Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Bioorg Med Chem ; 26(8): 1751-1758, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29534934

RESUMO

DOT1L (the disruptor of telomeric silencing 1-like), through its methyltransferase activity of H3K79, plays essential roles in transcriptional regulation, cell cycle regulation, and DNA damage response. In addition, DOT1L is believed to be involved in the development of MLL-rearranged leukemia driven by the MLL (mixed-lineage leukemia) fusion proteins, which thus to be a crucial target for leukemia therapy. Hence, discovering of novel DOT1L inhibitors has been in a great demand. In this study, we initiated the discovering process from setting up the AlphaLISA based High Throughput Screening (HTS) assay of DOT1L. Combining with radioactive inhibition assay and Surface Plasmon Resonance (SPR) binding assay, we identified compound 3 and its active analogues as novel DOT1L inhibitors with IC50 values range from 7 µM to 20 µM in vitro. Together with the analysis of structure activity relationships (SAR) and binding modes of these compounds, we provided clues to assist in the future development of more potent DOT1L inhibitors. Moreover, compounds 3 and 9 effectively inhibited the proliferation of MLL-rearranged leukemia cells MV4-11, which could induce cell cycle arrest and apoptosis. In conclusion, we developed a HTS platform based on AlphaLISA method for screening and discovery of DOT1L novel inhibitor, through which we discovered compound 3 and its analogues as potent DOT1L inhibitors with promising MLL-rearranged leukemia therapeutic application.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Ensaios de Triagem em Larga Escala , Metiltransferases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Histona-Lisina N-Metiltransferase , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Células Tumorais Cultivadas
2.
Acta Pharm Sin B ; 12(5): 2417-2428, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646546

RESUMO

Glycosite-specific antibody‒drug conjugatess (gsADCs), harnessing Asn297 N-glycan of IgG Fc as the conjugation site for drug payloads, usually require multi-step glycoengineering with two or more enzymes, which limits the substrate diversification and complicates the preparation process. Herein, we report a series of novel disaccharide-based substrates, which reprogram the IgG glycoengineering to one-step synthesis of gsADCs, catalyzed by an endo-N-acetylglucosaminidase (ENGase) of Endo-S2. IgG glycoengineering via ENGases usually has two steps: deglycosylation by wild-type (WT) ENGases and transglycosylation by mutated ENGases. But in the current method, we have found that disaccharide LacNAc oxazoline can be efficiently assembled onto IgG by WT Endo-S2 without hydrolysis of the product, which enables the one-step glycoengineering directly from native antibodies. Further studies on substrate specificity revealed that this approach has excellent tolerance on various modification of 6-Gal motif of LacNAc. Within 1 h, one-step synthesis of gsADC was achieved using the LacNAc-toxin substrates including structures free of bioorthogonal groups. These gsADCs demonstrated good homogeneity, buffer stability, in vitro and in vivo anti-tumor activity. This work presents a novel strategy using LacNAc-based substrates to reprogram the multi-step IgG glycoengineering to a one-step manner for highly efficient synthesis of gsADCs.

3.
J Immunol Methods ; 499: 113180, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34736962

RESUMO

We aimed to develop a homogeneous time-resolved fluorometric energy transfer assay for assessment of human neonatal Fc receptor binding activity with IgG-type antibodies. The assay was configured with FcRn-coupled with Eu cryptate via biotin and streptavidin interaction as donor and IgG1 labeled with d2 as acceptor. Only a single incubation step was involved and no wash step was required. The assay demonstrated good accuracy, precision, linearity and specificity. Our further investigation with a rat pharmacokinetics study revealed that the terminal t1/2 for Trastuzumab and its related three ADCs agreed with the EC50 data. The assay can be applied to various IgGs with modifications to identify antibodies with appropriate binding ability to human FcRn.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoglobulina G/imunologia , Receptores Fc/imunologia , Animais , Sítios de Ligação , Antígenos de Histocompatibilidade Classe I/sangue , Humanos , Imunoglobulina G/sangue , Ratos , Ratos Sprague-Dawley , Receptores Fc/sangue , Fatores de Tempo , Trastuzumab/química
4.
J Med Chem ; 60(5): 2026-2036, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28165739

RESUMO

The disruptor of telomeric silencing 1-like (DOT1L) protein is a histone H3K79 methyltransferase that plays a key role in transcriptional elongation and cell cycle regulation and is required for the development and maintenance of MLL-rearranged mixed lineage leukemia. Much effort has been dedicated toward discovering novel scaffold DOT1L inhibitors using different strategies. Here, we report the development and application of a target-specific scoring function, the SAM score, for (S)-adenosyl-l-methionine (SAM)-dependent methyltransferases, for the discovery of novel DOT1L inhibitors. On the basis of the SAM score, we successfully identified a novel class of DOT1L inhibitors with a scaffold of [1,2,4]-triazolo-[3,4-b][1,3,4]-thiadiazole, in which compound 6 exhibits an IC50 value of 8.3 µM with selectivity versus other tested SAM-dependent methyltransferases. In cellular studies, 6 selectively targets DOT1L, blocks the proliferation of mixed lineage leukemia cell lines, and causes cell cycle arrest and apoptosis. Moreover, we analyzed the putative binding modes of 6 and its analogues obtained by molecular docking, which may assist with the future development of DOT1L inhibitors with improved potency and selectivity profiles.


Assuntos
Inibidores Enzimáticos/farmacologia , Inativação Gênica , Metiltransferases/metabolismo , Telômero , Histona-Lisina N-Metiltransferase , Metiltransferases/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA