Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Phys Chem Chem Phys ; 20(18): 12664-12677, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29696277

RESUMO

Water molecules can interact with aromatic moieties using either their O-H bonds or their lone-pairs of electrons. In proteins, water-π interactions have been reported to occur with tryptophan and histidine residues, and dynamic exchange between O-Hπ hydrogen bonding and lone-pairπ interactions was suggested to take place, based on ab initio calculations. Here we used classical and QM/MM molecular dynamics simulations, complemented with an NMR study, to examine a specific water-indole interaction observed in the engrailed homeodomain and in its mutants. Our simulations indicate that the binding mode between water and indole can adapt to the potential created by the surrounding amino acids (and by the residues at the DNA surface in protein-DNA complexes), and support the model of dynamic switching between the O-Hπ hydrogen bonding and lone-pairπ binding modes.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Triptofano/metabolismo , Água/metabolismo , Animais , Drosophila , Proteínas de Drosophila , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Ligação Proteica , Domínios Proteicos , Teoria Quântica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Triptofano/química , Água/química
2.
Nucleic Acids Res ; 42(11): 7383-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24829460

RESUMO

A-tracts are functionally important DNA sequences which induce helix bending and have peculiar structural properties. While A-tract structure has been qualitatively well characterized, their mechanical properties remain controversial. A-tracts appear structurally rigid and resist nucleosome formation, but seem flexible in DNA looping. In this work, we investigate mechanical properties of symmetric AnTn and asymmetric A2n tracts for n = 3, 4, 5 using two types of coarse-grained models. The first model represents DNA as an ensemble of interacting rigid bases with non-local quadratic deformation energy, the second one treats DNA as an anisotropically bendable and twistable elastic rod. Parameters for both models are inferred from microsecond long, atomic-resolution molecular dynamics simulations. We find that asymmetric A-tracts are more rigid than the control G/C-rich sequence in localized distortions relevant for nucleosome formation, but are more flexible in global bending and twisting relevant for looping. The symmetric tracts, in contrast, are more rigid than asymmetric tracts and the control, both locally and globally. Our results can reconcile the contradictory stiffness data on A-tracts and suggest symmetric A-tracts to be more efficient in nucleosome exclusion than the asymmetric ones. This would open a new possibility of gene expression manipulation using A-tracts.


Assuntos
DNA/química , Nucleossomos/química , Adenina/química , Sequência de Bases , Fenômenos Biomecânicos , Entropia , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Poli A/química
3.
Nucleic Acids Res ; 42(19): 12272-83, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25260586

RESUMO

We present the results of microsecond molecular dynamics simulations carried out by the ABC group of laboratories on a set of B-DNA oligomers containing the 136 distinct tetranucleotide base sequences. We demonstrate that the resulting trajectories have extensively sampled the conformational space accessible to B-DNA at room temperature. We confirm that base sequence effects depend strongly not only on the specific base pair step, but also on the specific base pairs that flank each step. Beyond sequence effects on average helical parameters and conformational fluctuations, we also identify tetranucleotide sequences that oscillate between several distinct conformational substates. By analyzing the conformation of the phosphodiester backbones, it is possible to understand for which sequences these substates will arise, and what impact they will have on specific helical parameters.


Assuntos
DNA de Forma B/química , Pareamento de Bases , Sequência de Bases , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
4.
J Am Chem Soc ; 135(26): 9785-96, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23742743

RESUMO

We provide theoretical predictions of the intrinsic stability of different arrangements of guanine quadruplex (G-DNA) stems. Most computational studies of nucleic acids have applied Molecular Mechanics (MM) approaches using simple pairwise-additive force fields. The principle limitation of such calculations is the highly approximate nature of the force fields. In this study, we for the first time apply accurate QM computations (DFT-D3 with large atomic orbital basis sets) to essentially complete DNA building blocks, seven different folds of the cation-stabilized two-quartet G-DNA stem, each having more than 250 atoms. The solvent effects are approximated by COSMO continuum solvent. We reveal sizable differences between MM and QM descriptions of relative energies of different G-DNA stems, which apparently reflect approximations of the DNA force field. Using the QM energy data, we propose correction to earlier free energy estimates of relative stabilities of different parallel, hybrid, and antiparallel G-stem folds based on classical simulations. The new energy ranking visibly improves the agreement between theory and experiment. We predict the 5'-anti-anti-3' GpG dinucleotide step to be the most stable one, closely followed by the 5'-syn-anti-3' step. The results are in good agreement with known experimental structures of 2-, 3-, and 4-quartet G-DNA stems. Besides providing specific results for G-DNA, our study highlights basic limitations of force field modeling of nucleic acids. Although QM computations have their own limitations, mainly the lack of conformational sampling and the approximate description of the solvent, they can substantially improve the quality of calculations currently relying exclusively on force fields.


Assuntos
DNA/química , Quadruplex G , Guanina/química , Teoria Quântica , Modelos Moleculares
5.
Nucleic Acids Res ; 38(1): 299-313, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19850719

RESUMO

It is well recognized that base sequence exerts a significant influence on the properties of DNA and plays a significant role in protein-DNA interactions vital for cellular processes. Understanding and predicting base sequence effects requires an extensive structural and dynamic dataset which is currently unavailable from experiment. A consortium of laboratories was consequently formed to obtain this information using molecular simulations. This article describes results providing information not only on all 10 unique base pair steps, but also on all possible nearest-neighbor effects on these steps. These results are derived from simulations of 50-100 ns on 39 different DNA oligomers in explicit solvent and using a physiological salt concentration. We demonstrate that the simulations are converged in terms of helical and backbone parameters. The results show that nearest-neighbor effects on base pair steps are very significant, implying that dinucleotide models are insufficient for predicting sequence-dependent behavior. Flanking base sequences can notably lead to base pair step parameters in dynamic equilibrium between two conformational sub-states. Although this study only provides limited data on next-nearest-neighbor effects, we suggest that such effects should be analyzed before attempting to predict the sequence-dependent behavior of DNA.


Assuntos
DNA/química , Pareamento de Bases , Sequência de Bases , Simulação de Dinâmica Molecular , Nucleotídeos/química
6.
J Am Chem Soc ; 133(35): 13790-3, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21819145

RESUMO

In this work, a novel NMR method for the identification of preferential coordination sites between physiologically relevant counterions and nucleic acid bases is demonstrated. In this approach, the NMR cross-correlated relaxation rates between the aromatic carbon chemical shift anisotropy and the proton-carbon dipolar interaction are monitored as a function of increasing Na(+), K(+), and Mg(2+) concentrations. Increasing the counterion concentration modulates the residence times of the counterions at specific sites around the nucleic acid bases. It is demonstrated that the modulation of the counterion concentration leads to sizable variations of the cross-correlated relaxation rates, which can be used to probe the site-specific counterion coordination. In parallel, the very same measurements report on the rotational tumbling of DNA, which, as shown here, depends on the nature of the ion and its concentration. This methodology is highly sensitive and easily implemented. The method can be used to cross-validate and/or complement direct but artifact-prone experimental techniques such as X-ray diffraction, NMR analysis with substitutionary ions, and molecular dynamics simulations. The feasibility of this technique is demonstrated on the extraordinarily stable DNA mini-hairpin d(GCGAAGC).


Assuntos
DNA/química , Ressonância Magnética Nuclear Biomolecular/métodos , Íons/química , Modelos Moleculares , Conformação de Ácido Nucleico
7.
Nucleic Acids Res ; 37(21): 7321-31, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19786496

RESUMO

We describe a novel, fundamental property of nucleobase structure, namely, pyramidilization at the N1/9 sites of purine and pyrimidine bases. Through a combined analyses of ultra-high-resolution X-ray structures of both oligonucleotides extracted from the Nucleic Acid Database and isolated nucleotides and nucleosides from the Cambridge Structural Database, together with a series of quantum chemical calculations, molecular dynamics (MD) simulations, and published solution nuclear magnetic resonance (NMR) data, we show that pyramidilization at the glycosidic nitrogen is an intrinsic property. This property is common to isolated nucleosides and nucleotides as well as oligonucleotides-it is also common to both RNA and DNA. Our analysis suggests that pyramidilization at N1/9 sites depends in a systematic way on the local structure of the nucleoside. Of note, the pyramidilization undergoes stereo-inversion upon reorientation of the glycosidic bond. The extent of the pyramidilization is further modulated by the conformation of the sugar ring. The observed pyramidilization is more pronounced for purine bases, while for pyrimidines it is negligible. We discuss how the assumption of nucleic acid base planarity can lead to systematic errors in determining the conformation of nucleotides from experimental data and from unconstrained MD simulations.


Assuntos
Nucleosídeos de Purina/química , Nucleotídeos de Purina/química , Purinas/química , Nucleosídeos de Pirimidina/química , Nucleotídeos de Pirimidina/química , Carboidratos/química , Simulação por Computador , Cristalografia por Raios X , Desoxiadenosinas/química , Desoxicitidina/química , Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular , Oligonucleotídeos/química , Pirimidinas/química
8.
Nucleic Acids Res ; 34(2): 697-708, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16456030

RESUMO

Explicit solvent molecular dynamics (MD) simulations were carried out for sarcin-ricin domain (SRD) motifs from 23S (Escherichia coli) and 28S (rat) rRNAs. The SRD motif consists of GAGA tetraloop, G-bulged cross-strand A-stack, flexible region and duplex part. Detailed analysis of the overall dynamics, base pairing, hydration, cation binding and other SRD features is presented. The SRD is surprisingly static in multiple 25 ns long simulations and lacks any non-local motions, with root mean square deviation (r.m.s.d.) values between averaged MD and high-resolution X-ray structures of 1-1.4 A. Modest dynamics is observed in the tetraloop, namely, rotation of adenine in its apex and subtle reversible shift of the tetraloop with respect to the adjacent base pair. The deformed flexible region in low-resolution rat X-ray structure is repaired by simulations. The simulations reveal few backbone flips, which do not affect positions of bases and do not indicate a force field imbalance. Non-Watson-Crick base pairs are rigid and mediated by long-residency water molecules while there are several modest cation-binding sites around SRD. In summary, SRD is an unusually stiff rRNA building block. Its intrinsic structural and dynamical signatures seen in simulations are strikingly distinct from other rRNA motifs such as Loop E and Kink-turns.


Assuntos
Modelos Moleculares , RNA Ribossômico 23S/química , RNA Ribossômico 28S/química , Animais , Pareamento de Bases , Sítios de Ligação , Carboidratos/química , Cátions/química , Simulação por Computador , Cristalografia por Raios X , Endorribonucleases/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Ligação de Hidrogênio , Conformação de Ácido Nucleico , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 28S/metabolismo , Ratos , Ricina/metabolismo , Água/química
9.
Genes (Basel) ; 9(7)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29958383

RESUMO

Adenosine to inosine (A⁻I) editing is the most common modification of double-stranded RNA (dsRNA). This change is mediated by adenosine deaminases acting on RNA (ADARs) enzymes with a preference of U>A>C>G for 5′ neighbor and G>C=A>U or G>C>U=A for 3′ neighbor. A⁻I editing occurs most frequently in the non-coding regions containing repetitive elements such as ALUs. It leads to disruption of RNA duplex structure, which prevents induction of innate immune response. We employed standard and biased molecular dynamics (MD) simulations to analyze the behavior of RNA duplexes with single and tandem inosine⁻uracil (I⁻U) base pairs in different sequence context. Our analysis showed that the I⁻U pairs induce changes in base pair and base pair step parameters and have different dynamics when compared with standard canonical base pairs. In particular, the first I⁻U pair from tandem I⁻U/I⁻U systems exhibited increased dynamics depending on its neighboring 5′ base. We discovered that UII sequence, which is frequently edited, has lower flexibility compared with other sequences (AII, GII, CII), hence it only modestly disrupts dsRNA. This might indicate that the UAA motifs in ALUs do not have to be sufficiently effective in preventing immune signaling.

10.
PLoS One ; 12(8): e0182377, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28767725

RESUMO

Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs) rarely associated with mutations (coldspots) and frequently associated with mutations (hotspots) exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of CpG dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a G/T mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.


Assuntos
DNA/química , DNA/genética , Mutação em Linhagem Germinativa , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fator VIII/genética , Predisposição Genética para Doença , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Receptores de LDL/genética
11.
J Mol Biol ; 351(4): 731-48, 2005 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-16045932

RESUMO

The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA enzyme involved in the replication of a human pathogen, the hepatitis delta virus. Recent crystal structures of the precursor and product of self-cleavage, together with detailed kinetic analyses, have led to hypotheses on the catalytic strategies employed by the HDV ribozyme. We report molecular dynamics (MD) simulations (approximately 120 ns total simulation time) to test the plausibility that specific conformational rearrangements are involved in catalysis. Site-specific self-cleavage requires cytidine in position 75 (C75). A precursor simulation with unprotonated C75 reveals a rather weak dynamic binding of C75 in the catalytic pocket with spontaneous, transient formation of a H-bond between U-1(O2') and C75(N3). This H-bond would be required for C75 to act as the general base. Upon protonation in the precursor, C75H+ has a tendency to move towards its product location and establish a firm H-bonding network within the catalytic pocket. However, a C75H+(N3)-G1(O5') H-bond, which would be expected if C75 acted as a general acid catalyst, is not observed on the present simulation timescale. The adjacent loop L3 is relatively dynamic and may serve as a flexible structural element, possibly gated by the closing U20.G25 base-pair, to facilitate a conformational switch induced by a protonated C75H+. L3 also controls the electrostatic environment of the catalytic core, which in turn may modulate C75 base strength and metal ion binding. We find that a distant RNA tertiary interaction involving a protonated cytidine (C41) becomes unstable when left unprotonated, leading to disruptive conformational rearrangements adjacent to the catalytic core. A Na ion temporarily compensates for the loss of the protonated hydrogen bond, which is strikingly consistent with the experimentally observed synergy between low pH and high Na+ concentrations in mediating residual self-cleavage of the HDV ribozyme in the absence of divalents.


Assuntos
Vírus Delta da Hepatite/enzimologia , RNA Catalítico/química , RNA Viral/química , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , Vírus Delta da Hepatite/genética , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Prótons , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Eletricidade Estática , Termodinâmica
12.
J Phys Chem B ; 110(45): 22894-902, 2006 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17092041

RESUMO

Calculated indirect NMR spin-spin coupling constants (J-couplings) between (31)P, (13)C, and (1)H nuclei were related to the backbone torsion angles of nucleic acids (NAs), and it was shown that J-couplings can facilitate accurate and reliable structural interpretation of NMR measurements and help to discriminate between their distinct conformational classes. A proposed stepwise procedure suggests assignment of the J-couplings to torsion angles from the sugar part to the phosphodiester link. Some J-couplings show multidimensional dependence on torsion angles, the most prominent of which is the effect of the sugar pucker. J-couplings were calculated in 16 distinct nucleic acid conformations, two principal double-helical DNAs, B- and A-, the main RNA form, A-RNA, as well as in 13 other RNA conformations. High-level quantum mechanics calculations used a baseless dinucleoside phosphate as a molecular model, and the effect of solvent was included. The predicted J-couplings correlate reliably with available experimental data from the literature.


Assuntos
Algoritmos , DNA/química , RNA/química , Carbono/química , Fosfatos de Dinucleosídeos/química , Hidrogênio/química , Espectroscopia de Ressonância Magnética/métodos , Conformação de Ácido Nucleico
13.
Nucleic Acids Res ; 31(23): 6942-52, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14627827

RESUMO

Explicit solvent molecular dynamics (MD) simulations were carried out for three RNA kissing-loop complexes. The theoretical structure of two base pairs (2 bp) complex of H3 stem-loop of Moloney murine leukemia virus agrees with the NMR structure with modest violations of few NMR restraints comparable to violations present in the NMR structure. In contrast to the NMR structure, however, MD shows relaxed intermolecular G-C base pairs. The core region of the kissing complex forms a cation-binding pocket with highly negative electrostatic potential. The pocket shows nanosecond-scale breathing motions coupled with oscillations of the whole molecule. Additional simulations were carried out for 6 bp kissing complexes of the DIS HIV-1 subtypes A and B. The simulated structures agree well with the X-ray data. The subtype B forms a novel four-base stack of bulged-out adenines. Both 6 bp kissing complexes have extended cation-binding pockets in their central parts. While the pocket of subtype A interacts with two hexacoordinated Mg2+ ions and one sodium ion, pocket of subtype B is filled with a string of three delocalized Na+ ions with residency times of individual cations 1-2 ns. The 6 bp complexes show breathing motions of the cation-binding pockets and loop major grooves.


Assuntos
HIV-1/genética , Magnésio/metabolismo , Vírus da Leucemia Murina de Moloney/genética , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/metabolismo , Sódio/metabolismo , Sítios de Ligação , Cátions/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , RNA Viral/genética , Água/química
14.
J Mol Biol ; 330(5): 967-78, 2003 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-12860120

RESUMO

X-ray, phylogenetic and quantum chemical analysis of molecular interactions and conservation patterns of cis Watson-Crick (W.C.) A/G base-pairs in 16S rRNA, 23S rRNA and other molecules was carried out. In these base-pairs, the A and G nucleotides interact with their W.C. edges with glycosidic bonds oriented cis relative to each other. The base-pair is stabilised by two hydrogen bonds, the C1'-C1' distance is enlarged and the G(N2) amino group is left unpaired. Quantum chemical calculations show that, in the absence of other interactions, the unpaired amino group is substantially non-planar due to its partial sp(3) pyramidalization, while the whole base-pair is internally propeller twisted and very flexible. The unique molecular properties of the cis W.C. A/G base-pairs make them distinct from other base-pairs. They occur mostly at the ends of canonical helices, where they serve as interfaces between the helix and other motifs. The cis W.C. A/G base-pairs play crucial roles in natural RNA structures with salient sequence conservation patterns. The key contribution to conservation is provided by the unpaired G(N2) amino group that is involved in a wide range of tertiary and neighbor contacts in the crystal structures. Many of them are oriented out of the plane of the guanine base and utilize the partial sp(3) pyramidalization of the G(N2). There is a lack of A/G to G/A covariation, which, except for the G(N2) position, would be entirely isosteric. On the contrary, there is a rather frequent occurrence of G/A to G/U covariation, as the G/U wobble base-pair has an unpaired amino group in the same position as the cis W.C. G/A base-pair. The cis W.C. A/G base-pairs are not conserved when there is no tertiary or neighbor interaction. Obtaining the proper picture of the interactions and phylogenetic patterns of the cis W.C. A/G base-pairs requires a detailed analysis of the relation between the molecular structures and the energetics of interactions at a level of single H-bonds and contacts.


Assuntos
Pareamento de Bases , DNA/química , Cristalografia por Raios X , DNA/metabolismo , DNA Bacteriano/metabolismo , Bases de Dados como Assunto , Dimerização , HIV-1/genética , Ligação de Hidrogênio , Modelos Químicos , Conformação de Ácido Nucleico , Filogenia , Ligação Proteica , RNA/metabolismo , RNA Catalítico/química , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 23S/metabolismo , RNA de Transferência/metabolismo , RNA Viral/genética , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal
15.
J Phys Chem B ; 109(22): 11399-410, 2005 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16852393

RESUMO

Due to the presence of the 2'-OH hydroxyl group of ribose, RNA molecules utilize an astonishing variability of base pairing patterns to build up their structures and perform the biological functions. Many of the key RNA base pairing families have no counterparts in DNA. In this study, the trans Watson-Crick/sugar edge (trans WC/SE) RNA base pair family has been characterized using quantum chemical and molecular mechanics calculations. Gas-phase optimized geometries from density functional theory (DFT) calculations and RIMP2 interaction energies are reported for the 10 crystallographically identified trans WC/SE base pairing patterns. Further, stable structures are predicted for all of the remaining six possible members of this family not seen in RNAs so far. Among these novel six base pairs, the computations substantially refine two structures suggested earlier based on simple isosteric considerations. For two additional trans WC/SE base pairs predicted in this study, no arrangement was suggested before. Thus, our study brings a complete set of trans WC/SE base pairing patterns. The present results are also contrasted with calculations reported recently for the cis WC/SE base pair family. The computed base pair sizes are in sound correlation with the X-ray data for all WC/SE pairing patterns including both their cis and trans isomers. This confirms that the isostericity of RNA base pairs, which is one of the key factors determining the RNA sequence conservation patterns, originates in the properties of the isolated base pairs. In contrast to the cis structures, however, the isosteric subgroups of the trans WC/SE family differ not only in their H-bonding patterns and steric dimensions but also in the intrinsic strength of the intermolecular interactions. The distribution of the total interaction energy over the sugar-base and base-base contributions is controlled by the cis-trans isomerism.


Assuntos
Pareamento de Bases , Carboidratos/química , RNA/química , Fenômenos Químicos , Físico-Química , Cristalografia por Raios X , Ligação de Hidrogênio , Isomerismo , Modelos Moleculares , Ribose/química
16.
Biophys Chem ; 118(1): 31-41, 2005 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-16039038

RESUMO

DNA 7-hydro-8-oxoguanine (8-oxoG) is implicated in frameshift formation in an G(6) sequence of the HPRT gene in mismatch repair (MMR) defective cells. Using oligonucleotides based on this frameshift hotspot, we investigated how a single 8-oxoG modified the structural and dynamic properties of the G(6) tract. A 30 ns molecular dynamics (MD) simulation indicated compression of the minor groove in the immediate vicinity of the lesion. Fluorescence polarization anisotropy (FPA) and MD demonstrated that 8-oxoG increases DNA torsional rigidity and also constrains the movement of the single-stranded region at the single/double stranded DNA junction of model DNA replication template/primer. These constraints influenced the efficiency of primer extension by Klenow (exo(-)) DNA polymerase.


Assuntos
Replicação do DNA/efeitos dos fármacos , DNA/química , Guanina/análogos & derivados , Conformação de Ácido Nucleico/efeitos dos fármacos , Pareamento Incorreto de Bases , Sequência de Bases , Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Polarização de Fluorescência , Guanina/química , Guanina/farmacologia , Hipoxantina Fosforribosiltransferase/genética , Moldes Genéticos
17.
J Biomol Struct Dyn ; 22(2): 183-94, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15317479

RESUMO

Ribosomal RNA K-turn motifs are asymmetric internal loops characterized by a sharp bend in the phosphodiester backbone resulting in "V" shaped structures, recurrently observed in ribosomes and showing a high degree of sequence conservation. We have carried out extended explicit solvent molecular dynamics simulations of selected K-turns, in order to investigate their intrinsic structural and dynamical properties. The simulations reveal an unprecedented dynamical flexibility of the K-turns around their X-ray geometries. The K-turns sample, on the nanosecond timescale, different conformational substates. The overall behavior of the simulations suggests that the sampled geometries are essentially isoenergetic and separated by minimal energy barriers. The nanosecond dynamics of isolated K-turns can be qualitatively considered as motion of two rigid helix stems controlled by a very flexible internal loop which then leads to substantial hinge-like motions between the two stems. This internal dynamics of K-turns is strikingly different for example from the bacterial 5S rRNA Loop E motif or BWYV frameshifting pseudoknot which appear to be rigid in the same type of simulations. Bistability and flexibility of K-turns was also suggested by several recent biochemical studies. Although the results of MD simulations should be considered as a qualitative picture of the K-turn dynamics due to force field and sampling limitations, the main advantage of the MD technique is its ability to investigate the region close to K-turn ribosomal-like geometries. This part of the conformational space is not well characterized by the solution experiments due to large-scale conformational changes seen in the experiments. We suggest that K-turns are well suited to act as flexible structural elements of ribosomal RNA. They can for example be involved in mediation of large-scale motions or they can allow a smooth assembling of the other parts of the ribosome.


Assuntos
Conformação de Ácido Nucleico , RNA Ribossômico/química , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Haloarcula marismortui/química , Haloarcula marismortui/genética , Ligação de Hidrogênio , Modelos Moleculares , RNA Arqueal/química , RNA Arqueal/genética , RNA Ribossômico/genética , Eletricidade Estática , Termodinâmica , Água
18.
J Phys Chem Lett ; 5(21): 3831-5, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26278756

RESUMO

The importance of allosteric effects in DNA is becoming increasingly appreciated, but the underlying mechanisms remain poorly understood. In this work, we propose a general modeling framework to study DNA allostery. We describe DNA in a coarse-grained manner by intra-base pair and base pair step coordinates, complemented by groove widths. Quadratic deformation energy is assumed, yielding linear relations between the constraints and their effect. Model parameters are inferred from standard unrestrained, explicit-solvent molecular dynamics simulations of naked DNA. We applied the approach to study minor groove binding of diamidines and pyrrole-imidazole polyamides. The predicted DNA bending is in quantitative agreement with experiment and suggests that diamidine binding to the alternating TA sequence brings the DNA closer to the A-tract conformation, with potentially important functional consequences. The approach can be readily applied to other allosteric effects in DNA and generalized to model allostery in various molecular systems.

19.
J Phys Chem B ; 115(47): 13897-910, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21999672

RESUMO

The RNA kink-turn is an important recurrent RNA motif, an internal loop with characteristic consensus sequence forming highly conserved three-dimensional structure. Functional arrangement of RNA kink-turns shows a sharp bend in the phosphodiester backbone. Among other signature interactions, kink-turns form A-minor interaction between their two stems. Most kink-turns possess extended A-minor I (A-I) interaction where adenine of the second A•G base pair of the NC-stem interacts with the first canonical pair of the C-stem (i.e., the receptor pair) via trans-sugar-edge/sugar-edge (tSS) and cis-sugar-edge/sugar-edge (cSS) interactions. The remaining kink-turns have less compact A-minor 0 (A-0) interaction with just one tSS contact. We show that kink-turns with A-I in ribosomal X-ray structures keep G═C receptor base pair during evolution while the inverted pair (C═G) is not realized. In contrast, kink-turns with A-0 in the observed structures alternate G═C and C═G base pairs in sequences. We carried out an extended set (~5 µs) of explicit-solvent molecular dynamics simulations of kink-turns to rationalize this structural/evolutionary pattern. The simulations were done using a net-neutral Na(+) cation atmosphere (with ~0.25 M cation concentration) supplemented by simulations with either excess salt KCl atmosphere or inclusion of Mg(2+). The results do not seem to depend on the treatment of ions. The simulations started with X-ray structures of several kink-turns while we tested the response of the simulated system to base substitutions, modest structural perturbations and constraints. The trends seen in the simulations reveal that the A-I/G═C arrangement is preferred over all three other structures. The A-I/C═G triple appears structurally entirely unstable, consistent with the covariation patterns seen during the evolution. The A-0 arrangements tend to shift toward the A-I pattern in simulations, which suggests that formation of the A-0 interaction is likely supported by the surrounding protein and RNA molecules. A-0 may also be stabilized by additional kink-turn nucleotides not belonging to the kink-turn consensus, as shown for the kink-turn from ribosomal Helix 15. Quantum-chemical calculations on all four A-minor triples suggest that there is a different balance of electrostatic and dispersion stabilization in the A-I/G═C and A-I/C═G triples, which may explain different behavior of these otherwise isosteric triples in the context of kink-turns.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , RNA/química , Pareamento de Bases , Conformação de Ácido Nucleico , RNA/metabolismo , Eletricidade Estática
20.
J Phys Chem B ; 114(32): 10581-93, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20701388

RESUMO

Kink-turns (K-turns) are recurrent elbow-like RNA motifs that participate in protein-assisted RNA folding and contribute to RNA dynamics. We carried out a set of molecular dynamics (MD) simulations using parm99 and parmbsc0 force fields to investigate structural dynamics of the box C/D RNA and its complexes with two proteins: native archaeal L7ae protein and human 15.5 kDa protein, originally bound to very similar structure of U4 snRNA. The box C/D RNA forms K-turn with A-minor 0 tertiary interaction between its canonical (C) and noncanonical (NC) stems. The local K-turn architecture is thus different from the previously studied ribosomal K-turns 38 and 42 having A-minor I interaction. The simulations reveal visible structural dynamics of this tertiary interaction involving altogether six substates which substantially contribute to the elbow-like flexibility of the K-turn. The interaction can even temporarily shift to the A-minor I type pattern; however, this is associated with distortion of the G/A base pair in the NC-stem of the K-turn. The simulations show reduction of the K-turn flexibility upon protein binding. The protein interacts with the apex of the K-turn and with the NC-stem. The protein-RNA interface includes long-residency hydration sites. We have also found long-residency hydration sites and major ion-binding sites associated with the K-turn itself. The overall topology of the K-turn remains stable in all simulations. However, in simulations of free K-turn, we observed instability of the key C16(O2')-A7(N1) H-bond, which is a signature interaction of K-turns and which was visibly more stable in simulations of K-turns possessing A-minor I interaction. It may reflect either some imbalance of the force field or it may be a correct indication of early stages of unfolding since this K-turn requires protein binding for its stabilization. Interestingly, the 16(O2')-7(N1) H- bond is usually not fully lost since it is replaced by a water bridge with a tightly bound water, which is adenine-specific similarly as the original interaction. The 16(O2')-7(N1) H-bond is stabilized by protein binding. The stabilizing effect is more visible with the human 15.5 kDa protein, which is attributed to valine to arginine substitution in the binding site. The behavior of the A-minor interaction is force-field-dependent because the parmbsc0 force field attenuates the A-minor fluctuations compared to parm99 simulations. Behavior of other regions of the box C/D RNA is not sensitive to the force field choice. Simulation with net-neutralizing Na(+) and 0.2 M excess salt conditions appear in all aspects equivalent. The simulations show loss of a hairpin tetraloop, which is not part of the K-turn. This was attributed to force field limitations.


Assuntos
Íons/química , Conformação de Ácido Nucleico , RNA/química , Água/química , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , RNA Arqueal/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA