Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 209(2): 250-261, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35768148

RESUMO

Lipid and cholinergic mediators are inflammatory regulators, but their role in the immunopathology of COVID-19 is still unclear. Here, we used human blood and tracheal aspirate (TA) to investigate whether acetylcholine (Ach), fatty acids (FAs), and their derived lipid mediators (LMs) are associated with COVID-19 severity. First, we analyzed the perturbation profile induced by SARS-CoV-2 infection in the transcriptional profile of genes related to the ACh and FA/LM pathways. Blood and TA were used for metabolomic and lipidomic analyses and for quantification of leukocytes, cytokines, and ACh. Differential expression and coexpression gene network data revealed a unique transcriptional profile associated with ACh and FA/LM production, release, and cellular signaling. Transcriptomic data were corroborated by laboratory findings: SARS-CoV-2 infection increased plasma and TA levels of arachidonic acid, 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid, 11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid, and ACh. TA samples also exhibited high levels of PGE2, thromboxane B2, 12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid, and 6-trans-leukotriene B4 Bioinformatics and experimental approaches demonstrated robust correlation between transcriptional profile in Ach and FA/LM pathways and parameters of severe COVID-19. As expected, the increased neutrophil-to-lymphocyte ratio, neutrophil counts, and cytokine levels (IL-6, IL-10, IL-1ß, and IL-8) correlated with worse clinical scores. Glucocorticoids protected severe and critical patients and correlated with reduced Ach levels in plasma and TA samples. We demonstrated that pulmonary and systemic hyperinflammation in severe COVID-19 are associated with high levels of Ach and FA/LM. Glucocorticoids favored the survival of patients with severe/critical disease, and this effect was associated with a reduction in ACh levels.


Assuntos
Acetilcolina , COVID-19 , Ácido Araquidônico , Ácidos Araquidônicos/farmacologia , Ácidos Graxos , Glucocorticoides , Humanos , SARS-CoV-2
2.
Cell Biochem Funct ; 41(8): 1252-1262, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787620

RESUMO

Insulin (INS) resistance is often found in cancer-bearing, but its correlation with cachexia development is not completely established. This study investigated the temporal sequence of the development of INS resistance and cachexia to establish the relationship between these factors in Walker-256 tumor-bearing rats (TB rats). INS hepatic sensitivity and INS resistance-inducing factors, such as free fatty acids (FFA) and tumor necrosis factor-α (TNF-α), were also evaluated. Studies were carried out on Days 2, 5, 8, and/or 12 after inoculation of tumor cells in rats. The peripheral INS sensitivity was assessed by the INS tolerance test and the INS hepatic sensitivity in in situ liver perfusion. TB rats with 5, 8, and 12 days of tumor, but not 2 days, showed decreased peripheral INS sensitivity (INS resistance), retroperitoneal fat, and body weight, compared to healthy rats, which were more pronounced on Day 12. Gastrocnemius muscle wasting was observed only on Day 12 of tumor. The peripheral INS resistance was significantly correlated (r = -.81) with weight loss. Liver INS sensitivity of TB rats with 2 and 5 days of tumor was unchanged, compared to healthy rats. TB rats with 12 days of tumor showed increased plasma FFA and increased TNF-α in retroperitoneal fat and liver, but not in the gastrocnemius, compared to healthy rats. In conclusion, peripheral INS resistance is early, starts along with fat and weight loss and before muscle wasting, progressive, and correlated with cachexia, suggesting that it may play an important role in the pathogenesis of the cachectic process in TB rats. Therefore, early correction of INS resistance may be a therapeutic approach to prevent and treat cancer cachexia.


Assuntos
Resistência à Insulina , Neoplasias , Ratos , Animais , Caquexia/etiologia , Caquexia/patologia , Insulina , Fator de Necrose Tumoral alfa , Ratos Wistar , Redução de Peso , Neoplasias/complicações
3.
Molecules ; 26(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641380

RESUMO

Endothelial dysfunction and inflammation are recognised factors in the development of atherosclerosis. Evidence suggests that intake of industrial trans fatty acids (TFAs) promotes endothelial dysfunction, while ruminant TFAs may have the opposite effect. The aim of this study was to compare the effects of elaidic acid (EA (18:1n-9t); an industrially produced TFA) and trans vaccenic acid (TVA (18:1n-7t); a natural TFA found in ruminant milk and meat) on inflammatory responses of endothelial cells (ECs). ECs (EA.hy926 cells) were cultured under standard conditions and exposed to TFAs (1 to 50 µM) for 48 h. Then, the cells were cultured for a further 6 or 24 h with tumour necrosis factor alpha (TNF-α, 1 ng/mL) as an inflammatory stimulant. ECs remained viable after treatments. TFAs were incorporated into ECs in a dose-dependent manner. Preincubation with EA (50 µM) increased production of MCP-1, RANTES, and IL-8 in response to TNF-α, while preincubation with TVA (1 µM) decreased production of ICAM-1 and RANTES in response to TNF-α. Preincubation with EA (50 µM) upregulated toll-like receptor 4 and cyclooxygenase 2 gene expression in response to TNF-α. In contrast, preincubation with TVA (1 µM) downregulated TNF-α induced nuclear factor kappa B subunit 1 gene expression. Preincubation of ECs with EA (50 µM) increased THP-1 monocyte adhesion. In contrast, preincubation of ECs with TVA (1 µM) reduced THP-1 monocyte adhesion, while preincubation of ECs with TVA (50 µM) decreased the level of surface expression of ICAM-1 seen following TNF-α stimulation. The results suggest that TVA has some anti-inflammatory properties, while EA enhances the response to an inflammatory stimulus. These findings suggest differential effects induced by the TFAs tested, fitting with the idea that industrial TFAs and ruminant TFAs can have different and perhaps opposing biological actions in an inflammatory context.


Assuntos
Anti-Inflamatórios/farmacologia , Radioisótopos de Carbono/análise , Endotélio Vascular/imunologia , Inflamação/imunologia , Ácidos Oleicos/farmacologia , Ruminantes/metabolismo , Ácidos Graxos trans/farmacologia , Animais , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Inflamm Res ; 69(1): 105-113, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31754736

RESUMO

OBJECTIVE AND DESIGN: Investigate survival outcomes, and immunological and metabolomic effects of hyaluronidase (Hz) treatment during mouse models of acute inflammation and sepsis. METHODS: Survival of C57Bl/6 mice was monitored after lethal challenge with lipopolysaccharide (LPS) or cecal and ligation puncture (CLP)-induced sepsis and treated with Hz or saline. Mice were also challenged with LPS and treated with Hz for leukocyte counting, cytokine quantification and determination of metabolomic profiles in the peritoneal fluid. RESULTS: Hz treatment improved survival outcomes after lethal challenge with LPS or CLP-induced sepsis. LPS challenge promoted acute neutrophil accumulation and production of interleukin-1ß (IL-1ß) and IL-6 in the peritoneum, whereas Hz treatment suppressed neutrophil infiltration and cytokine production. We further characterized the metabolomic alterations caused by LPS challenge, which predicted activity of metabolic pathways related to fatty acids and eicosanoids. Hz treatment had a profound effect over the metabolic response, reflected by reductions of the relative levels of fatty acids. CONCLUSION: Collectively, these data demonstrate that Hz treatment is associated with metabolic reprogramming of pathways that sustain the inflammatory response.


Assuntos
Hialuronoglucosaminidase/farmacologia , Sepse/imunologia , Sepse/metabolismo , Doença Aguda , Animais , Líquido Ascítico/citologia , Líquido Ascítico/imunologia , Líquido Ascítico/metabolismo , Modelos Animais de Doenças , Eicosanoides/metabolismo , Ácidos Graxos/metabolismo , Imunomodulação , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Contagem de Leucócitos , Lipopolissacarídeos , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Camundongos Endogâmicos C57BL
5.
Inflammopharmacology ; 26(4): 1103-1115, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29450671

RESUMO

The study aimed to evaluate the metabolic and inflammatory effects of short-term treatments (10 days) with metformin (MET) on the NAFLD caused by a high-fat diet (HFD) in C57BL/6 mice. After the treatment, histological liver slices were obtained, hepatocytes and macrophages were extracted and cultured with phosphate buffered saline, LPS (2.5 µg/mL) and MET (1 µM) for 24 h. Cytokine levels were determined by ELISA. NAFLD caused by the HFD was partially reduced by MET. The lipid accumulation induced by the HFD was not associated with liver inflammation; however, MET seemed to promote pro-inflammatory effects in liver, since it increased hepatic concentration of IL-1ß, TNF-α, IL-6, MCP-1 and IFN-γ. Similarly, MET increased the concentration of IL-1ß, IL-6 in hepatocyte cultures. However, in macrophages culture, MET lowered levels of IL-1ß, IL-6 and TNF-α stimulated by LPS. Overall, MET reduced liver NAFLD but promoted hepatocyte increase in pro-inflammatory cytokines, thus, leading to liver inflammation.


Assuntos
Citocinas/metabolismo , Inflamação/tratamento farmacológico , Metformina/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Dieta Hiperlipídica , Ensaio de Imunoadsorção Enzimática , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Inflamação/patologia , Lipídeos/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/patologia
6.
J Cell Physiol ; 232(8): 2168-2177, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27925195

RESUMO

BACKGROUND: Palmitoleic acid, since described as lipokine, increases glucose uptake by modulation of 5'AMP-activated protein kinase (AMPK), as well as increasing lipolysis by activation of peroxisome proliferator-activated receptor-α (PPARα), in adipose tissue. However, in liver, the effects of palmitoleic acid on glucose metabolism and the role of PPARα remain unknown. OBJECTIVE: To investigate whether palmitoleic acid improved the hepatic insulin sensitivity of obese mice. METHODS: C57BL6 and PPARα knockout (KO) mice were fed for 12 weeks with a standard diet (SD) or high-fat diet (HF), and in the last 2 weeks were treated with oleic or palmitoleic acid. RESULTS: Palmitoleic acid promoted a faster uptake of glucose in the body, associated with higher insulin concentration; however, even when stimulated with insulin, palmitoleic acid did not modulate the insulin pathway (AKT, IRS). Palmitoleic acid increased the phosphorylation of AMPK, upregulated glucokinase and downregulated SREBP-1. Regarding AMPK downstream, palmitoleic acid increased the production of FGF-21 and stimulated the expression of PPARα. Palmitoleic acid treatment did not increase AMPK phosphorylation, modulate glucokinase or increase FGF-21 in liver of PPARα KO mice. CONCLUSIONS: In mice fed with a high-fat diet, palmitoleic acid supplementation stimulated the uptake of glucose in liver through activation of AMPK and FGF-21, dependent on PPARα. J. Cell. Physiol. 232: 2168-2177, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Fígado Gorduroso/tratamento farmacológico , Fígado/efeitos dos fármacos , PPAR alfa/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Ativação Enzimática , Fígado Gorduroso/enzimologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Predisposição Genética para Doença , Glucoquinase/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/deficiência , PPAR alfa/genética , Fenótipo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Tempo
7.
J Cell Physiol ; 232(5): 1008-1019, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27216550

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the main liver diseases today, and may progress to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Some studies have shown the beneficial effects of aerobic exercise on reversing NAFLD. To verify whether chronic aerobic exercise improves the insulin resistance, liver inflammation, and steatohepatitis caused by a high fat diet (HF) and whether PPARα is involved in these actions. C57BL6 wild type (WT) and PPAR-α knockout (KO) mice were fed with a standard diet (SD) or HF during 12 weeks; the HF mice were trained on a treadmill during the last 8 weeks. Serum glucose and insulin tolerances, serum levels of aspartate aminotransferase, hepatic content of triacylglycerol, cytokines, gene expression, and protein expression were evaluated in all animals. Chronic exposure to HF diet increased triacylglycerol accumulation in the liver, leading to NAFLD, increased aminotransferase in the serum, increased peripheral insulin resistance, and higher adiposity index. Exercise reduced all these parameters in both animal genotypes. The liver lipid accumulation was not associated with inflammation; trained KO mice, however, presented a huge inflammatory response that was probably caused by a decrease in PPAR-γ expression. We conclude that exercise improved the damage caused by a HF independently of PPARα, apparently by a peripheral fatty acid oxidation in the skeletal muscle. We also found that the absence of PPARα together with exercise leads to a decrease in PPAR-γ and a huge inflammatory response. J. Cell. Physiol. 232: 1008-1019, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Progressão da Doença , Inflamação/tratamento farmacológico , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/deficiência , Condicionamento Físico Animal , Tiazolidinedionas/uso terapêutico , Animais , Peso Corporal , Jejum/sangue , Inflamação/sangue , Inflamação/complicações , Inflamação/genética , Lipídeos/sangue , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Tamanho do Órgão , PPAR alfa/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rosiglitazona
8.
Cell Biochem Funct ; 35(8): 510-517, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29063619

RESUMO

Peroxisome proliferator-activated receptors (PPARs) play a major role in metabolism and inflammatory control. Exercise can modulate PPAR expression in skeletal muscle, adipose tissue, and macrophages. Little is known about the effects of PPAR-α in metabolic profile and cytokine secretion after acute exercise in macrophages. In this context, the aim of this study was to understand the influence of PPAR-α on exercise-mediated immune metabolic parameters in peritoneal macrophages. Mice C57BL/6 (WT) and PPAR-α knockout (KO) were examined in non-exercising control (n = 4) or 24 hours after acute moderate exercise (n = 8). Metabolic parameters (glucose, non-esterified fatty acids, total cholesterol [TC], and triacylglycerol [TG]) were assessed in serum. Cytokine concentrations (IL-1ß, IL-6, IL-10, TNF-α, and MCP-1) were measured from peritoneal macrophages cultured or not with LPS (2.5 µg/mL) and Rosiglitazone (1 µM). Exercised KO mice exhibited low glucose concentration and higher TC and TG in serum. At baseline, no difference in cytokine production between the genotypes was observed. However, IL-1ß was significantly higher in KO mice after LPS stimulus. IL-6 and IL-1ß had increased concentrations in KO compared with WT, even after exercise. MCP-1 was not restored in exercised KO LPS group. Rosiglitazone was not able to reduce proinflammatory cytokine production in KO mice at baseline level or associated with exercise. Acute exercise did not alter mRNA expression in WT mice. CONCLUSION: PPAR-α seems to be needed for metabolic glucose homeostasis and anti-inflammatory effect of acute exercise. Its absence may induce over-expression of pro-inflammatory cytokines in LPS stimulus. Moreover, moderate exercise or PPAR-γ agonist did not reverse this response.


Assuntos
Inflamação/metabolismo , PPAR alfa/deficiência , Condicionamento Físico Animal , Animais , Colesterol/sangue , Glucose/metabolismo , Homeostase , Inflamação/induzido quimicamente , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/genética , Triglicerídeos/sangue
9.
Clin Exp Pharmacol Physiol ; 44(5): 566-575, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28135761

RESUMO

Palmitoleic acid (PM, 16:1n-7) has anti-inflammatory properties that could be linked to higher expression of PPARα, an inhibitor of NFκB. Macrophages play a major role in the pathogenesis of chronic inflammation, however, the effects of PM on macrophages are underexplored. Thus, we aimed to investigate the effects of PM in activated macrophages as well the role of PPARα. Primary macrophages were isolated from C57BL/6 wild type (WT) and PPARα knockout (KO) mice, cultured under standard conditions and exposed to lipopolysaccharides LPS (2.5 µg/ml) and PM 600 µmol/L conjugated with albumin for 24 hours. The stimulation with LPS increased the production of interleukin (IL)-6 and IL-1ß while PM decreased the production of IL-6 in WT macrophages. In KO macrophages, LPS increased the production of tumour necrosis factor (TNF)-α and IL-6 and PM decreased the production of TNFα. The expression of inflammatory markers such NFκB and IL1ß were increased by LPS and decreased by PM in both WT and KO macrophages. PM reduced the expression of MyD88 and caspase-1 in KO macrophages, and the expression of TLR4 and HIF-1α in both WT and KO macrophages, although LPS had no effect. CD86, an inflammatory macrophage marker, was reduced by PM independently of genotype. PM increased PPARγ and reduced PPARß gene expression in macrophages of both genotypes, and increased ACOX-1 expression in KO macrophages. In conclusion, PM promotes anti-inflammatory effects in macrophages exposed to LPS through inhibition of inflammasome pathway, which was independent of PPARα, PPARϒ and AMPK, thus the molecular mechanisms of anti-inflammatory response caused by PM is still unclear.


Assuntos
Ácidos Graxos Monoinsaturados/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Receptores Ativados por Proliferador de Peroxissomo/antagonistas & inibidores , Animais , Células Cultivadas , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo
10.
J Strength Cond Res ; 29(9): 2538-49, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26308831

RESUMO

The aim of this study was to analyze physiological responses in Brazilian jiu-jitsu athletes during simulated competition. To this end, 10 athletes (age: 28 ± 4 years, body mass: 81.8 ± 7.4 kg, body fat: 13.0 ± 4.8%, systematic practice: 11 ± 4 years) were analyzed in simulated competition (4 matches of 10 minutes). Blood samples were taken to assess energy demand, hormonal responses, and cell damage. Additionally, the heart rate variability (HRV) response was analyzed. The main results show that in simulated competition, during the last matches, athletes had lower lactate (p < 0.001), epinephrine (p < 0.001), norepinephrine (p < 0.001), and insulin (p = 0.002) concentrations. Increases observed in creatine kinase (p < 0.001), aspartate aminotransferase (p < 0.001), alanine aminotransferase (p = 0.007), and creatinine (p < 0.001) seen, especially, in the last matches are indicative of possible cell damage. The HRV reflected a decrease in the RR medium (average of the normal R-R intervals) (p = 0.001) during the competition. Thus, it is concluded that successive matches from competition generate a gradual decrease of adrenergic and glycolytic activities, which is accompanied by a gradual increase in cell damage markers and decrease in the RR medium of the HRV.


Assuntos
Comportamento Competitivo/fisiologia , Artes Marciais/fisiologia , Adolescente , Adulto , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Brasil , Creatina Quinase/sangue , Frequência Cardíaca/fisiologia , Humanos , Hidrocortisona/sangue , Ácido Láctico/sangue , Masculino , Testosterona/sangue , Adulto Jovem
11.
Mediators Inflamm ; 2014: 582197, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147439

RESUMO

Palmitoleic acid (PMA) has anti-inflammatory and antidiabetic activities. Here we tested whether these effects of PMA on glucose homeostasis and liver inflammation, in mice fed with high-fat diet (HFD), are PPAR-α dependent. C57BL6 wild-type (WT) and PPAR-α-knockout (KO) mice fed with a standard diet (SD) or HFD for 12 weeks were treated after the 10th week with oleic acid (OLA, 300 mg/kg of b.w.) or PMA 300 mg/kg of b.w. Steatosis induced by HFD was associated with liver inflammation only in the KO mice, as shown by the increased hepatic levels of IL1-beta, IL-12, and TNF-α; however, the HFD increased the expression of TLR4 and decreased the expression of IL1-Ra in both genotypes. Treatment with palmitoleate markedly attenuated the insulin resistance induced by the HFD, increased glucose uptake and incorporation into muscle in vitro, reduced the serum levels of AST in WT mice, decreased the hepatic levels of IL1-beta and IL-12 in KO mice, reduced the expression of TLR-4 and increased the expression of IL-1Ra in WT mice, and reduced the phosphorylation of NF ����B (p65) in the livers of KO mice. We conclude that palmitoleate attenuates diet-induced insulin resistance, liver inflammation, and damage through mechanisms that do not depend on PPAR-α.


Assuntos
Ácidos Graxos Monoinsaturados/uso terapêutico , PPAR alfa/metabolismo , Animais , Western Blotting , Dieta Hiperlipídica/efeitos adversos , Ensaio de Imunoadsorção Enzimática , Resistência à Insulina , Interleucina-12 , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Oleico/metabolismo , Ácido Oleico/uso terapêutico , PPAR alfa/deficiência , PPAR alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Mol Metab ; 78: 101812, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37777009

RESUMO

OBJECTIVE: Sialic acid is a terminal monosaccharide of glycans in glycoproteins and glycolipids, and its derivation from glucose is regulated by the rate-limiting enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Although the glycans on key endogenous hepatic proteins governing glucose metabolism are sialylated, how sialic acid synthesis and sialylation in the liver influence glucose homeostasis is unknown. Studies were designed to fill this knowledge gap. METHODS: To decrease the production of sialic acid and sialylation in hepatocytes, a hepatocyte-specific GNE knockdown mouse model was generated, and systemic glucose metabolism, hepatic insulin signaling and glucagon signaling were evaluated in vivo or in primary hepatocytes. Peripheral insulin sensitivity was also assessed. Furthermore, the mechanisms by which sialylation in the liver influences hepatic insulin signaling and glucagon signaling and peripheral insulin sensitivity were identified. RESULTS: Liver GNE deletion in mice caused an impairment of insulin suppression of hepatic glucose production. This was due to a decrease in the sialylation of hepatic insulin receptors (IR) and a decline in IR abundance due to exaggerated degradation through the Eph receptor B4. Hepatic GNE deficiency also caused a blunting of hepatic glucagon receptor (GCGR) function which was related to a decline in its sialylation and affinity for glucagon. An accompanying upregulation of hepatic FGF21 production caused an enhancement of skeletal muscle glucose disposal that led to an overall increase in glucose tolerance and insulin sensitivity. CONCLUSION: These collective observations reveal that hepatic sialic acid synthesis and sialylation modulate glucose homeostasis in both the liver and skeletal muscle. By interrogating how hepatic sialic acid synthesis influences glucose control mechanisms in the liver, a new metabolic cycle has been identified in which a key constituent of glycans generated from glucose modulates the systemic control of its precursor.


Assuntos
Resistência à Insulina , Ácido N-Acetilneuramínico , Camundongos , Animais , Ácido N-Acetilneuramínico/metabolismo , Glucagon , Músculo Esquelético/metabolismo , Fígado/metabolismo , Glucose , Insulina , Homeostase , Polissacarídeos
13.
J Clin Invest ; 133(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37856216

RESUMO

The G protein-coupled receptor 84 (GPR84), a medium-chain fatty acid receptor, has garnered attention because of its potential involvement in a range of metabolic conditions. However, the precise mechanisms underlying this effect remain elusive. Our study has shed light on the pivotal role of GPR84, revealing its robust expression and functional significance within brown adipose tissue (BAT). Mice lacking GPR84 exhibited increased lipid accumulation in BAT, rendering them more susceptible to cold exposure and displaying reduced BAT activity compared with their WT counterparts. Our in vitro experiments with primary brown adipocytes from GPR84-KO mice revealed diminished expression of thermogenic genes and reduced O2 consumption. Furthermore, the application of the GPR84 agonist 6-n-octylaminouracil (6-OAU) counteracted these effects, effectively reinstating the brown adipocyte activity. These compelling in vivo and in vitro findings converge to highlight mitochondrial dysfunction as the primary cause of BAT anomalies in GPR84-KO mice. The activation of GPR84 induced an increase in intracellular Ca2+ levels, which intricately influenced mitochondrial respiration. By modulating mitochondrial Ca2+ levels and respiration, GPR84 acts as a potent molecule involved in BAT activity. These findings suggest that GPR84 is a potential therapeutic target for invigorating BAT and ameliorating metabolic disorders.


Assuntos
Adipócitos Marrons , Cálcio , Receptores Acoplados a Proteínas G , Animais , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Cálcio/metabolismo , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Termogênese/genética , Receptores Acoplados a Proteínas G/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia
14.
Front Immunol ; 13: 929552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263057

RESUMO

Schistosomiasis is a neglected tropical disease caused by worms of the genus Schistosoma spp. The progression of disease results in intense tissue fibrosis and high mortality rate. After egg deposition by adult worms, the inflammatory response is characterized by the robust activation of type 2 immunity. Monocytes and macrophages play critical roles during schistosomiasis. Inflammatory Ly6Chigh monocytes are recruited from the blood to the inflammatory foci and differentiate into alternatively activated macrophages (AAMs), which promote tissue repair. The common chain of ß2-integrins (CD18) regulates monocytopoiesis and mediates resistance to experimental schistosomiasis. There is still limited knowledge about mechanisms controlled by CD18 that impact monocyte development and effector cells such as macrophages during schistosomiasis. Here, we show that CD18low mice chronically infected with S. mansoni display monocyte progenitors with reduced proliferative capacity, resulting in the accumulation of the progenitor cell denominated proliferating-monocyte (pMo). Consequently, inflammatory Ly6Chigh and patrolling Ly6Clow monocytes are reduced in the bone marrow and blood. Mechanistically, low CD18 expression decreases Irf8 gene expression in pMo progenitor cells, whose encoded transcription factor regulates CSFR1 (CD115) expression on the cell surface. Furthermore, low CD18 expression affects the accumulation of inflammatory Ly6Chigh CD11b+ monocytes in the liver while the adoptive transference of these cells to infected-CD18low mice reduced the inflammatory infiltrate and fibrosis in the liver. Importantly, expression of Il4, Chil3l3 and Arg1 was downregulated, CD206+PD-L2+ AAMs were reduced and there were lower levels of IL-10 in the liver of CD18low mice chronically infected with S. mansoni. Overall, these findings suggest that CD18 controls the IRF8-CD115 axis on pMo progenitor cells, affecting their proliferation and maturation of monocytes. At the same time, CD18 is crucial for the appropriate polarization and function of AAMs and tissue repair during chronic schistosomiasis.


Assuntos
Antígenos CD18 , Esquistossomose , Animais , Camundongos , Fibrose , Integrinas/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Macrófagos , Monócitos , Esquistossomose/imunologia , Antígenos CD18/metabolismo
15.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36066975

RESUMO

The molecular mechanisms underlying obesity-induced increases in ß cell mass and the resulting ß cell dysfunction need to be elucidated further. Our study revealed that GPR92, expressed in islet macrophages, is modulated by dietary interventions in metabolic tissues. Therefore, we aimed to define the role of GPR92 in islet inflammation by using a high-fat diet-induced (HFD-induced) obese mouse model. GPR92-KO mice exhibited glucose intolerance and reduced insulin levels - despite the enlarged pancreatic islets - as well as increased islet macrophage content and inflammation level compared with WT mice. These results indicate that the lack of GPR92 in islet macrophages can cause ß cell dysfunction, leading to disrupted glucose homeostasis. Alternatively, stimulation with the GPR92 agonist farnesyl pyrophosphate results in the inhibition of HFD-induced islet inflammation and increased insulin secretion in WT mice, but not in GPR92-KO mice. Thus, our study suggests that GPR92 can be a potential target to alleviate ß cell dysfunction via the inhibition of islet inflammation associated with the progression of diabetes.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Obesidade/metabolismo , Ilhotas Pancreáticas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Obesos , Macrófagos/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
16.
Diabetes ; 71(12): 2496-2512, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35880782

RESUMO

Caveolin-1 (cav1) is an important structural and signaling component of plasma membrane invaginations called caveolae and is abundant in adipocytes. As previously reported, adipocyte-specific ablation of the cav1 gene (ad-cav1 knockout [KO] mouse) does not result in elimination of the protein, as cav1 protein traffics to adipocytes from neighboring endothelial cells. However, this mouse is a functional KO because adipocyte caveolar structures are depleted. Compared with controls, ad-cav1KO mice on a high-fat diet (HFD) display improved whole-body glucose clearance despite complete loss of glucose-stimulated insulin secretion, blunted insulin-stimulated AKT activation in metabolic tissues, and partial lipodystrophy. The cause is increased insulin-independent glucose uptake by white adipose tissue (AT) and reduced hepatic gluconeogenesis. Furthermore, HFD-fed ad-cav1KO mice display significant AT inflammation, fibrosis, mitochondrial dysfunction, and dysregulated lipid metabolism. The glucose clearance phenotype of the ad-cav1KO mice is at least partially mediated by AT small extracellular vesicles (AT-sEVs). Injection of control mice with AT-sEVs from ad-cav1KO mice phenocopies ad-cav1KO characteristics. Interestingly, AT-sEVs from ad-cav1KO mice propagate the phenotype of the AT to the liver. These data indicate that ad-cav1 is essential for healthy adaptation of the AT to overnutrition and prevents aberrant propagation of negative phenotypes to other organs by EVs.


Assuntos
Caveolina 1 , Vesículas Extracelulares , Insulina , Animais , Camundongos , Adipócitos/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Dieta Hiperlipídica , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Insulina Regular Humana , Camundongos Knockout
17.
iScience ; 24(6): 102548, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34142053

RESUMO

The recognition of fungi by intracellular NOD-like receptors (NLRs) induces inflammasome assembly and activation. Although the NLRC4 inflammasome has been extensively studied in bacterial infections, its role during fungal infections is unclear. Paracoccidioidomycosis (PCM) is a pathogenic fungal disease caused by Paracoccidioides brasiliensis. Here, we show that NLRC4 confers susceptibility to experimental PCM by regulating NLRP3-dependent cytokine production and thus protective effector mechanisms. Early after infection, NLRC4 suppresses prostaglandin E2 production, and consequently reduces interleukin (IL)-1ß release by macrophages and dendritic cells in the lungs. IL-1ß is required to control fungal replication via induction of the nitric oxide synthase 2 (NOS2) pathway. At a later stage of the disease, NLRC4 impacts IL-18 release, dampening robust CD8+IFN-γ+ T cell responses and enhancing mortality of mice. These findings demonstrate that NLRC4 promotes disease by regulating the production of inflammatory cytokines and cellular responses that depend on the NLRP3 inflammasome activity.

18.
Viruses ; 13(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960790

RESUMO

Uncontrolled inflammatory responses play a critical role in coronavirus disease (COVID-19). In this context, because the triggering-receptor expressed on myeloid cells-1 (TREM-1) is considered an intrinsic amplifier of inflammatory signals, this study investigated the role of soluble TREM-1 (sTREM-1) as a biomarker of the severity and mortality of COVID-19. Based on their clinical scores, we enrolled COVID-19 positive patients (n = 237) classified into mild, moderate, severe, and critical groups. Clinical data and patient characteristics were obtained from medical records, and their plasma inflammatory mediator profiles were evaluated with immunoassays. Plasma levels of sTREM-1 were significantly higher among patients with severe disease compared to all other groups. Additionally, levels of sTREM-1 showed a significant positive correlation with other inflammatory parameters, such as IL-6, IL-10, IL-8, and neutrophil counts, and a significant negative correlation was observed with lymphocyte counts. Most interestingly, sTREM-1 was found to be a strong predictive biomarker of the severity of COVID-19 and was related to the worst outcome and death. Systemic levels of sTREM-1 were significantly correlated with the expression of matrix metalloproteinases (MMP)-8, which can release TREM-1 from the surface of peripheral blood cells. Our findings indicated that quantification of sTREM-1 could be used as a predictive tool for disease outcome, thus improving the timing of clinical and pharmacological interventions in patients with COVID-19.


Assuntos
Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/mortalidade , Leucócitos/metabolismo , Metaloproteinase 8 da Matriz/metabolismo , Índice de Gravidade de Doença , Receptor Gatilho 1 Expresso em Células Mieloides/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil , Feminino , Humanos , Inflamação , Interleucina-10/sangue , Interleucina-6/sangue , Interleucina-8/sangue , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Estudos Prospectivos , SARS-CoV-2 , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Adulto Jovem
19.
Front Immunol ; 11: 1636, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670298

RESUMO

The current pandemic of coronavirus disease 19 (COVID-19) has affected millions of individuals and caused thousands of deaths worldwide. The pathophysiology of the disease is complex and mostly unknown. Therefore, identifying the molecular mechanisms that promote progression of the disease is critical to overcome this pandemic. To address such issues, recent studies have reported transcriptomic profiles of cells, tissues and fluids from COVID-19 patients that mainly demonstrated activation of humoral immunity, dysregulated type I and III interferon expression, intense innate immune responses and inflammatory signaling. Here, we provide novel perspectives on the pathophysiology of COVID-19 using robust functional approaches to analyze public transcriptome datasets. In addition, we compared the transcriptional signature of COVID-19 patients with individuals infected with SARS-CoV-1 and Influenza A (IAV) viruses. We identified a core transcriptional signature induced by the respiratory viruses in peripheral leukocytes, whereas the absence of significant type I interferon/antiviral responses characterized SARS-CoV-2 infection. We also identified the higher expression of genes involved in metabolic pathways including heme biosynthesis, oxidative phosphorylation and tryptophan metabolism. A BTM-driven meta-analysis of bronchoalveolar lavage fluid (BALF) from COVID-19 patients showed significant enrichment for neutrophils and chemokines, which were also significant in data from lung tissue of one deceased COVID-19 patient. Importantly, our results indicate higher expression of genes related to oxidative phosphorylation both in peripheral mononuclear leukocytes and BALF, suggesting a critical role for mitochondrial activity during SARS-CoV-2 infection. Collectively, these data point for immunopathological features and targets that can be therapeutically exploited to control COVID-19.


Assuntos
Betacoronavirus/imunologia , Quimiocinas/sangue , Infecções por Coronavirus/imunologia , Interferon Tipo I/sangue , Neutrófilos/imunologia , Pneumonia Viral/imunologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , COVID-19 , Infecções por Coronavirus/patologia , Perfilação da Expressão Gênica , Humanos , Inflamação/virologia , Influenza Humana/imunologia , Interferon Tipo I/imunologia , Neutrófilos/citologia , Fosforilação Oxidativa , Pandemias , Pneumonia Viral/patologia , SARS-CoV-2 , Transcriptoma/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-32058033

RESUMO

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) lower risk of cardiovascular disease. The primary source of EPA and DHA is fatty fish. Plant-derived alpha linolenic acid (ALA) and stearidonic acid (SDA) could provide sustainable land-based alternatives, but their functionality is underexplored. Omega-3 fatty acids (n-3 FAs) may influence atherogenic processes through changing endothelial cell (EC) function and lowering inflammation. This study compared effects of marine- and plant-derived n-3 FAs on EC inflammatory responses. EA.hy926 cells were exposed to ALA, SDA, EPA or DHA prior to stimulation with tumor necrosis factor (TNF)-α. All FAs were shown to be incorporated into ECs in a dose-dependent manner. SDA (50 µM) decreased both production and cell-surface expression of intercellular adhesion molecule (ICAM)-1; however EPA and DHA resulted in greater reduction of ICAM-1 production and expression. EPA and DHA also significantly lowered production of monocyte chemoattractant protein 1, interleukin (IL)-6 and IL-8. ALA, SDA and DHA (50 µM) all reduced adhesion of THP-1 monocytes to EA.hy926 cells. DHA significantly decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)p105 gene expression and phosphorylated NFκBp65 protein. Both EPA and DHA (50 µM) significantly decreased cyclooxygenase (COX)-2 protein. Thus, both marine-derived n-3 FAs, particularly DHA, had potent anti-inflammatory effects in this EC model. Of the plant-derived n-3 FAs, SDA showed the greatest inhibition of inflammation. Although neither ALA nor SDA reproduced the anti-inflammatory effects of EPA and DHA in this model, there is some potential for SDA to be a sustainable anti-inflammatory alternative to the marine n-3 FAs.


Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Óleos de Peixe/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Linhagem Celular , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Interleucina-8/imunologia , Interleucina-8/metabolismo , Subunidade p50 de NF-kappa B/imunologia , Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição RelA/imunologia , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA