications.

5.
Plant Methods ; 17(1): 67, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172049

RESUMO

BACKGROUND: Accurate and efficient measurement of the diameter at breast height (DBH) of individual trees is essential for forest inventories, ecological management, and carbon budget estimation. However, traditional diameter tapes are still the most widely used dendrometers in forest surveys, which makes DBH measurement time-consuming and labor-intensive. Automatic and easy-to-use devices for measuring DBH are highly anticipated in forest surveys. In this study, we present a handheld device for measuring the DBH of individual trees that uses digital cameras and laser ranging, allowing for an instant, automated, and contactless measurement of DBH. RESULTS: The base hardware of this device is a digital camera and a laser rangefinder, which are used to take a picture of the targeted tree trunk and record the horizontal distance between the digital camera and the targeted tree, respectively. The core software is composed of lightweight convolutional neural networks (CNNs), which includes an attention-focused mechanism for detecting the tree trunk to log the number of pixels between the edges. We also calibrated the digital camera to correct the distortion introduced by the lens system, and obtained the normalized focal length. Parameters including the horizontal distance between the digital camera and the targeted tree, number of pixels between the edges of the tree trunk, and normalized focal length were used to calculate the DBH based on the principles of geometrical optics. The measured diameter values, and the longitudes and latitudes of the measurement sites, were recorded in a text file, which is convenient to export to external flash disks. The field measurement accuracy test showed that the BIAS of the newly developed device was - 1.78 mm, and no significant differences were found between the measured diameter values and the true values (measured by the conventional tape). Furthermore, compared with most other image-based instruments, our device showed higher measurement accuracy. CONCLUSIONS: The newly developed handheld device realized efficient, accurate, instant, and non-contact measurements of DBH, and the CNNs were proven to be successful in the detection of the tree trunk in our research. We believe that the newly developed device can fulfill the precision requirement in forest surveys, and that the application of this device can improve the efficiency of DBH measurements in forest surveys.

6.
Adv Mater ; 33(33): e2102525, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34223676

RESUMO

In situ electrical control of the Dzyaloshinskii-Moriya interaction (DMI) is one of the central but challenging goals toward skyrmion-based device applications. An atomic design of defective interfaces in spin-orbit-coupled transition-metal oxides can be an appealing strategy to achieve this goal. In this work, by utilizing the distinct formation energies and diffusion barriers of oxygen vacancies at SrRuO3 /SrTiO3 (001), a sharp interface is constructed between oxygen-deficient and stoichiometric SrRuO3 . This interfacial inversion-symmetry breaking leads to a sizable DMI, which can induce skyrmionic magnetic bubbles and the topological Hall effect in a more than 10 unit-cell-thick SrRuO3 . This topological spin texture can be reversibly manipulated through the migration of oxygen vacancies under electric gating. In particular, the topological Hall signal can be deterministically switched ON and OFF. This result implies that the defect-engineered topological spin textures may offer an alternate perspective for future skyrmion-based memristor and synaptic devices.

7.
ACS Appl Mater Interfaces ; 12(3): 4150-4154, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31885250

RESUMO

The emerging surface/edge electronic phases driven by broken symmetry effects have attracted great attention in low-dimensional electronic systems. However, experimental proof on their existence in ferroelectric oxides at the atomic scale is still missing. In this work, metallic surface states are observed on layered Bi2WO6 by scanning tunneling microscopy/spectroscopy. Differential conductance is remarkably enhanced near the step edge compared with that on the terrace, forming a one-dimensional edge state. Density functional theory calculations verify that symmetry breaking at the surface determines the electronic structures and O 2p orbitals contribute the most to the density of states around the Fermi level. Our discovery provides a new strategy toward the hidden phases on other correlated oxide surfaces.

8.
PeerJ ; 6: e6126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886767

RESUMO

The flower buds of Magnolia biondii, M. denudata, and M. sprengeri are the materials of Xinyi, a traditional Chinese medicine. The harvest of flower buds and habitat fragmentation caused by human disturbance heavily threatens the natural regeneration and survival of these three Magnolia species. With the aim to support the conservation and improve the effectiveness of conservation, we performed an assessment on habitat suitability, influences of environmental variables on habitat suitability, and the conservation gap of these three Magnolia species, based on the Maxent modeling method. The results indicated that: (1) altitude, annual mean temperature, extreme temperature, temperature fluctuation, annual precipitation, and extreme precipitation are the most influential environmental variables for the distribution of M. sprengeri, M. biondii, and M. denudata; (2) obvious habitat differentiations were observed among M. biondii, M. denudata, and M. sprengeri. M. sprengeri tends to be located in further northern areas with higher altitudes, lower temperatures, and lower precipitation compared to M. biondii and M. denudata; and (3) a large proportion of suitable habitats have been left without protection. Woodland and forest shared the largest area out of the suitable habitats. However, grassland, agricultural land, residential land, and mining and industry areas also occupied large areas of suitable habitats.

9.
ACS Appl Mater Interfaces ; 11(40): 37279-37284, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31529959

RESUMO

Real-space access of the orbital degree of freedom in complex oxides is still challenging due to intricate electronic hybridization. Here, we report a direct observation of reproducible orbital-selective tunneling on a novel SrTiO3(001) surface by scanning tunneling microscopy. The electronic structures reversibly switch between two different sets of symmetries depending on the sample bias, which is accompanied by a remarkable change in energy-dependent spectroscopy data. Tunneling spectrum combined with density functional theory calculations elucidates that symmetry-breaking at the surface determines the crystal-splitting field of eg/t2g orbitals with a strong in-plane anisotropy so that electrons alternatingly fill eg and t2g orbitals during the imaging process with different biases. This surface superstructure provides a new strategy toward understanding orbital textures and orbital selectivity in complex oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA