Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Virol J ; 21(1): 220, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285440

RESUMO

BACKGROUND: Human adenovirus type 55 (hAd55) infection can lead to acute respiratory diseases that often present with severe symptoms. Despite its persistent prevalence in military camps and communities, there are no commercially available vaccines or vaccine candidates undergoing clinical evaluation; therefore, there is an urgent need to address this. In this study, we evaluated the immunogenicity of inactivated hAd55 isolates and investigated the effects of adjuvants and various immunization intervals. METHODS AND RESULTS: To select a vaccine candidate, four hAd55 strains (6-9, 6-15 (AFMRI 41014), 28-48 (AFMRI 41013), and 12-164 (AFMRI 41012)) were isolated from infected patients in military camps. Sequence analysis revealed no variation in the coding regions of structural proteins, including pentons, hexons, and fibers. Immunization with inactivated hAd55 isolates elicited robust hAd55-specific binding and neutralizing antibody responses in mice, with adjuvants, particularly alum hydroxide (AH), enhancing antibody titers. Co-immunization with AH also induced hAd14-specific neutralizing antibody responses but did not induce hAd11-specific neutralizing antibody responses. Notably, booster immunization administered at a four-week interval resulted in superior immune responses compared with shorter immunization intervals. CONCLUSIONS: Prime-boost immunization with the inactivated hAd55 isolate and an AH adjuvant shows promise as a potential approach for preventing hAd55-induced respiratory disease. Further research is needed to evaluate the efficacy and safety of these vaccine candidates in preventing hAd55-associated respiratory illnesses.


Assuntos
Adenovírus Humanos , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunização Secundária , Vacinas de Produtos Inativados , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Camundongos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Adenovírus Humanos/imunologia , Adenovírus Humanos/genética , Adjuvantes Imunológicos/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Feminino , Vacinas contra Adenovirus/imunologia , Vacinas contra Adenovirus/administração & dosagem , Camundongos Endogâmicos BALB C , Adjuvantes de Vacinas/administração & dosagem , Infecções por Adenovirus Humanos/imunologia , Infecções por Adenovirus Humanos/prevenção & controle , Infecções por Adenovirus Humanos/virologia
3.
PLoS Pathog ; 17(12): e1010092, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914812

RESUMO

The development of safe and effective vaccines to prevent SARS-CoV-2 infections remains an urgent priority worldwide. We have used a recombinant vesicular stomatitis virus (rVSV)-based prime-boost immunization strategy to develop an effective COVID-19 vaccine candidate. We have constructed VSV genomes carrying exogenous genes resulting in the production of avirulent rVSV carrying the full-length spike protein (SF), the S1 subunit, or the receptor-binding domain (RBD) plus envelope (E) protein of SARS-CoV-2. Adding the honeybee melittin signal peptide (msp) to the N-terminus enhanced the protein expression, and adding the VSV G protein transmembrane domain and the cytoplasmic tail (Gtc) enhanced protein incorporation into pseudotype VSV. All rVSVs expressed three different forms of SARS-CoV-2 spike proteins, but chimeras with VSV-Gtc demonstrated the highest rVSV-associated expression. In immunized mice, rVSV with chimeric S protein-Gtc derivatives induced the highest level of potent neutralizing antibodies and T cell responses, and rVSV harboring the full-length msp-SF-Gtc proved to be the superior immunogen. More importantly, rVSV-msp-SF-Gtc vaccinated animals were completely protected from a subsequent SARS-CoV-2 challenge. Overall, we have developed an efficient strategy to induce a protective response in SARS-CoV-2 challenged immunized mice. Vaccination with our rVSV-based vector may be an effective solution in the global fight against COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Glicoproteína da Espícula de Coronavírus/imunologia , Vírus da Estomatite Vesicular Indiana/genética , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Chlorocebus aethiops , Humanos , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Proteínas Virais/genética , Proteínas Virais/imunologia
4.
Pulm Pharmacol Ther ; 80: 102189, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36634813

RESUMO

Throughout the recent COVID-19 pandemic, South Korea led national efforts to develop vaccines and therapeutics for SARS-CoV-2. The project proceeded as follows: 1) evaluation system setup (including Animal Biosafety Level 3 (ABSL3) facility alliance, standardized nonclinical evaluation protocol, and laboratory information management system), 2) application (including committee review and selection), and 3) evaluation (including expert judgment and reporting). After receiving 101 applications, the selection committee reviewed pharmacokinetics, toxicity, and efficacy data and selected 32 final candidates. In the nonclinical efficacy test, we used golden Syrian hamsters and human angiotensin-converting enzyme 2 transgenic mice under a cytokeratin 18 promoter to evaluate mortality, clinical signs, body weight, viral titer, neutralizing antibody presence, and histopathology. These data indicated eight new drugs and one repositioned drug having significant efficacy for COVID-19. Three vaccine and four antiviral drugs exerted significant protective activities against SARS-CoV-2 pathogenesis. Additionally, two anti-inflammatory drugs showed therapeutic effects on lung lesions and weight loss through their mechanism of action but did not affect viral replication. Along with systematic verification of COVID-19 animal models through large-scale studies, our findings suggest that ABSL3 multicenter alliance and nonclinical evaluation protocol standardization can promote reliable efficacy testing against COVID-19, thus expediting medical product development.


Assuntos
COVID-19 , Animais , Cricetinae , Camundongos , Humanos , SARS-CoV-2 , Pandemias , Anticorpos Neutralizantes , Mesocricetus , Modelos Animais de Doenças
5.
Pharm Res ; 40(12): 3059-3071, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37914841

RESUMO

PURPOSE: For successful delivery of a solid vaccine formulation into the skin using microneedles, the solubility of an adjuvant should be considered because the decrease in the dissolution rate by the addition of adjuvant decreases the delivery efficiency of the vaccine. METHODS: In this study, cholera toxin A subunit 1 (CTA1) was examined as an adjuvant to Hepatitis B vaccine (HBV) microneedles because of its good water solubility, improved safety, and positive effect as shown in intramuscular administration of a liquid vaccine. RESULTS: All solid formulations with CTA 1 dissolved in in vivo mouse skin within 30 min, and they were successfully delivered into the skin. In experiments with mice, the addition of CTA1 led to improved IgG immune response compared to the use of an aluminum hydroxide-based formulation and intramuscular administration of HBV. In addition, CTA1 induced CD8 + T cell response as much as in which the aluminum hydroxide-based formulation induced. CONCLUSIONS: CTA1 is an adjuvant that satisfies both the delivery efficiency and the immunological characteristics required for vaccine microneedles. CTA1 will be used as a potential adjuvant through vaccine microneedles.


Assuntos
Toxina da Cólera , Vacinas contra Hepatite B , Camundongos , Animais , Preparações Farmacêuticas , Hidróxido de Alumínio , Adjuvantes Imunológicos
6.
Anal Chem ; 94(49): 17186-17194, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36399654

RESUMO

A high-throughput, accurate screening is crucial for the prevention and control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current methods, which involve sampling from the nasopharyngeal (NP) area by medical staffs, constitute a fundamental bottleneck in expanding the testing capacity. To meet the scales required for population-level surveillance, self-collectable specimens can be used; however, its low viral load has hindered its clinical adoption. Here, we describe a magnetic nanoparticle functionalized with synthetic apolipoprotein H (ApoH) peptides to capture, concentrate, and purify viruses. The ApoH assay demonstrates a viral enrichment efficiency of >90% for both SARS-CoV-2 and its variants, leading to an order of magnitude improvement in analytical sensitivity. For validation, we apply the assay to a total of 84 clinical specimens including nasal, oral, and mouth gargles obtained from COVID-19 patients. As a result, a 100% positivity rate is achieved from the patient-collected nasal and gargle samples, which exceeds that of the traditional NP swab method. The simple 12 min pre-enrichment assay enabling the use of self-collectable samples will be a practical solution to overcome the overwhelming diagnostic capacity. Furthermore, the methodology can easily be built on various clinical protocols, allowing its broad applicability to various disease diagnoses.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , beta 2-Glicoproteína I , Teste para COVID-19 , Nasofaringe , Manejo de Espécimes/métodos , Peptídeos
7.
BMC Med ; 20(1): 462, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36447243

RESUMO

BACKGROUND: Numerous vaccine strategies are being advanced to control SARS-CoV-2, the cause of the COVID-19 pandemic. EuCorVac-19 (ECV19) is a recombinant protein nanoparticle vaccine that displays the SARS-CoV-2 receptor-binding domain (RBD) on immunogenic nanoliposomes. METHODS: Initial study of a phase 2 randomized, observer-blind, placebo-controlled trial to assess the immunogenicity, safety, and tolerance of ECV19 was carried out between July and October 2021. Two hundred twenty-nine participants were enrolled at 5 hospital sites in South Korea. Healthy adults aged 19-75 without prior known exposure to COVID-19 were vaccinated intramuscularly on day 0 and day 21. Of the participants who received two vaccine doses according to protocol, 100 received high-dose ECV19 (20 µg RBD), 96 received low-dose ECV19 (10 µg RBD), and 27 received placebo. Local and systemic adverse events were monitored. Serum was assessed on days 0, 21, and 42 for immunogenicity analysis by ELISA and neutralizing antibody response by focus reduction neutralization test (FRNT). RESULTS: Low-grade injection site tenderness and pain were observed in most participants. Solicited systemic adverse events were less frequent, and mostly involved low-grade fatigue/malaise, myalgia, and headache. No clinical laboratory abnormalities were observed. Adverse events did not increase with the second injection and no serious adverse events were solicited by ECV19. On day 42, Spike IgG geometric mean ELISA titers were 0.8, 211, and 590 Spike binding antibody units (BAU/mL) for placebo, low-dose and high-dose ECV19, respectively (p < 0.001 between groups). Neutralizing antibodies levels of the low-dose and high-dose ECV19 groups had FRNT50 geometric mean values of 129 and 316, respectively. Boosting responses and dose responses were observed. Antibodies against the RBD correlated with antibodies against the Spike and with virus neutralization. CONCLUSIONS: ECV19 was generally well-tolerated and induced antibodies in a dose-dependent manner that neutralized SARS-CoV-2. The unique liposome display approach of ECV19, which lacks any immunogenic protein components besides the antigen itself, coupled with the lack of increased adverse events during boosting suggest the vaccine platform may be amenable to multiple boosting regimes in the future. Taken together, these findings motivate further investigation of ECV19 in larger scale clinical testing that is underway. TRIAL REGISTRATION: The trial was registered at ClinicalTrials.gov as # NCT04783311.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Anticorpos Neutralizantes , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Pandemias , Proteínas Recombinantes/genética , SARS-CoV-2 , Adulto Jovem , Pessoa de Meia-Idade , Idoso
8.
J Gen Virol ; 102(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33913804

RESUMO

The development of a vaccine to prevent Zika virus (ZIKV) infection has been one of the priorities in infectious disease research in recent years. There have been numerous attempts to develop an effective vaccine against ZIKV. It is imperative to choose the safest and the most effective ZIKV vaccine from all candidate vaccines to control this infection globally. We have employed a dual serotype of prime-boost recombinant vesicular stomatitis virus (VSV) vaccine strategy, to develop a ZIKV vaccine candidate, using a type 1 IFN-receptor knock-out (Ifnar-/-) mouse model for challenge studies. Prime vaccination with an attenuated recombinant VSV Indiana serotype (rVSVInd) carrying a genetically modified ZIKV envelope (E) protein gene followed by boost vaccination with attenuated recombinant VSV New Jersey serotype (rVSVNJ) carrying the same E gene induced robust adaptive immune responses. In particular, rVSV carrying the ZIKV E gene with the honeybee melittin signal peptide (msp) at the N terminus and VSV G protein transmembrane domain and cytoplasmic tail (Gtc) at the C terminus of the E gene induced strong protective immune responses. This vaccine regimen induced highly potent neutralizing antibodies and T cell responses in the absence of an adjuvant and protected Ifnar-/- mice from a lethal dose of the ZIKV challenge.


Assuntos
Vírus da Estomatite Vesicular New Jersey/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Cricetinae , Células HEK293 , Humanos , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Vero
9.
Biochem Biophys Res Commun ; 578: 91-96, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547629

RESUMO

The SARS-CoV-2 variant is rapidly spreading across the world and causes to resurge infections. We previously reported that CT-P59 presented its in vivo potency against Beta variants, despite its reduced activity in cell experiments. Yet, it remains uncertain to exert the antiviral effect of CT-P59 on Gamma, Delta and its associated variants (L452R). To tackle this question, we carried out cell tests and animal studies. CT-P59 showed neutralization against Gamma, Delta, Epsilon, and Kappa variants in cells, with reduced susceptibility. The mouse challenge experiments with Gamma and Delta variants substantiated in vivo potency of CT-P59 showing symptom remission and virus abrogation in the respiratory tract. Collectively, cell and animal studies showed that CT-P59 is effective against Gamma and Delta variants infection, hinting that CT-P59 has therapeutic potential for patients infected with Gamma, Delta and its associated variants.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/farmacologia , Tratamento Farmacológico da COVID-19 , Modelos Animais de Doenças , Imunoglobulina G/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/farmacologia , Peso Corporal/efeitos dos fármacos , COVID-19/virologia , Feminino , Humanos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Análise de Sobrevida
10.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967955

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness and has a high mortality of ∼34%. However, since its discovery in 2012, an effective vaccine has not been developed for it. To develop a vaccine against multiple strains of MERS-CoV, we targeted spike glycoprotein (S) using prime-boost vaccination with DNA and insect cell-expressed recombinant proteins for the receptor-binding domain (RBD), S1, S2, SΔTM, or SΔER. Our S subunits were generated using an S sequence derived from the MERS-CoV EMC/2012 strain. We examined humoral and cellular immune responses of various combinations with DNA plasmids and recombinant proteins in mice. Mouse sera immunized with SΔER DNA priming/SΔTM protein boosting showed cross-neutralization against 15 variants of S-pseudovirions and the wild-type KOR/KNIH/002 strain. In addition, these immunizations provided full protection against the KOR/KNIH/002 strain challenge in human DPP4 knock-in mice. These findings suggest that vaccination with the S subunits derived from one viral strain can provide cross-protection against variant MERS-CoV strains with mutations in S. DNA priming/protein boosting increased gamma interferon production, while protein-alone immunization did not. The RBD subunit alone was insufficient to induce neutralizing antibodies, suggesting the importance of structural conformation. In conclusion, heterologous DNA priming with protein boosting is an effective way to induce both neutralizing antibodies and cell-mediated immune responses for MERS-CoV vaccine development. This study suggests a strategy for selecting a suitable platform for developing vaccines against MERS-CoV or other emerging coronaviruses.IMPORTANCE Coronavirus is an RNA virus with a higher mutation rate than DNA viruses. Therefore, a mutation in S-protein, which mediates viral infection by binding to a human cellular receptor, is expected to cause difficulties in vaccine development. Given that DNA-protein vaccines promote stronger cell-mediated immune responses than protein-only vaccination, we immunized mice with various combinations of DNA priming and protein boosting using the S-subunit sequences of the MERS-CoV EMC/2012 strain. We demonstrated a cross-protective effect against wild-type KOR/KNIH/002, a strain with two mutations in the S amino acids, including one in its RBD. The vaccine also provided cross-neutralization against 15 different S-pseudotyped viruses. These suggested that a vaccine targeting one variant of S can provide cross-protection against multiple viral strains with mutations in S. The regimen of DNA priming/Protein boosting can be applied to the development of other coronavirus vaccines.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Proteção Cruzada , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Celular , Imunização Secundária , Imunogenicidade da Vacina , Camundongos , Plasmídeos/administração & dosagem , Plasmídeos/genética , Plasmídeos/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem
11.
Angew Chem Int Ed Engl ; 59(28): 11540-11549, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32239636

RESUMO

As agonists of TLR7/8, single-stranded RNAs (ssRNAs) are safe and promising adjuvants that do not cause off-target effects or innate immune overactivation. However, low stability prevents them from mounting sufficient immune responses. This study evaluates the adjuvant effects of ssRNA derived from the cricket paralysis virus intergenic region internal ribosome entry site, formulated as nanoparticles with a coordinative amphiphile, containing a zinc/dipicolylamine complex moiety as a coordinative phosphate binder, as a stabilizer for RNA-based adjuvants. The nanoformulated ssRNA adjuvant was resistant to enzymatic degradation in vitro and in vivo, and that with a coordinative amphiphile bearing an oleyl group (CA-O) was approximately 100 nm, promoted effective recognition, and improved activation of antigen-presenting cells, leading to better induction of neutralizing antibodies following single immunization. Hence, CA-O may increase the efficacy of ssRNA-based adjuvants, proving useful to meet the urgent need for vaccines during pathogen outbreaks.


Assuntos
Adjuvantes Imunológicos/farmacologia , Células Apresentadoras de Antígenos/imunologia , Composição de Medicamentos , Imunidade Humoral/efeitos dos fármacos , Nanotecnologia , RNA/química , Adjuvantes Imunológicos/química , Animais , Humanos
12.
PLoS Pathog ; 10(9): e1004384, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25233006

RESUMO

Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.


Assuntos
Bacteriófagos/isolamento & purificação , Evolução Biológica , Cólera/microbiologia , Variação Genética/genética , Prófagos/isolamento & purificação , Vibrio cholerae O1/classificação , Vibrio cholerae O1/virologia , Técnicas de Tipagem Bacteriana , Bacteriófagos/genética , Toxina da Cólera/genética , Genoma Viral , Dados de Sequência Molecular , Prófagos/genética , Vibrio cholerae O1/genética
13.
J Virol ; 88(17): 9693-703, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24920793

RESUMO

UNLABELLED: Influenza vaccines aimed at inducing antibody (Ab) responses against viral surface hemagglutinin (HA) and neuraminidase (NA) provide sterile immunity to infection with the same subtypes. Vaccines targeting viral conserved determinants shared by the influenza A viruses (IAV) offer heterosubtypic immunity (HSI), a broad protection against different subtypes. We proposed that vaccines targeting both HA and the conserved ectodomain of matrix protein 2 (M2e) would provide protection against infection with the same subtype and also HSI against other subtypes. We report here that single intranasal immunization with a recombinant adenovirus (rAd) vector encoding both HA of H5 virus and M2e (rAdH5/M2e) induced significant HA- and M2e-specific Ab responses, along with protection against heterosubtypic challenge in mice. The protection is superior compared to that induced by rAd vector encoding either HA (rAdH5), or M2e (rAdM2e). While protection against homotypic H5 virus is primarily mediated by virus-neutralizing Abs, the cross-protection is associated with Abs directed to conserved stalk HA and M2e that seem to have an additive effect. Consistently, adoptive transfer of antisera induced by rAdH5/M2e provided the best protection against heterosubtypic challenge compared to that provided by antisera derived from mice immunized with rAdH5 or rAdM2e. These results support the development of rAd-vectored vaccines encoding both H5 and M2e as universal vaccines against different IAV subtypes. IMPORTANCE: Current licensed influenza vaccines provide protection limited to the infection with same virus strains; therefore, the composition of influenza vaccines has to be revised every year. We have developed a new universal influenza vaccine that is highly efficient in induction of long-lasting cross-protection against different influenza virus strains. The cross-protection is associated with a high level of vaccine-induced antibodies against the conserved stalk domain of influenza virus hemagglutinin and the ectodomain of matrix protein. The vaccine could be used to stimulate cross-protective antibodies for the prevention and treatment of influenza with immediate effect for individuals who fail to respond to or receive the vaccine in due time. The vaccine offers a new tool to control influenza outbreaks, including pandemics.


Assuntos
Adenoviridae/genética , Anticorpos Antivirais/sangue , Portadores de Fármacos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Orthomyxoviridae/genética , Proteínas da Matriz Viral/imunologia , Administração Intranasal , Animais , Proteção Cruzada , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas da Matriz Viral/genética
14.
Int J Infect Dis ; 138: 73-80, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944586

RESUMO

OBJECTIVE: EuCorVac-19 (ECV-19), an adjuvanted liposome-displayed receptor binding domain (RBD) COVID-19 vaccine, previously reported interim Phase 2 trial results showing induction of neutralizing antibodies 3 weeks after prime-boost immunization. The objective of this study was to determine the longer-term antibody response of the vaccine. METHODS: To assess immunogenicity 6 and 12 months after vaccination, participants in the Phase 2 trial (NCT04783311) were excluded if they: 1) withdrew, 2) reported COVID-19 infection or additional vaccination, or 3) exhibited increasing Spike (S) antibodies (representing possible non-reported infection). Following exclusions, of the 197 initial subjects, anti-S IgG antibodies and neutralizing antibodies were further assessed in 124 subjects at the 6-month timepoint, and 36 subjects at the 12-month timepoint. RESULTS: Median anti-S antibody half-life was 52 days (interquartile range [IQR]:42-70), in the "early" period from 3 weeks to 6 months, and 130 days (IQR:97-169) in the "late" period from 6 to 12 months. There was a negative correlation between initial antibody titer and half-life. Anti-S and neutralizing antibody responses were correlated. Neutralizing antibody responses showed longer half-lives; the early period had a median half-life of 120 days (IQR:81-207), and the late period had a median half-life of 214 days (IQR:140-550). CONCLUSION: These data establish antibody durability of ECV-19, using a framework to analyze COVID-19 vaccine-induced antibodies during periods of high infection.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacinas contra COVID-19/efeitos adversos , Lipossomos , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Vacinas de Subunidades Antigênicas , República da Coreia , Anticorpos Antivirais
15.
Cell Rep Med ; 5(1): 101362, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232693

RESUMO

Repeated pandemics caused by the influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV) have resulted in serious problems in global public health, emphasizing the need for broad-spectrum antiviral therapeutics against respiratory virus infections. Here, we show the protective effects of long-acting recombinant human interleukin-7 fused with hybrid Fc (rhIL-7-hyFc) against major respiratory viruses, including influenza virus, SARS-CoV-2, and respiratory syncytial virus. Administration of rhIL-7-hyFc in a therapeutic or prophylactic regimen induces substantial antiviral effects. During an influenza A virus (IAV) infection, rhIL-7-hyFc treatment increases pulmonary T cells composed of blood-derived interferon γ (IFNγ)+ conventional T cells and locally expanded IL-17A+ innate-like T cells. Single-cell RNA transcriptomics reveals that rhIL-7-hyFc upregulates antiviral genes in pulmonary T cells and induces clonal expansion of type 17 innate-like T cells. rhIL-7-hyFc-mediated disease prevention is dependent on IL-17A in both IAV- and SARS-CoV-2-infected mice. Collectively, we suggest that rhIL-7-hyFc can be used as a broadly active therapeutic for future respiratory virus pandemic.


Assuntos
Influenza Humana , Interleucina-17 , Animais , Camundongos , Humanos , Interleucina-17/genética , Interleucina-7 , Linfócitos T , SARS-CoV-2 , Influenza Humana/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico
16.
Immune Netw ; 24(2): e7, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38725670

RESUMO

Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019. In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virus-infected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105 PFU; however, 1×102 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.

17.
Vaccine ; 41(11): 1892-1901, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36792434

RESUMO

Owing to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, the development of effective and safe vaccines has become a priority. The measles virus (MeV) vaccine is an attractive vaccine platform as it has been administered to children for more than 40 years in over 100 countries. In this study, we developed a recombinant MeV expressing the full-length SARS-CoV-2 spike protein (rMeV-S) and tested its efficacy using mouse and hamster models. In hCD46Tg mice, two-dose rMeV-S vaccination induced higher Th1 secretion and humoral responses than one-dose vaccination. Interestingly, neutralizing antibodies induced by one-dose and two-dose rMeV-S immunization effectively blocked the entry of the α, ß, γ, and δ variants of SARS-CoV-2. Furthermore, two-dose rMeV-S immunization provided complete protection against SARS-CoV-2 in the hamster model. These results suggest the potential of rMeV-S as a vaccine candidate for targeting SARS-CoV-2 and its variants.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Animais , Camundongos , Anticorpos Neutralizantes , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Vírus do Sarampo/genética , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacina contra Sarampo
18.
EClinicalMedicine ; 64: 102140, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37711219

RESUMO

Background: GBP510 vaccine contains self-assembling, recombinant nanoparticles displaying SARS-CoV-2 spike receptor-binding domains. We report interim phase 3 immunogenicity results for GBP510 adjuvanted with AS03 (GBP510/AS03) compared with ChAdOx1-S (Vaxzevria, AstraZeneca) in healthy adults aged ≥18 years, up to 6 months after the second dose. Methods: This was a randomised, active-controlled, observer-blinded, parallel group, phase 3 study, conducted at 38 sites across six countries (South Korea, Philippines, Thailand, Vietnam, Ukraine and New Zealand). Cohort 1 (no history of SARS-CoV-2 infection/COVID-19 vaccination) was randomised 2:1 to receive two doses of GBP510/AS03 or ChAdOx1-S (immunogenicity and safety), while Cohort 2 (regardless of baseline serostatus) was randomised 5:1 (safety). Primary objectives were to demonstrate superiority in geometric mean titre (GMT) and non-inferiority in seroconversion rate (SCR; ≥4-fold rise from baseline) of GBP510/AS03 vs. ChAdOx1-S for neutralising antibodies against the ancestral strain by live-virus neutralisation assay. Secondary objectives included assessment of safety and reactogenicity (long-term 6 months cut-off date: 09 August 2022). This study was registered on ClinicalTrials.gov (NCT05007951). Findings: Between 30 August 2021 and 11 January 2022, a total of 4913 participants were screened and 4036 participants (1956 in Cohort 1 and 2080 in Cohort 2) who met eligibility criteria were enrolled and randomised to receive 2 doses of GBP510/AS03 (n = 3039) or ChAdOx1-S (n = 997). Most participants were Southeast Asian (81.5%) and aged 18-64 years (94.7%). The primary objectives assessed in per-protocol set included 877 participants in GBP510/AS03 and 441 in ChAdOx1-S group: at 2 weeks after the second vaccination, the GMT ratio (GBP510/AS03/ChAdOx1-S) in per-protocol set was 2.93 (95% CI 2.63-3.27), demonstrating superiority (95% CI lower limit >1) of GBP510/AS03; the between-group SCR difference of 10.8% (95% CI 7.68-14.32) also satisfied the non-inferiority criterion (95% CI lower limit > -5%). Neutralizing antibody titres sustained higher for the GBP510/AS03 group compared to the ChAdOx1-S group through 6 months after the second vaccination. In Safety analysis (Cohort 1 & 2), the proportion of participants with adverse events (AEs) after any vaccination was higher with GBP510/AS03 vs. ChAdOx1-S for solicited local AEs (56.7% vs. 49.2%), but was similar for solicited systemic AEs (51.2% vs. 53.5%) and unsolicited AEs (13.3% vs. 14.6%) up to 28 days after the second vaccination. No safety concerns were identified during follow-up for 6 months after the second vaccination. Interpretation: Our interim findings suggested that GBP510/AS03 met the superiority criterion for neutralising antibodies and non-inferiority criterion for SCR compared with ChAdOx1-S, and showed a clinically acceptable safety profile. Funding: This work was supported, in whole or in part, by funding from CEPI and the Bill & Melinda Gates Foundation Investments INV-010680 and INV-006462. The Bill & Melinda Gates Foundation supported this project for the generation of IND-enabling data and CEPI supported this clinical study.

19.
Sci Rep ; 13(1): 8189, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210393

RESUMO

Severe fever with thrombocytopenia syndrome virus was first discovered in 2009 as the causative agent of severe fever with thrombocytopenia syndrome. Despite its potential threat to public health, no prophylactic vaccine is yet available. This study developed a heterologous prime-boost strategy comprising priming with recombinant replication-deficient human adenovirus type 5 (rAd5) expressing the surface glycoprotein, Gn, and boosting with Gn protein. This vaccination regimen induced balanced Th1/Th2 immune responses and resulted in potent humoral and T cell-mediated responses in mice. It elicited high neutralizing antibody titers in both mice and non-human primates. Transcriptome analysis revealed that rAd5 and Gn proteins induced adaptive and innate immune pathways, respectively. This study provides immunological and mechanistic insight into this heterologous regimen and paves the way for future strategies against emerging infectious diseases.


Assuntos
Adenovírus Humanos , Febre Grave com Síndrome de Trombocitopenia , Vacinas Virais , Animais , Camundongos , Vacinas Virais/genética , Vacinação/métodos , Linfócitos T , Vetores Genéticos/genética , Anticorpos Antivirais , Imunização Secundária/métodos
20.
J Bacteriol ; 194(20): 5722-3, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23012294

RESUMO

Klebsiella pneumoniae is a Gram-negative, rod-shaped, nonmotile, and opportunistic pathogenic species with clinical importance. It is a part of natural flora of humans and animals. Here we report the draft genome sequence of the type strain of Klebsiella pneumoniae subsp. pneumoniae (DSM 30104(T)) to provide taxonomic and functional insights into the species.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Klebsiella pneumoniae/genética , Análise de Sequência de DNA , Animais , Humanos , Klebsiella pneumoniae/isolamento & purificação , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA