Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38470976

RESUMO

BACKGROUND: Estimating the risk of revision after arthroplasty could inform patient and surgeon decision-making. However, there is a lack of well-performing prediction models assisting in this task, which may be due to current conventional modeling approaches such as traditional survivorship estimators (such as Kaplan-Meier) or competing risk estimators. Recent advances in machine learning survival analysis might improve decision support tools in this setting. Therefore, this study aimed to assess the performance of machine learning compared with that of conventional modeling to predict revision after arthroplasty. QUESTION/PURPOSE: Does machine learning perform better than traditional regression models for estimating the risk of revision for patients undergoing hip or knee arthroplasty? METHODS: Eleven datasets from published studies from the Dutch Arthroplasty Register reporting on factors associated with revision or survival after partial or total knee and hip arthroplasty between 2018 and 2022 were included in our study. The 11 datasets were observational registry studies, with a sample size ranging from 3038 to 218,214 procedures. We developed a set of time-to-event models for each dataset, leading to 11 comparisons. A set of predictors (factors associated with revision surgery) was identified based on the variables that were selected in the included studies. We assessed the predictive performance of two state-of-the-art statistical time-to-event models for 1-, 2-, and 3-year follow-up: a Fine and Gray model (which models the cumulative incidence of revision) and a cause-specific Cox model (which models the hazard of revision). These were compared with a machine-learning approach (a random survival forest model, which is a decision tree-based machine-learning algorithm for time-to-event analysis). Performance was assessed according to discriminative ability (time-dependent area under the receiver operating curve), calibration (slope and intercept), and overall prediction error (scaled Brier score). Discrimination, known as the area under the receiver operating characteristic curve, measures the model's ability to distinguish patients who achieved the outcomes from those who did not and ranges from 0.5 to 1.0, with 1.0 indicating the highest discrimination score and 0.50 the lowest. Calibration plots the predicted versus the observed probabilities; a perfect plot has an intercept of 0 and a slope of 1. The Brier score calculates a composite of discrimination and calibration, with 0 indicating perfect prediction and 1 the poorest. A scaled version of the Brier score, 1 - (model Brier score/null model Brier score), can be interpreted as the amount of overall prediction error. RESULTS: Using machine learning survivorship analysis, we found no differences between the competing risks estimator and traditional regression models for patients undergoing arthroplasty in terms of discriminative ability (patients who received a revision compared with those who did not). We found no consistent differences between the validated performance (time-dependent area under the receiver operating characteristic curve) of different modeling approaches because these values ranged between -0.04 and 0.03 across the 11 datasets (the time-dependent area under the receiver operating characteristic curve of the models across 11 datasets ranged between 0.52 to 0.68). In addition, the calibration metrics and scaled Brier scores produced comparable estimates, showing no advantage of machine learning over traditional regression models. CONCLUSION: Machine learning did not outperform traditional regression models. CLINICAL RELEVANCE: Neither machine learning modeling nor traditional regression methods were sufficiently accurate in order to offer prognostic information when predicting revision arthroplasty. The benefit of these modeling approaches may be limited in this context.

2.
Gen Hosp Psychiatry ; 78: 42-49, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35853417

RESUMO

OBJECTIVE: Anxiety, depression and greater pain intensity before total knee arthroplasty (TKA) may increase the probability of revision surgery for remaining symptoms even without clear pathology or technical issues. We aimed to assess whether preoperative anxiety/depression and pain intensity are associated with revision TKA for less clear indications. METHODS: Less clear indications for revision were defined after a Delphi process in which consensus was reached among 59 orthopaedic knee experts. We performed a cox regression analyses on primary TKA patients registered in the Dutch Arthroplasty Registry (LROI) who completed the EuroQol 5D 3 L (EQ5D-3 L) anxiety/depression score to examine associations between preoperative anxiety/depression and pain (Numeric Rating Scale (NRS)) with TKA revision for less clear reasons. These analyses were adjusted for age, BMI, sex, smoking, ASA score, EQ5D-3 L thermometer and OKS score. RESULTS: In total, 25.9% patients of the 56,233 included patients reported moderate or severe symptoms of anxiety/depression on the EQ5D-3 L anxiety/depression score. Of those, 615 revisions (45.5%) were performed for less clear reasons for revision (patellar pain, malalignment, instability, progression of osteoarthritis or arthrofibrosis). Not EQ5D-3 L anxiety/depression score, but higher NRS pain at rest and EQ5D-3 L pain score were associated with revision for less clear reason (HR: 1.058, 95% CI 1.019-1.099 & HR: 1.241, 95% CI 1.044-1.476, respectively). CONCLUSION: Our findings suggest that pain intensity is a risk factor for TKA revision for a less clear reason. The finding that preoperative pain intensity was associated with reason for revision confirms a likely influence of subjective, personal factors on offer and acceptance of TKA revision. The association between anxiety/depression and reason for revision after TKA may also be found when including more specific outcome measures to assess anxiety/depression and we therefore hope to encourage further research on this topic with our study, ideally in a prospective setting. STUDY DESIGN: Longitudinal Cohort Study Level III, Delphi Consensus.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Ansiedade/epidemiologia , Depressão/epidemiologia , Humanos , Estudos Longitudinais , Osteoartrite do Joelho/cirurgia , Dor/epidemiologia , Medição da Dor , Estudos Prospectivos , Resultado do Tratamento
3.
J Tissue Eng Regen Med ; 11(10): 2950-2959, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27401932

RESUMO

Both the complexity of clinically applied tissue engineering techniques for articular cartilage repair - such as autologous chondrocyte implantation (ACI) - plus increasing healthcare costs, and market competition, are forcing a shift in focus from two-stage to single-stage interventions that are more cost-effective. Early health economic models are expected to provide essential insight in the parameters driving the cost-effectiveness of new interventions before they are introduced into clinical practice. The present study estimated the likely incremental cost-effectiveness ratio (ICER) of a new investigator-driven single-stage procedure (IMPACT) compared with both microfracture and ACI, and identified those parameters that affect the cost-effectiveness. A decision tree with clinical health states was constructed. The ICER was calculated by dividing the incremental societal costs by the incremental Quality Adjusted Life Years (QALYs). Costs were determined from a societal perspective. A headroom analysis was performed to determine the maximum price of IMPACT compared with both ACI and microfracture, assuming a societal willingness to pay (WTP) of €30 000/QALY. One-way sensitivity analysis was performed to identify those parameters that drive the cost-effectiveness. The societal costs of IMPACT, ACI and microfracture were found to be €11 797, €29 741 and €6081, respectively. An 8% increase in all utilities after IMPACT changes the ICER of IMPACT vs. microfracture from €147 513/QALY to €28 588/QALY. Compared with ACI, IMPACT is less costly, which is largely attributable to the cell expansion procedure that has been rendered redundant. While microfracture can be considered the most cost-effective treatment option for smaller defects, a single-stage tissue engineering procedure can replace ACI to improve the cost-effectiveness for treating larger defects, especially if clinical non-inferiority can be achieved. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cartilagem Articular/patologia , Custos de Cuidados de Saúde , Modelos Econômicos , Medicina Regenerativa/economia , Medicina Regenerativa/métodos , Cicatrização , Condrócitos/citologia , Análise Custo-Benefício , Humanos , Probabilidade , Anos de Vida Ajustados por Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA