Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Sci Technol ; 54(13): 7891-7900, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32490674

RESUMO

Very high spatially resolved satellite-derived ground-level concentrations of particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) have multiple potential applications, especially in air quality modeling and epidemiological and climatological research. Satellite-derived aerosol optical depth (AOD) and columnar water vapor (CWV), meteorological parameters, and land use data were used as variables within the framework of a linear mixed effect model (LME) and a random forest (RF) model to predict daily ground-level concentrations of PM2.5 at 1 km × 1 km grid resolution across the Indo-Gangetic Plain (IGP) in South Asia. The RF model exhibited superior performance and higher accuracy compared with the LME model, with better cross-validated explained variance (R2 = 0.87) and lower relative prediction error (RPE = 24.5%). The RF model revealed improved performance metrics for increasing averaging periods, from daily to weekly, monthly, seasonal, and annual means, which supported its use in estimating PM2.5 exposure metrics across the IGP at varying temporal scales (i.e., both short and long terms). The RF-based PM2.5 estimates showed high PM2.5 levels over the middle and lower IGP, with the annual mean exceeding 110 µg/m3. As for seasons, winter was the most polluted season, while monsoon was the cleanest. Spatially, the middle and lower IGP showed poorer air quality compared to the upper IGP. In winter, the middle and lower IGP experienced very poor air quality, with mean PM2.5 concentrations of >170 µg/m3.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Ásia , Monitoramento Ambiental , Meteorologia , Material Particulado/análise
2.
Curr Opin Pediatr ; 28(2): 228-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26859287

RESUMO

PURPOSE OF REVIEW: Particulate matter air pollution is a ubiquitous exposure linked with multiple adverse health outcomes for children and across the life course. The recent development of satellite-based remote-sensing models for air pollution enables the quantification of these risks and addresses many limitations of previous air pollution research strategies. We review the recent literature on the applications of satellite remote sensing in air quality research, with a focus on their use in epidemiological studies. RECENT FINDINGS: Aerosol optical depth (AOD) is a focus of this review and a significant number of studies show that ground-level particulate matter can be estimated from columnar AOD. Satellite measurements have been found to be an important source of data for particulate matter model-based exposure estimates, and recently have been used in health studies to increase the spatial breadth and temporal resolution of these estimates. SUMMARY: It is suggested that satellite-based models improve our understanding of the spatial characteristics of air quality. Although the adoption of satellite-based measures of air quality in health studies is in its infancy, it is rapidly growing. Nevertheless, further investigation is still needed in order to have a better understanding of the AOD contribution to these prediction models in order to use them with higher accuracy in epidemiological studies.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Tecnologia de Sensoriamento Remoto/métodos , Astronave , Poluição do Ar/análise , Criança , Monitoramento Ambiental/instrumentação , Estudos Epidemiológicos , Humanos , Tecnologia de Sensoriamento Remoto/instrumentação
3.
Atmos Environ (1994) ; 122: 409-416, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28966551

RESUMO

Estimates of exposure to PM2.5 are often derived from geographic characteristics based on land-use regression or from a limited number of fixed ground monitors. Remote sensing advances have integrated these approaches with satellite-based measures of aerosol optical depth (AOD), which is spatially and temporally resolved, allowing greater coverage for PM2.5 estimations. Israel is situated in a complex geo-climatic region with contrasting geographic and weather patterns, including both dark and bright surfaces within a relatively small area. Our goal was to examine the use of MODIS-based MAIAC data in Israel, and to explore the reliability of predicted PM2.5 and PM10 at a high spatiotemporal resolution. We applied a three stage process, including a daily calibration method based on a mixed effects model, to predict ground PM2.5 and PM10 over Israel. We later constructed daily predictions across Israel for 2003-2013 using spatial and temporal smoothing, to estimate AOD when satellite data were missing. Good model performance was achieved, with out-of-sample cross validation R2 values of 0.79 and 0.72 for PM10 and PM2.5, respectively. Model predictions had little bias, with cross-validated slopes (predicted vs. observed) of 0.99 for both the PM2.5 and PM10 models. To our knowledge, this is the first study that utilizes high resolution 1km MAIAC AOD retrievals for PM prediction while accounting for geo-climate complexities, such as experienced in Israel. This novel model allowed the reconstruction of long- and short-term spatially resolved exposure to PM2.5 and PM10 in Israel, which could be used in the future for epidemiological studies.

