Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 126: 708-721, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503796

RESUMO

Nowadays, the fine particle pollution is still severe in some megacities of China, especially in the Sichuan Basin, southwestern China. In order to understand the causes, sources, and impacts of fine particles, we collected PM2.5 samples and analyzed their chemical composition in typical months from July 2018 to May 2019 at an urban and a suburban (background) site of Chengdu, a megacity in this region. The daily average concentrations of PM2.5 ranged from 5.6-102.3 µg/m3 and 4.3-110.4 µg/m3 at each site. Secondary inorganics and organic matters were the major components in PM2.5 at both sites. The proportion of nitrate in PM2.5 has exceeded sulfate and become the primary inorganic component. SO2 was easier to transform into sulfate in urban areas because of Mn-catalytic heterogeneous reactions. In contrast, NO2 was easily converted in suburbs with high aerosol water content. Furthermore, organic carbon in urban was much greater than that in rural, other than elemental carbon. Element Cr and As were the key cancer risk drivers. The main sources of PM2.5 in urban and suburban areas were all secondary aerosols (42.9%, 32.1%), combustion (16.0%, 25.2%) and vehicle emission (15.2%, 19.2%). From clean period to pollution period, the contributions from combustion and secondary aerosols increased markedly. In addition to tightening vehicle controls, urban areas need to restrict emissions from steel smelters, and suburbs need to minimize coal and biomass combustion in autumn and winter.


Assuntos
Carvão Mineral , Poluição Ambiental , China , Sulfatos , Óxidos de Enxofre , Carbono
2.
Environ Res ; 185: 109478, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32276165

RESUMO

As important pollution gases and represented precursors of both ozone and second organic aerosol (SOA), the component characteristics, source origins, environmental health and emission control of volatile organic compounds (VOCs), are gaining more and more attention in Chinese megacities. In order to understand the concentration, composition and temporal and spatial distribution characteristics of VOCs in the atmosphere of Chengdu, a megacity located in Sichuan basin in southwest China, the offline sampling measurements of VOCs were carried out at 28 different field sites covering all the districts and counties of Chengdu during special periods from May 2016 to January 2017. Speciated VOCs measurement was performed by the GC-FID/MS, and 99 species were identified. The averaged total VOC mixing ratios of each sampling site were in the range from 35.03 to 180.57 ppbv. Based on these observational data, the distribution characteristics of VOCs in different months and different regions of Chengdu were clarified. The VOCs data were used to estimate the potential amount of ozone, secondary aerosol formation and health risk assessment in Chengdu. Furthermore, the positive matrix factorization (PMF) model was used to identify the dominant emission sources and evaluate their contribution to VOCs in the city. The two main sources of VOCs in Chengdu were motor vehicle exhaust and solvent utilization. These accounted for 43% of all emission sources. In the summertime, due to higher temperatures and stronger sunlight, the contribution of natural sources and secondary emissions were also relatively high, which were supported by the regional emission inventories. Finally, the controlling direction of VOCs and O3 pollution in Chengdu was discussed, and the VOCs pollution control strategy was proposed for the near future.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Cidades , Monitoramento Ambiental , Ozônio/análise , Compostos Orgânicos Voláteis/análise
3.
Environ Sci Technol ; 53(13): 7380-7390, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31117537

RESUMO

Aerosol proteinaceous matter is comprised of a substantial fraction of bioaerosols. Its origins and interactions in the atmosphere remain poorly understood. We present observations of total proteins, combined, and free amino acids (CAAs and FAAs) in fine particulate matter (PM2.5) samples in urban Beijing before and during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. The decreases in proteins, CAAs and FAAs levels were observed after the implementation of restrictive emission controls. Significant changes were observed for the composition profiles in FAAs with the predominance of valine before the APEC and glycine during the APEC, respectively. These variations could be attributed to the influence of sources, atmospheric processes, and meteorological conditions. FAAs (especially valine and glycine) were suggested to be released by the degradation of high molecular weight proteins/polypeptides by atmospheric oxidants (i.e., ozone and free radicals) and nitrogen dioxide. Besides daytime reactions, nighttime chemistry was found to play an important role in the atmospheric formation of valine during the nights, suggesting the possible influence of NO3 radicals. Our findings provide new insights into the significant impacts of atmospheric oxidation capacity on the occurrence and transformation of aerosol proteinaceous matter which may affect its environmental, climate and health effects.


Assuntos
Poluentes Atmosféricos , Aerossóis , Ásia , Pequim , Monitoramento Ambiental , Material Particulado
4.
Environ Sci Technol ; 51(12): 6773-6781, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28505430

RESUMO

Water-soluble proteinaceous matter including proteins and free amino acids (FAAs) as well as some other chemical components was analyzed in fine particulate matter (PM2.5) samples collected over a period of one year in rural Guangzhou. Annual averaged protein and total FAAs concentrations were 0.79 ± 0.47 µg m-3 and 0.13 ± 0.05 µg m-3, accounting for 1.9 ± 0.7% and 0.3 ± 0.1% of PM2.5, respectively. Among FAAs, glycine was the most abundant species (19.9%), followed by valine (18.5%), methionine (16.1%), and phenylalanine (13.5%). Both proteins and FAAs exhibited distinct seasonal variations with higher concentrations in autumn and winter than those in spring and summer. Correlation analysis suggests that aerosol proteinaceous matter was mainly derived from intensive agricultural activities, biomass burning, and fugitive dust/soil resuspension. Significant correlations between proteins/FAAs and atmospheric oxidant (O3) indicate that proteins/FAAs may be involved in O3 related atmospheric processes. Our observation confirms that ambient FAAs could be degraded from proteins under the influence of O3, and the stoichiometric coefficients of the reactions were estimated for FAAs and glycine. This finding provides a possible pathway for the production of aerosol FAAs in the atmosphere, which will improve the current understanding on atmospheric processes of proteinaceous matter.


Assuntos
Aminoácidos/análise , Monitoramento Ambiental , Material Particulado , Proteínas/análise , Poluentes Atmosféricos , China
5.
Environ Pollut ; 312: 119966, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985435

RESUMO

Carbonaceous aerosols pose significant climatic impact, however, their sources and respective contribution to light absorption vary and remain poorly understood. In this work, filter-based PM2.5 samples were collected in winter of 2021 at three urban sites in Yibin, a fast-growing city in the south of Sichuan Basin, China. The composition characteristics of PM2.5, light absorption and source of carbonaceous aerosol were analyzed. The city-wide average concentration of PM2.5 was 87.4 ± 31.0 µg/m3 in winter. Carbonaceous aerosol was the most abundant species, accounting for 42.5% of the total PM2.5. Source apportionment results showed that vehicular emission was the main source of PM2.5 during winter, contributing 34.6% to PM2.5. The light absorption of black carbon (BC) and brown carbon (BrC) were derived from a simplified two-component model. We apportioned the light absorption of carbonaceous aerosols to BC and BrC using the Least Squares Linear Regression with optimal angstrom absorption exponent of BC (AAEBC). The average absorption of BC and BrC at 405 nm were 51.6 ± 21.5 Mm-1 and 17.7 ± 8.0 Mm-1, respectively, with mean AAEBC = 0.82 ± 0.02. The contribution of BrC to the absorption of carbonaceous reached 26.1% at 405 nm. Based on the PM2.5 source apportionment and the mass absorption cross-section (MAC) value of BrC at 405 nm, vehicle emission was found to be the dominant source of BrC in winter, contributing up to 56.4%. Therefore, vehicle emissions mitigation should be the primary and an effective way to improve atmospheric visibility in this fast-developing city.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental/métodos , Material Particulado/análise , Estações do Ano , Fuligem/análise , Emissões de Veículos/análise
6.
Environ Pollut ; 214: 449-455, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27112727

RESUMO

Neutral Polyfluoroalkyl substances (PFASs) in the atmosphere were measured during a cruise campaign over the northern South China Sea (SCS) from September to October 2013. Four groups of PFASs, i.e., fluorotelomer alcohols (FTOHs), fluorotelomer acrylates (FTAs), fluorooctane sulfonamides (FOSAs) and fluorooctane sulfonamidoethanols (FASEs), were detected in gas samples. FTOHs was the predominant PFAS group, accounting for 95.2-99.3% of total PFASs (ΣPFASs), while the other PFASs accounted for a small fraction of ΣPFASs. The concentrations of ΣPFASs ranged from 18.0 to 109.9 pg m(-3) with an average of 54.5 pg m(-3). The concentrations are comparable to those reported in other marine atmosphere. Higher concentrations of ΣPFASs were observed in the continental-influenced samples than those in other samples, pointing to the substantial contribution of anthropogenic sources. Long-range transport is suggested to be a major pathway for introducing gaseous PFASs into the atmosphere over the northern SCS. In order to further understand the fate of gaseous PFASs during transport, the atmospheric decay of neutral PFASs under the influence of reaction with OH radicals and atmospheric physical processes were estimated. Concentrations of 8:2 FTOH, 6:2 FTOH and MeFBSE from selected source region to the atmosphere over the SCS after long-range transport were predicted and compared with the observed concentrations. It suggests that the reaction with OH radicals may play an important role in the atmospheric decay of PFAS during long-range transport, especially for shorted-lived species. Moreover, the influence of atmospheric physical processes on the decay of PFAS should be further considered.


Assuntos
Acrilatos/análise , Poluentes Atmosféricos/análise , Álcoois/análise , Hidrocarbonetos Fluorados/análise , Sulfonamidas/análise , China , Monitoramento Ambiental , Oceanos e Mares
7.
Chemosphere ; 127: 195-200, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25732631

RESUMO

Nine organophosphate esters (OPEs) in airborne particles were measured during a cruise campaign over the northern South China Sea (SCS) from September to October 2013. The concentration of the total OPEs (∑OPEs) was 47.1-160.9 pg m(-3), which are lower than previous measurements in marine atmosphere environments. Higher OPE concentrations were observed in terrestrially influenced samples, suggesting that OPE concentrations were significantly influenced by air mass transport. Chlorinated OPEs were the dominant OPEs, accounting for 65.8-83.7% of the ∑OPEs. Tris-(2-chloroethyl) phosphate (TCEP) was the predominant OPE compound in the samples (45.0±12.1%), followed by tris-(1-chloro-2-propyl) phosphates (TCPPs) (28.8±8.9%). Dry particle-bound deposition fluxes ranged from 8.2 to 27.8 ng m(-2) d(-1) for the ∑OPEs. Moreover, the dry deposition input of the ∑OPEs was estimated to be 4.98 ton y(-1) in 2013 in a vast area of northern SCS. About half of the input was found to relate to air masses originating from China.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Organofosfatos/análise , Material Particulado/análise , Água do Mar/química , Atmosfera , China , Ésteres/análise , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA