RESUMO
Zika virus (ZIKV) is a mosquito-transmitted virus that has emerged as a major public health concern due to its association with neurological disorders in humans, including microcephaly in fetuses. ZIKV infection has been shown to alter the miRNA profile in host cells, and these changes can contain elements that are proviral, while others can be antiviral in action. In this study, the expression of 22 miRNAs in human A549 cells infected with two different ZIKV isolates was investigated. All of the investigated miRNAs showed significant changes in expression at at least one time point examined. Markedly, 18 of the miRNAs examined showed statistically significant differences in expression between the two strains examined. Four miRNAs (miR-21, miR-34a, miR-128 and miR-155) were subsequently selected for further investigation. These four miRNAs were shown to modulate antiviral effects against ZIKV, as downregulation of their expression through anti-miRNA oligonucleotides resulted in increased virus production, whereas their overexpression through miRNA mimics reduced virus production. However, statistically significant changes were again seen when comparing the two strains investigated. Lastly, candidate targets of the miRNAs miR-34a and miR-128 were examined at the level of the mRNA and protein. HSP70 was identified as a target of miR-34a, but, again, the effects were strain type-specific. The two ZIKV strains used in this study differ by only nine amino acids, and the results highlight that consideration must be given to strain type variation when examining the roles of miRNAs in ZIKV, and probably other virus infections.
Assuntos
MicroRNAs , Infecção por Zika virus , Zika virus , Animais , Humanos , Zika virus/fisiologia , MicroRNAs/metabolismo , Regulação para Baixo , Antivirais/farmacologia , Replicação ViralRESUMO
Kaempferol, a plant-derived flavonoid, has been reported to have activity against Japanese encephalitis virus (JEV) in BHK-21 cells. To determine the broader utility of this compound, we initially evaluated the activity of kaempferol against JEV and dengue virus (DENV) in HEK293T/17 cells. Results showed no significant antiviral activity against either virus. We subsequently investigated the activity of kaempferol against both JEV and DENV in BHK-21 cells. Results showed a significant inhibition of JEV infection but, surprisingly, a significant enhancement of DENV infection. The effect of kaempferol on both host protein expression and transcription was investigated and both transcriptional and translational inhibitory effects were observed, although a more marked effect was observed on host cell protein expression. Markedly, while GRP78 was increased in DENV infected cells treated with kaempferol, it was not increased in JEV infected cells treated with kaempferol. These results show that cellular alteration induced by one compound can have opposite effects on viruses from the same family, suggesting the presence of distinct replication strategies for these two viruses.
Assuntos
Vírus da Dengue/efeitos dos fármacos , Vírus da Encefalite Japonesa (Espécie)/efeitos dos fármacos , Quempferóis/farmacologia , Animais , Linhagem Celular , Cricetinae , Dengue/tratamento farmacológico , Dengue/genética , Encefalite Japonesa/tratamento farmacológico , Encefalite Japonesa/genética , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Proteínas de Choque Térmico/genética , Humanos , Biossíntese de Proteínas/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Replicação Viral/efeitos dos fármacosRESUMO
During erythropoiesis, iron levels need to be carefully regulated to ensure there is sufficient iron available for hemoglobin synthesis, but that there is no excess to cause damage to the developing erythroblast. Iron influx to the developing erythroblast is controlled by the expression of the transferrin receptor, while iron efflux is regulated by ferroportin (FPN), the sole iron-exporting protein. FPN is encoded through multiple messenger RNAs (mRNAs) some of which contain an iron-responsive element (variant I mRNAs) and some of which do not (variant II mRNAs). This study sought to investigate the expression of the FPN mRNAs in developing erythroblasts from normal controls and ß(0)-thalassemia/Hb E patients. While levels of FPN protein were relatively constant, marked reductions of the variant I message were seen in erythroblasts from ß(0)-thalassemia/Hb E patients as compared to normal control cells, particularly in late erythropoiesis. Variant II mRNAs were generally increased during erythroid differentiation. No difference was seen in levels of either transferrin or ferritin heavy chain expression. While no difference was observed in labile iron pools under normal culture conditions, erythroblasts from ß(0)-thalassemia/Hb E patients showed a significantly reduced expression of total FPN message under high iron conditions as compared to normal control erythroblasts. These results are consisted with dysregulation of iron efflux from the maturing erythroblast in ß(0)-thalassemia/Hb E patients, and this dysregulation possibly contributes to ineffective erythropoiesis seen in these patients.
Assuntos
Proteínas de Transporte de Cátions/biossíntese , Hemoglobina E/metabolismo , Talassemia beta/sangue , Talassemia beta/diagnóstico , Adulto , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Células Eritroides/metabolismo , Feminino , Regulação da Expressão Gênica , Hemoglobina E/genética , Humanos , Talassemia beta/genéticaRESUMO
Infections with dengue virus (DENV) remain a worldwide public health problem. A number of bona fide cellular targets of DENV have been identified including liver cells. Despite the many lines of evidence confirming the involvement of hepatocytes during DENV infection, only a few studies have used proteomic analysis to understand the modulation of the cellular proteome occurring upon DENV infection. We utilized a 2D-gel electrophoresis analysis to identify proteins that were differentially regulated by DENV 2 infection of liver (Hep3B) cells at 12 h post infection (hpi) and at 48 hpi. The analysis identifies 4 proteins differentially expressed at 12 hpi, and 14 differentially regulated at 48 hpi. One candidate protein identified as downregulated at 48 hpi in the proteomic analysis (GAPDH) was validated in western blotting in Hep3B cells, and subsequently in induced pluripotent stem cell (iPSC) derived human hepatocytes. The reduced expression of GAPDH was coupled with an increase in NADH, and a significantly reduced NAD + /NADH ratio, strongly suggesting that glycolysis is down regulated in response to DENV 2 infection. Metformin, a well characterized drug used in the treatment of diabetes mellitus, is an inhibitor of hepatic gluconeogenesis was shown to reduce the level of DENV 2 infection and new virus production. Collectively these results show that although glycolysis is reduced, glucose is still required, possibly for use by the pentose phosphate pathway to generate nucleosides required for viral replication.
Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/fisiologia , Proteômica , NAD/metabolismo , Hepatócitos/metabolismo , Glicólise , Fígado/metabolismo , Replicação Viral , Proteoma/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismoRESUMO
Glucose regulated protein 78 (GRP78) is a chaperone protein that is a central mediator of the unfolded protein response, a key cellular stress response pathway. GRP78 has been shown to be critically required for infection and replication of a number of flaviviruses, and to interact with both non-structural (NS) and structural flavivirus proteins. However, the nature of the specific interaction between GRP78 and viral proteins remains largely unknown. This study aimed to characterize the binding domain and critical amino acid residues that mediate the interaction of GRP78 to ZIKV E and NS1 proteins. Recombinant EGFP fused GRP78 and individual subdomains (the nucleotide binding domain (NBD) and the substrate binding domain (SBD)) were used as a bait protein and co-expressed with full length or truncated ZIKV E and NS1 proteins in HEK293T/17 cells. Protein-protein interactions were determined by a co-immunoprecipitation assay. From the results, both the NBD and the SBD of GRP78 were crucial for an effective interaction. Single amino acid substitutions in the SBD showed that R492E and T518A mutants significantly reduced the binding affinity of GRP78 to ZIKV E and NS1 proteins. Notably, the interaction of GRP78 with ZIKV E was stably maintained against various single amino acid substitutions on ZIKV E domain III and with all truncated ZIKV E and NS1 proteins. Collectively, the results suggest that the principal binding between GRP78 and viral proteins is mainly a classic canonical chaperone protein-client interaction. The blocking of GRP78 chaperone function effectively inhibited ZIKV infection and replication in neuronal progenitor cells. Our findings reveal that GRP78 is a potential host target for anti-ZIKV therapeutics.
Assuntos
Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico , Ligação Proteica , Proteínas não Estruturais Virais , Zika virus , Chaperona BiP do Retículo Endoplasmático/metabolismo , Zika virus/metabolismo , Zika virus/fisiologia , Humanos , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Células HEK293 , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia , Replicação ViralRESUMO
Vitamin D has been shown to have antiviral activity in a number of different systems. However, few studies have investigated whether the antiviral activity is exerted through the vitamin D receptor (VDR). In this study, we investigated whether the antiviral activity of a vitamin D receptor agonist (EB1089) towards dengue virus (DENV) was modulated by VDR. To undertake this, VDR was successively overexpressed, knocked down and retargeted through mutation of the nuclear localization signal. In no case was an effect seen on the level of the antiviral activity induced by EB1089, strongly indicating that the antiviral activity of EB1089 is not exerted through VDR. To further explore the antiviral activity of EB1089 in a more biologically relevant system, human neural progenitor cells were differentiated from induced pluripotent stem cells, and infected with Zika virus (ZIKV). EB1089 exerted a significant antiviral effect, reducing virus titers by some 2Log10. In support of the results seen with DENV, no expression of VDR at the protein level was observed. Collectively, these results show that the vitamin D receptor agonist EB1089 exerts its antiviral activity independently of VDR.
Assuntos
Infecção por Zika virus , Zika virus , Humanos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Zika virus/metabolismo , Vitamina D/farmacologia , Antivirais/farmacologiaRESUMO
Japanese encephalitis virus (JEV) continues to circulate throughout Southeast Asia and the Western Pacific where approximately 3 billion people in 24 countries are at risk of infection. Surveillance targeting the mosquito vectors of JEV was conducted at four military installations on Okinawa, Japan, between 2016 and 2021. Out of a total of 10,426 mosquitoes from 20 different species, zero were positive for JEV. The most abundant mosquito species collected were Aedes albopictus (36.4%) followed by Culex sitiens (24.3%) and Armigeres subalbatus (19%). Statistically significant differences in mosquito species populations according to location were observed. Changes in land use over time appear to be correlated with the species and number of mosquitoes trapped in each location. JEV appears to be absent from mosquito populations on Okinawa, but further research on domestic pigs and ardeid birds is warranted.
Assuntos
Aedes , Culex , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Militares , Humanos , Animais , Suínos , Encefalite Japonesa/diagnóstico , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/veterinária , Sus scrofa , Mosquitos VetoresRESUMO
OBJECTIVE: Studies have shown that Flavivirus infection remodels the host cell to favour viral replication. In particular, the host cell lipid profile is altered, and it has been proposed that this process alters membrane fluidity to allow wrapping of the outer structural proteins around the viral nucleocapsid. We investigated whether expression of the Zika virus (ZIKV) and dengue virus (DENV) protease induced alterations in the cellular lipid profile, and subsequently whether co-expression of these proteases with VLP constructs was able to improve VLP yield. RESULTS: Our results showed that both ZIKV and DENV proteases induced alterations in the lipid profile, but that both active and inactive proteases induced many of the same changes. Neither co-transfection of protease and VLP constructs nor bicistronic vectors allowing expression of both protease and VLP separated by a cell cleavable linker improved VLP yield, and indeed many of the constructs showed significantly reduced VLP production. Further work in developing improved VLP expression platforms is required.
Assuntos
Vírus da Dengue , Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Vírus da Dengue/genética , Proteínas não Estruturais Virais/genética , Peptídeo Hidrolases , LipídeosRESUMO
A lipid bilayer produced from the host membrane makes up around 20% of the weight of the dengue virus (DENV) virion and is crucial for virus entry. Despite its significance, the virion's lipid composition is still poorly understood. In tandem with lipid profiles of the cells utilised to generate the virions, this work determined a partial lipid profile of DENV virions derived from two cell lines (C6/36 and LLC-MK2). The results showed distinctive profiles between the two cell types. In the mammalian LLC-MK2 cells, 30.8% (73/237 identified lipid species; 31 upregulated, 42 downregulated) of lipid species were altered in response to infection, whilst in insect C6/36 cells only 12.0% (25/208; 19 upregulated, 6 downregulated) of lipid species showed alterations in response to infection. For virions from LLC-MK2 cells, 14 lipids were detected specifically in virions with a further seven lipids being enriched (over mock controls). For virions from C6/36 cells, 43 lipids were detected that were not seen in mock preparations, with a further 16 being specifically enriched (over mock control). These results provide the first lipid description of DENV virions produced in mammalian and mosquito cells, as well as the lipid changes in the corresponding infected cells.
Assuntos
Culicidae , Vírus da Dengue , Animais , Vírus da Dengue/fisiologia , Vírion/metabolismo , Linhagem Celular , Bicamadas Lipídicas/metabolismo , MamíferosRESUMO
Mis-functional ßAPP processing is deemed to be the major phenomenon resulting in increased neuronal cell death, impaired neurogenesis and the loss of synapses, which eventually manifest as the complex symptoms of Alzheimer's disease. Despite of several milestones having been achieved in the field of drug development, the stigma of the disorder as an incurable disease still remains. Some ADAM proteases mediate the physiological non-amyloidogenic α-secretase processing of ßAPP that generates neuroprotective sAPPα production. Earlier studies have also pointed out the role of p53 in Alzheimer's disease neuropathology, although a direct link with metalloprotease activities remains to be established. In this study, we explored the consequences of α-secretase inhibition on p53 status in cultured human neuroblastoma SH-SY5Y cells by means of specific inhibitors of ADAM10 and ADAM17 and the metal chelator and general metalloprotease inhibitor phenanthroline. We establish that, beyond the ability of all inhibitors to affect sAPPα production to varying degrees, phenanthroline specifically and dose-dependently lessened ßAPP expression, a phenomenon that correlated with a strong increase in p53 protein levels and a concomitant decrease of the p53-degrading calpain protease. Furthermore, treatment of cells at concentrations of phenanthroline similar to those inducing increased levels of p53 induced cell cycle arrest leading to apoptosis. Altogether, our results identify new roles of phenanthroline in perturbing ßAPP, p53 and calpain biology, and suggest that the use of this compound and its derivatives as antimicrobial and anti-cancer therapies might trigger Alzheimer's disease pathogenesis.
Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fenantrolinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologiaRESUMO
Zika virus (ZIKV) is a mosquito-transmitted virus that has caused major outbreaks of disease around the world over the last few years. The infectious ZIKV consists of a structural protein outer shell surrounding a nucleocapsid. Virus-like particles (VLP) consist of the outer structural protein shell, but without the nucleocapsid, and are hence noninfectious. VLP, however, are structurally equivalent to the native virus and thus present a similar antigenic profile. These properties make them good candidates for vaccine development. ZIKV VLP can be generated on a laboratory scale by cloning the relevant structural proteins into a eukaryotic expression vector and transfecting the construct into mammalian cells. The secreted VLP can be harvested from the culture medium and purified by sucrose cushion ultracentrifugation. Validation of the VLP is achieved through western blotting and electron microscopy.
Assuntos
Técnicas de Cultura Celular por Lotes , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Vacinas de Partículas Semelhantes a Vírus/imunologia , Zika virus/imunologia , Técnicas de Cultura de Células , Clonagem Molecular , Expressão Gênica , Engenharia Genética , Vetores Genéticos/genética , Células HEK293 , Humanos , Plasmídeos/genética , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Vacinas de Partículas Semelhantes a Vírus/ultraestruturaRESUMO
Zika virus (ZIKV) is a mosquito-transmitted virus that has caused significant public health concerns around the world, partly because of an association with microcephaly in babies born to mothers who were infected with ZIKV during pregnancy. As a recently emerging virus, little is known as to how the virus interacts with the host cell machinery. A yeast-2-hybrid screen for proteins capable of interacting with the ZIKV E protein domain III, the domain responsible for receptor binding, identified 21 proteins, one of which was the predominantly ER resident chaperone protein GRP78. The interaction of GRP78 and ZIKV E was confirmed by co-immunoprecipitation and reciprocal co-immunoprecipitation, and indirect immunofluorescence staining showed intracellular and extracellular co-localization between GRP78 and ZIKV E. Antibodies directed against the N-terminus of GRP78 were able to inhibit ZIKV entry to host cells, resulting in significant reductions in the levels of ZIKV infection and viral production. Consistently, these reductions were also observed after down-regulation of GRP78 by siRNA. These results indicate that GRP78 can play a role mediating ZIKV binding, internalization and replication in cells. GRP78 is a main regulator of the unfolded protein response (UPR), and the study showed that expression of GRP78 was up-regulated, and the UPR was activated. Increases in CHOP expression, and activation of caspases 7 and 9 were also shown in response to ZIKV infection. Overall these results indicate that the interaction between GRP78 and ZIKV E protein plays an important role in ZIKV infection and replication, and may be a potential therapeutic target.
Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas Estruturais Virais/metabolismo , Zika virus/metabolismo , Células A549 , Adulto , Idoso , Animais , Células Cultivadas , Chlorocebus aethiops , Culicidae , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Células Vero , Internalização do Vírus , Zika virus/fisiologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologiaRESUMO
Zika virus (ZIKV), a mosquito transmitted virus in the family Flaviviridae, genus Flavivirus, recently emerged to cause infections in more than 70 countries and territories around the world. While human infection is normally asymptomatic, it can also result in a mild febrile disease similar to dengue fever. However, when a pregnant woman is infected, ZIKV can cause fetal abnormalities including microcephaly. Evidence has suggested that ZIKV has circulated in Southeast Asia for more than a decade and yet cases of ZIKV associated microcephaly remain sparsely documented. This review seeks to collate the information currently existing on ZIKV associated microcephaly in Southeast Asia, and assess the potential future risk posed by this virus.
Assuntos
Microcefalia/epidemiologia , Microcefalia/virologia , Infecção por Zika virus/complicações , Infecção por Zika virus/epidemiologia , Sudeste Asiático/epidemiologia , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Feminino , Saúde Global , Humanos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Transmissão Vertical de Doenças Infecciosas/estatística & dados numéricos , Gravidez , Gestantes , Zika virusRESUMO
Infections with the mosquito-transmitted dengue virus (DENV) are a pressing public health problem in many parts of the world. The recently released commercial vaccine for DENV has encountered some problems, and there is still no effective drug to treat infections. Vitamin D has a well characterized role in calcium and phosphorus homeostasis, but additionally has a role in the immune response to bacterial and viral pathogens. In this study a number of fused bicyclic derivatives of 1H-pyrrolo[1,2]imidazol-1-one with vitamin D receptor (VDR) agonist activity were evaluated for possible anti-DENV activity. The results showed that five of the compounds were able to significantly inhibit DENV infection. The most effective compound, ZD-3, had an EC50 value of 7.47 µM and a selective index of 52.75. The compounds were only effective when used as a post-infection treatment and treatment significantly reduced levels of infection, virus output, DENV protein expression and genome copy number. These results suggest that these VDR agonists have the potential for future development as effective anti-DENV agents.
Assuntos
Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Imidazóis/farmacologia , Imunossupressores/farmacologia , Receptores de Calcitriol/agonistas , Replicação Viral/efeitos dos fármacos , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Células Cultivadas , Dengue/metabolismo , Dengue/virologia , HumanosRESUMO
High dietary iron intake is a risk factor for the development of colorectal cancer. However, how iron subsequently impacts the proliferation of colorectal cancer cells remains unclear. This study determined the expression of six iron regulatory genes in twenty-one human colorectal cancer (CRC) biopsies and matched normal colonic tissue. The results show that only hepcidin and ferritin heavy chain expression were increased in CRC biopsies as compared to matched normal tissues. Four established human CRC cell lines, HT-29, HCT-116, SW-620 and SW-480 were subsequently examined for their growth in response to increasing concentrations of iron, and iron depletion. Real time cell growth assay showed a significant inhibitory effect of acute iron loading in HCT-116 cells (IC50 = 258.25 µM at 72 h), and no significant effects in other cell types. However, ten week treatment with iron significantly reduced HT-29 and SW-620 cell growth, whereas no effect was seen in HCT-116 and SW-480 cells. Intracellular labile iron depletion induced the complete growth arrest and detachment of all of the CRC cell types except for the SW-620 cell line which was not affected in its growth. Treatment of starved CRC cells with hepcidin, the major regulator of iron metabolism, induced a significant stimulation of HT-29 cell growth but did not affect the growth of the other cell types. Collectively these results show that iron is central to CRC cell growth in a manner that is not identical between acute and chronic loading, and that is specific to the CRC cell type.
Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Hepcidinas/farmacologia , Ferro da Dieta/farmacologia , Ferro/farmacologia , Linhagem Celular Tumoral , Células HCT116 , Células HT29 , HumanosRESUMO
Despite the widespread presence of the mosquito transmitted Zika virus (ZIKV) over much of Southeast Asia, the number of reported cases remains low. One possibility is that residents in Southeast Asia are immunologically protected, although the nature of any such protection remains unclear. This study sought to investigate the presence of antibodies directed to ZIKV NS1 protein in a selected sub-set of samples from a well characterized cohort of serum samples from normal, healthy Thais that had been previously characterized for the presence of neutralizing antibodies to ZIKV, DENV 1-4, and JEV. Because of similarities in molecular weight between the flavivirus E and NS1 proteins, an immunoblot system was established in which the NS1 antigen was not denatured, allowing detection of the dimer form of NS1, distinctly clear from the migration position of the E and NS1 monomer proteins. The results showed that antibodies to ZIKV NS1 protein were only detected in samples with ZIKV neutralizing antibodies (27/30 samples), and no sample (0/30) with a ZIKV plaque reduction neutralization test (PRNT)90 < 20 showed evidence of anti-ZIKV NS1 antibodies. The high correlation between the presence of ZIKV NS1 antibodies and ZIKV PRNT suggests that immunological protection against ZIKV infection in Thailand arises from prior exposure to ZIKV, and not through cross neutralization.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Proteínas não Estruturais Virais , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular , Cricetinae , Feminino , Humanos , Masculino , Tailândia , Proteínas não Estruturais Virais/sangue , Proteínas não Estruturais Virais/imunologia , Infecção por Zika virus/sangue , Infecção por Zika virus/imunologiaRESUMO
Zika virus (ZIKV) infections have been reported from all over Thailand, but the number of reported cases remains low, suggesting a degree of immune protection against ZIKV infection. To address this possibility, the presence of ZIKV neutralizing antibodies was determined in serum from 135 healthy Thai adults with a plaque reduction neutralization test (PRNT), and a number of samples were subsequently analyzed for the presence of neutralizing antibodies to dengue virus (DENV) and Japanese encephalitis virus (JEV). Results showed that 70.4% (PRNT50 ≥ 10), 55.6 (PRNT50 ≥ 20) or 22.2% (PRNT90 ≥ 20) of the samples showed neutralizing antibodies to ZIKV. Detailed analysis showed no association between the presence of neutralizing antibodies to other flaviviruses (DENV, JEV) and the presence of ZIKV neutralizing antibodies. These results suggest that the level of ZIKV neutralizing antibodies in the Thai population is enough to dampen the transmission of the virus in Thailand.
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Voluntários Saudáveis , Zika virus/imunologia , Adulto , Vírus da Dengue/imunologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Estudos Soroepidemiológicos , Tailândia , Adulto JovemRESUMO
OBJECTIVES: The inherited genetic disorder beta0-thalassemia/Hb E disease is associated with the over-suppression of the master regulator of iron homeostasis, the peptide hormone hepcidin. How developing erythroid cells mediate the suppression of hepcidin remains controversial, although a number of inhibitors have been proposed. METHODS: To investigate the ability of erythroid cells to suppress hepcidin expression in liver cells, conditioned media from the culture of in vitro differentiating erythroblasts (from normal controls and beta0-thalassemia/Hb E patients) was used to treat HepG2 cells, and the effects on hepcidin expression were assayed by real-time quantitative PCR and confocal microscopy. RESULTS: Early activation followed by later suppression of hepcidin expression was seen posttreatment. Markedly, however, no significant differences were observed between suppression of hepcidin as mediated by media from the culture of erythroblasts from normal controls and beta0-thalassemia/Hb E patients Discussion: Previous studies investigating the suppression of hepcidin expression in beta0-thalassemia/Hb E disease have used patient-derived serum samples, which are complex fluids with contributions from multiple cell types. This study has developed a simple in vitro system that allows investigation of how a single cell type mediates hepcidin expression. The results support proposals that over-suppression of hepcidin seen in beta-thalassemia/Hb E patients is a consequence of the increased mass of erythropoiesis and not defects in the signaling process per se. CONCLUSION: The in vitro cell system developed here allows further investigation into the processes mediating erythroid cell suppression of liver hepcidin expression in both normal and pathological states.
Assuntos
Eritroblastos/metabolismo , Regulação da Expressão Gênica , Hemoglobina E/genética , Hepcidinas/genética , Talassemia beta/sangue , Talassemia beta/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células Hep G2 , HumanosRESUMO
Nevirapine (NVP) is a non-nucleoside reverse transcriptase inhibitor frequently used in combination with other antiretroviral agents for highly active antiretroviral therapy (HAART) of patients infected with the human immunodeficiency virus type 1 (HIV-1). However NVP can cause serious, life-threatening complications. Hepatotoxicity is one of the most severe adverse effects, particularly in HIV patients with chronic hepatitis C virus co-infection as these patients can develop liver toxicity after a relatively short course of treatment. However, the mechanism of NVP-associated hepatotoxicity remains unclear. This study sought to investigate the effect of NVP on protein expression in liver cells using a proteomic approach. HepG2 cells were treated or not treated with NVP and proteins were subsequently resolved by two-dimensional gel electrophoresis. A total of 33 differentially regulated proteins were identified, of which nearly 40% (13/33) were mitochondrial proteins. While no obvious differences were observed between NVP treated and untreated cells after staining mitochondria with mitotracker, RT-PCR expression analysis of three mitochondrially encoded genes showed all were significantly up-regulated in NVP treated cells. Mitochondrial dysfunction was observed in response to treatment even with slightly sub-optimal therapeutic treatment concentrations of NVP. This study shows that NVP induces mitochondrial dysregulation in HepG2 cells.
Assuntos
Fármacos Anti-HIV/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nevirapina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Mitocondriais , Células Hep G2 , Humanos , Mitocôndrias/genética , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Proteoma , Proteômica/métodosRESUMO
Ribosome biogenesis is the process of synthesis of the cellular ribosomes which mediate protein translation. Integral with the ribosomes are four cytoplasmic ribosomal RNAs (rRNAs) which show extensive post-transcriptional modifications including 2'-O-methylation and pseudouridylation. Several hereditary hematologic diseases including Diamond-Blackfan anemia have been shown to be associated with defects in ribosome biogenesis. Thalassemia is the most important hematologic inherited genetic disease worldwide, and this study examined the post-transcriptional ribose methylation status of three specific active sites of the 28S rRNA molecule at positions 1858, 4197 and 4506 of ß-thalassemia trait carriers and normal controls. Samples from whole blood and cultured erythroid cells were examined. Results showed that site 4506 was hypermethylated in ß-thalassemia trait carriers in both cohorts. Expression of fibrillarin, the ribosomal RNA methyltransferase as well as snoRNAs were additionally quantified by RT-qPCR and evidence of dysregulation was seen. Hemoglobin E trait carriers also showed evidence of dysregulation. These results provide the first evidence that ribosome biogenesis is dysregulated in ß-thalassemia trait carriers.