4.
Environ Pollut ; 342: 122914, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000726

RESUMO

Urban air pollution is a critical public health challenge in low-and-middle-income countries (LMICs). At the same time, LMICs tend to be data-poor, lacking adequate infrastructure to monitor air quality (AQ). As LMICs undergo rapid urbanization, the socio-economic burden of poor AQ will be immense. Here we present a globally scalable two-step deep learning (DL) based approach for AQ estimation in LMIC cities that mitigates the need for extensive AQ infrastructure on the ground. We train a DL model that can map satellite imagery to AQ in high-income countries (HICs) with sufficient ground data, and then adapt the model to learn meaningful AQ estimates in LMIC cities using transfer learning. The trained model can explain up to 54% of the variation in the AQ distribution of the target LMIC city without the need for target labels. The approach is demonstrated for Accra in Ghana, Africa, with AQ patterns learned and adapted from two HIC cities, specifically Los Angeles and New York.


Assuntos
Poluição do Ar , Imagens de Satélites , Humanos , Cidades , Aprendizado de Máquina , Gana
5.
Methods Mol Biol ; 2585: 171-191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36331774

RESUMO

West Nile virus (WNV) is the most widespread arbovirus in the world and endemic to much of the United States. Its range continues to expand as land use patterns change, creating more habitable environments for the mosquito vector. Though WNV is endemic, the year-to-year risk is highly variable, thus making it difficult to understand the risk for human spillover events. Abatement districts monitor for infected mosquitoes to help understand these potential risks and to help guide our understanding of the risk posed by these observed infected mosquitoes. Creating optimal monitoring networks will provide more informed decision-making tools for abatement districts and policy makers. Investment in these monitoring networks that capture robust observations on mosquito infection rates will allow for environmentally informed inference systems to help guide decision-making and WNV risk. In turn, enhanced decision-making tools allow for faster response times of more targeted and economical surveillance and mosquito population reduction efforts and the overall reduction of WNV transmission. Here we discuss the data streams, their processing, and specifically three ways to calculate WNV infection rates in mosquitoes.


Assuntos
Arbovírus , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Estados Unidos , Vírus do Nilo Ocidental/fisiologia , Mosquitos Vetores
6.
Geohealth ; 7(12): e2023GH000855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077289

RESUMO

West Nile virus (WNV) is the most significant arbovirus in the United States in terms of both morbidity and mortality. West Nile exists in a complex transmission cycle between avian hosts and the arthropod vector, Culex spp. mosquitoes. Human spillover events occur when humans are bitten by an infected mosquito and predicting these rates of infection and therefore the risk to humans may be associated with fluctuations in environmental conditions. In this study, we evaluate the hydrological and meteorological drivers associated with mosquito biology and viral development to determine if these associations can be used to forecast seasonal mosquito infection rates with WNV in the Coachella Valley of California. We developed and tested a spatially resolved ensemble forecast model of the WNV mosquito infection rate in the Coachella Valley using 17 years of mosquito surveillance data and North American Land Data Assimilation System-2 environmental data. Our multi-model inference system indicated that the combination of a cooler and dryer winter, followed by a wetter and warmer spring, and a cooler than normal summer was most predictive of the prevalence of West Nile positive mosquitoes in the Coachella Valley. The ability to make accurate early season predictions of West Nile risk has the potential to allow local abatement districts and public health entities to implement early season interventions such as targeted adulticiding and public health messaging before human transmission occurs. Such early and targeted interventions could better mitigate the risk of WNV to humans.

7.
Environ Pollut ; 309: 119776, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841987

RESUMO

This study examines vertically resolved aerosol optical properties retrieved from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO satellite over several cities across South Asia from March 2010 to February 2021. Atmospheric layer-specific stratification of aerosols and dominant aerosol sub-types was recognized over each city with their seasonal trends. A contrasting pattern in aerosol vertical distribution over cities across Indo-Gangetic Plain (IGP) was noted compared to non-IGP cities, with considerable dependency on geographic location of the city itself. In all the cases, total extinction decreased with increasing altitude however, with varying degree of slope. A clear intrusion of transported aerosols at higher altitude (>3 km) was also evident. Extinction coefficient of type-separated aerosols indicate robust contribution of smoke aerosols, urban aerosols/polluted dust, and mineral dust below 3 km height. At higher altitude (>3 km), dust and urban aerosols dominate over majority of the stations. Overall, 51% of total columnar aerosols remained within 0-1 km height over South Asian cities, slightly high over the IGP (57%) against non-IGP cities (39%). Such distribution also has a seasonal pattern with higher fraction of aerosols remaining below 1 km during post-monsoon (October-November, 62%) and winter (December-February, 72%) compared to summer months (March-May, 39%). When partitioned against planetary boundary layer (PBL), 41% (59%) of aerosols remained within the PBL (free troposphere) that too exhibiting strong diurnal variations irrespective of seasons. Dominating aerosol types and their contribution to total aerosol loading was explored by comparing type-based aerosol extinction against total aerosol extinction. Dust, smoke and urban aerosols emerged as three predominating aerosol types, while presence of marine aerosol was noted over the coastal cities. Major fraction of smoke and urban aerosols remained within 2 km height from surface. In contrast, efficient transport of dust aerosol above 2 km height was evident particularly over IGP during summer.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Cidades , Poeira/análise , Monitoramento Ambiental , Estações do Ano , Fumaça
8.
Atmosphere (Basel) ; 13(5): 696, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37724306

RESUMO

High-spatial-resolution air quality (AQ) mapping is important for identifying pollution sources to facilitate local action. Some of the most populated cities in the world are not equipped with the infrastructure required to monitor AQ levels on the ground and must rely on other sources, like satellite derived estimates, to monitor AQ. Current satellite-data-based models provide AQ mapping on a kilometer scale at best. In this study we focus on producing hundred-meter-scale AQ maps for urban environments in developed cities. We examined the feasibility of an image-based object-detection analysis approach using very high-spatial-resolution (2.5 m) commercial satellite imagery. We fed the satellite imagery to a deep neural network (DNN) to learn the association between visual urban features and air pollutants. The developed model, which solely uses satellite imagery, was tested and evaluated using both ground monitoring observations and land-use regression modeled PM2.5 and NO2 concentrations over London, Vancouver (BC), Los Angeles, and New York City. The results demonstrate a low error with a total RMSE < 2 µg/m3 and highlight the contribution of specific urban features, such as green areas and roads, to continuous hundred-meter-scale AQ estimation. This approach offers promise for scaling to global applications in developed and developing urban environments. Further analysis on domain transferability will enable application of a parsimonious model based merely on satellite images to create hundred-meter-scale AQ maps in developing cities, where current and historical ground data is limited.

9.
Remote Sens (Basel) ; 14(14): 3429, 2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37719470

RESUMO

High spatial resolution information on urban air pollution levels is unavailable in many areas globally, partially due to high input data needs of existing estimation approaches. Here we introduce a computer vision method to estimate annual means for air pollution levels from street level images. We used annual mean estimates of NO2 and PM2.5 concentrations from locally calibrated models as labels from London, New York, and Vancouver to allow for compilation of a sufficiently large dataset (~250k images for each city). Our experimental setup is designed to quantify intra and intercity transferability of image-based model estimates. Performances were high and comparable to traditional land-use regression (LUR) and dispersion models when training and testing on images from the same city (R2 values between 0.51 and 0.95 when validated on data from ground monitoring stations). Like LUR models, transferability of models between cities in different geographies is more difficult. Specifically, transferability between the three cities i.e., London, New York, and Vancouver, which have similar pollution source profiles were moderately successful (R2 values between zero and 0.67). Comparatively, performances when transferring models trained on these cities with very different source profiles i.e., Accra in Ghana and Hong Kong were lower (R2 between zero and 0.21) suggesting the need for local calibration with local calibration using additional measurement data from cities that share similar source profiles.

10.
Environ Int ; 144: 106057, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32889481

RESUMO

Short-term air pollution episodes motivate improved understanding of the association between air pollution and acute morbidity and mortality episodes, and triggers required mitigation plans. A variety of methods have been employed to estimate exposure to air pollution episodes, including GIS-based dispersion models, interpolation between sparse monitoring sites, land-use regression models, optimization models, line- or area-dispersion plume models, and models using information from imaging satellites, often including land-use and meteorological variables. There has been increasing use of satellite-borne aerosol products for assessing short-term air quality events. They provide better spatial coverage, but currently at the price of low temporal coverage and rather crude spatial resolution. This is a brief review on using satellite data for modeling short-term air quality and pollution events. The review can be pursued as a practical guide for modeling air quality with satellite-based products, as it includes important questions that should be considered in both the study design as well as the model development stages. Progress in this field is detailed and includes published models and their use in environmental and health studies. Both current and future satellite-borne capabilities are covered. It also provides links to access and download relevant datasets and some example R code for data processing and modeling.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Material Particulado/análise
11.
Atmos Meas Tech ; 13(9): 4669-4681, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193906

RESUMO

The atmospheric products of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm include column water vapor (CWV) at a 1 km resolution, derived from daily overpasses of NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the Aqua and Terra satellites. We have recently shown that machine learning using extreme gradient boosting (XGBoost) can improve the estimation of MAIAC aerosol optical depth (AOD). Although MAIAC CWV is generally well validated (Pearson's R >0.97 versus CWV from AERONET sun photometers), it has not yet been assessed whether machine-learning approaches can further improve CWV. Using a novel spatiotemporal cross-validation approach to avoid overfitting, our XGBoost model, with nine features derived from land use terms, date, and ancillary variables from the MAIAC retrieval, quantifies and can correct a substantial portion of measurement error relative to collocated measurements at AERONET sites (26.9% and 16.5% decrease in root mean square error (RMSE) for Terra and Aqua datasets, respectively) in the Northeastern USA, 2000-2015. We use machine-learning interpretation tools to illustrate complex patterns of measurement error and describe a positive bias in MAIAC Terra CWV worsening in recent summertime conditions. We validate our predictive model on MAIAC CWV estimates at independent stations from the SuomiNet GPS network where our corrections decrease the RMSE by 19.7% and 9.5% for Terra and Aqua MAIAC CWV. Empirically correcting for measurement error with machine-learning algorithms is a postprocessing opportunity to improve satellite-derived CWV data for Earth science and remote sensing applications.

12.
Environ Pollut ; 257: 113377, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31672363

RESUMO

Attenuated backscatter profiles retrieved by the space borne active lidar CALIOP on-board CALIPSO satellite were used to measure the vertical distribution of smoke aerosols and to compare it against the ECMWF planetary boundary layer height (PBLH) over the smoke dominated region of Indo-Gangetic Plain (IGP), South Asia. Initially, the relative abundance of smoke aerosols was investigated considering multiple satellite retrieved aerosol optical properties. Only the upper IGP was selectively considered for CALIPSO retrieval based on prevalence of smoke aerosols. Smoke extinction was found to contribute 2-50% of the total aerosol extinction, with strong seasonal and altitudinal attributes. During winter (DJF), smoke aerosols contribute almost 50% of total aerosol extinction only near to the surface while in post-monsoon (ON) and monsoon (JJAS), relative contribution of smoke aerosols to total extinction was highest at about 8 km height. There was strong diurnal variation in smoke extinction, evident throughout the year, with frequent abundance of smoke particles at lower height (<4 km) during daytime compared to higher height during night (>4 km). Smoke injection height also varied considerably during rice (ON: 0.71 ±â€¯0.65 km) and wheat (AM: 2.34 ±â€¯1.34 km) residue burning period having a significant positive correlation with prevailing PBLH. Partitioning smoke AOD against PBLH into the free troposphere (FT) and boundary layer (BL) yield interesting results. BL contribute 36% (16%) of smoke AOD during daytime (nighttime) and the BL-FT distinction increased particularly at night. There was evidence that despite travelling efficiently to FT, major proportion of smoke AOD (50-80%) continue to remain close to the surface (<3 km) thereby, may have greater implications on regional climate, air quality, smoke transport and AOD-particulate modelling.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Fumaça/análise , Ásia , Clima , Carvão Mineral , Poeira/análise , Estações do Ano
13.
J Air Waste Manag Assoc ; 67(1): 27-38, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27589199

RESUMO

Airborne particulate matter (PM) is derived from diverse sources-natural and anthropogenic. Climate change processes and remote sensing measurements are affected by the PM properties, which are often lumped into homogeneous size fractions that show spatiotemporal variation. Since different sources are attributed to different geographic locations and show specific spatial and temporal PM patterns, we explored the spatiotemporal characteristics of the PM2.5/PM10 ratio in different areas. Furthermore, we examined the statistical relationships between AERONET aerosol optical depth (AOD) products, satellite-based AOD, and the PM ratio, as well as the specific PM size fractions. PM data from the northeastern United States, from San Joaquin Valley, CA, and from Italy, Israel, and France were analyzed, as well as the spatial and temporal co-measured AOD products obtained from the MultiAngle Implementation of Atmospheric Correction (MAIAC) algorithm. Our results suggest that when both the AERONET AOD and the AERONET fine-mode AOD are available, the AERONET AOD ratio can be a fair proxy for the ground PM ratio. Therefore, we recommend incorporating the fine-mode AERONET AOD in the calibration of MAIAC. Along with a relatively large variation in the observed PM ratio (especially in the northeastern United States), this shows the need to revisit MAIAC assumptions on aerosol microphysical properties, and perhaps their seasonal variability, which are used to generate the look-up tables and conduct aerosol retrievals. Our results call for further scrutiny of satellite-borne AOD, in particular its errors, limitations, and relation to the vertical aerosol profile and the particle size, shape, and composition distribution. This work is one step of the required analyses to gain better understanding of what the satellite-based AOD represents. IMPLICATIONS: The analysis results recommend incorporating the fine-mode AERONET AOD in MAIAC calibration. Specifically, they indicate the need to revisit MAIAC regional aerosol microphysical model assumptions used to generate look-up tables (LUTs) and conduct retrievals. Furthermore, relatively large variations in measured PM ratio shows that adding seasonality in aerosol microphysics used in LUTs, which is currently static, could also help improve accuracy of MAIAC retrievals. These results call for further scrutiny of satellite-borne AOD for better understanding of its limitations and relation to the vertical aerosol profile and particle size, shape, and composition.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Monitoramento Ambiental/métodos , Material Particulado/química , Poluição do Ar , Calibragem , California , França , Israel , Itália , Tamanho da Partícula
14.
Environ Int ; 99: 234-244, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28017360

RESUMO

Health effects of air pollution, especially particulate matter (PM), have been widely investigated. However, most of the studies rely on few monitors located in urban areas for short-term assessments, or land use/dispersion modelling for long-term evaluations, again mostly in cities. Recently, the availability of finely resolved satellite data provides an opportunity to estimate daily concentrations of air pollutants over wide spatio-temporal domains. Italy lacks a robust and validated high resolution spatio-temporally resolved model of particulate matter. The complex topography and the air mixture from both natural and anthropogenic sources are great challenges difficult to be addressed. We combined finely resolved data on Aerosol Optical Depth (AOD) from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, ground-level PM10 measurements, land-use variables and meteorological parameters into a four-stage mixed model framework to derive estimates of daily PM10 concentrations at 1-km2 grid over Italy, for the years 2006-2012. We checked performance of our models by applying 10-fold cross-validation (CV) for each year. Our models displayed good fitting, with mean CV-R2=0.65 and little bias (average slope of predicted VS observed PM10=0.99). Out-of-sample predictions were more accurate in Northern Italy (Po valley) and large conurbations (e.g. Rome), for background monitoring stations, and in the winter season. Resulting concentration maps showed highest average PM10 levels in specific areas (Po river valley, main industrial and metropolitan areas) with decreasing trends over time. Our daily predictions of PM10 concentrations across the whole Italy will allow, for the first time, estimation of long-term and short-term effects of air pollution nationwide, even in areas lacking monitoring data.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental , Monitoramento Ambiental/métodos , Material Particulado/análise , Humanos , Itália , Conceitos Meteorológicos , População Rural , Estações do Ano , Astronave , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA