Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pineal Res ; 76(4): e12953, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38682544

RESUMO

The search for melatonin receptor agonists formed the main part of melatonin medicinal chemistry programs for the last three decades. In this short review, we summarize the two main aspects of these programs: the development of all the necessary tools to characterize the newly synthesized ligands at the two melatonin receptors MT1 and MT2, and the medicinal chemist's approaches to find chemically diverse ligands at these receptors. Both strategies are described. It turns out that the main source of tools were industrial laboratories, while the medicinal chemistry was mainly carried out in academia. Such complete accounts are interesting, as they delineate the spirits in which the teams were working demonstrating their strength and innovative character. Most of the programs were focused on nonselective agonists and few of them reached the market. In contrast, discovery of MT1-selective agonists and melatonergic antagonists with proven in vivo activity and MT1 or MT2-selectivity is still in its infancy, despite the considerable interest that subtype selective compounds may bring in the domain, as the physiological respective roles of the two subtypes of melatonin receptors, is still poorly understood. Poly-pharmacology applications and multitarget ligands have also been considered.


Assuntos
Receptor MT2 de Melatonina , Ligantes , Humanos , Animais , Receptor MT2 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT1 de Melatonina/metabolismo , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/antagonistas & inibidores , Receptores de Melatonina/metabolismo , Receptores de Melatonina/agonistas , Melatonina/metabolismo , História do Século XX
2.
J Pineal Res ; 76(2): e12941, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38606814

RESUMO

The labeled ligand commonly employed in competition binding studies for melatonin receptor ligands, 2-[125I]iodomelatonin, showed slow dissociation with different half-lives at the two receptor subtypes. This may affect the operational measures of affinity constants, which at short incubation times could not be obtained in equilibrium conditions, and structure-activity relationships, as the Ki values of tested ligands could depend on either interaction at the binding site or the dissociation path. To address these issues, the kinetic and saturation binding parameters of 2-[125I]iodomelatonin as well as the competition constants for a series of representative ligands were measured at a short (2 h) and a long (20 h) incubation time. Concurrently, we simulated by molecular modeling the dissociation path of 2-iodomelatonin from MT1 and MT2 receptors and investigated the role of interactions at the binding site on the stereoselectivity observed for the enantiomers of the subtype-selective ligand UCM1014. We found that equilibrium conditions for 2-[125I]iodomelatonin binding can be reached only with long incubation times, particularly for the MT2 receptor subtype, for which a time of 20 h approximates this condition. On the other hand, measured Ki values for a set of ligands including agonists, antagonists, nonselective, and subtype-selective compounds were not significantly affected by the length of incubation, suggesting that structure-activity relationships based on data collected at shorter time reflect different interactions at the binding site. Molecular modeling simulations evidenced that the slower dissociation of 2-iodomelatonin from the MT2 receptor can be related to the restricted mobility of a gatekeeper tyrosine along a lipophilic path from the binding site to the membrane bilayer. The enantiomers of the potent, MT2-selective agonist UCM1014 were separately synthesized and tested. Molecular dynamics simulations of the receptor-ligand complexes provided an explanation for their stereoselectivity as due to the preference shown by the eutomer at the binding site for the most abundant axial conformation adopted by the ligand in solution. These results suggest that, despite the slow-binding kinetics occurring for the labeled ligand, affinity measures at shorter incubation times give robust results consistent with known structure-activity relationships and with interactions taken at the receptor binding site.


Assuntos
Melatonina , Quinolinas , Ligantes , Receptores de Melatonina , Melatonina/metabolismo , Amidas , Receptor MT2 de Melatonina/metabolismo , Receptor MT1 de Melatonina/metabolismo
3.
J Enzyme Inhib Med Chem ; 35(1): 1685-1696, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32907434

RESUMO

Heparanase is a validated target in cancer therapy and a potential target for several inflammatory pathologies. A ligand-based virtual screening of commercial libraries was performed to expand the chemical space of small-molecule inhibitors. The screening was based on similarity with known inhibitors and was performed in several runs, starting from literature compounds and progressing through newly discovered inhibitors. Among the fifty-five tested compounds, nineteen had IC50 values lower than 5 µM and some showed remarkable potencies. Importantly, tere- and isophthalamides derivatives belong to new structural classes of heparanase inhibitors and some of them showed enzyme affinities (61 and 63, IC50 = 0.32 and 0.12 µM, respectively) similar to those of the most potent small-molecule inhibitors reported so far. Docking studies provided a comprehensive binding hypothesis shared by compounds with significant structural diversity. The most potent inhibitors reduced cell invasiveness and inhibited the expression of proangiogenic factors in tumour cell lines.


Assuntos
Amidas/farmacologia , Inibidores Enzimáticos/farmacologia , Glucuronidase/antagonistas & inibidores , Amidas/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Glucuronidase/metabolismo , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
4.
Molecules ; 25(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899888

RESUMO

N-anilinoethylamides are a class of melatoninergic agents with the aniline portion mimicking the indole ring of the natural ligand and the ethylamide chain reproducing that of melatonin. The simplest compound in this class, N-{2-[(3-methoxyphenyl)methylamino]ethyl}acetamide (UCM793), has nanomolar binding affinity for MT1 and MT2 membrane receptors. To explore the effect of chain conformation on receptor binding, a methyl group was inserted on the methylene alpha or beta to the amide nitrogen and conformational equilibria were investigated by NMR spectroscopy and molecular dynamics simulations. Receptor affinity was conserved only for the beta-methyl derivative, which also showed significant stereoselectivity, with the (S) enantiomer being the eutomer. Molecular dynamics simulations, validated by NMR spectroscopy, showed that the beta-methyl group affects the conformational preferences of the ethylamide chain. Docking into the receptor crystal structure provides a rationale for the observed chiral recognition, suggesting that the (S)-beta-methyl group favors the conformation that better fits the receptor binding site.


Assuntos
Conformação Molecular , Receptor MT1 de Melatonina/química , Receptor MT2 de Melatonina/química , Acetamidas/química , Cristalografia por Raios X , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Estereoisomerismo , Termodinâmica
5.
Chem Res Toxicol ; 32(1): 100-112, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30560658

RESUMO

Stimulus-responsive cleavage reactions have found broad use to direct drug release at a particular target disease area. Increased levels of reactive oxygen species (ROS) have been associated with the development and progression of cancer and several other disease states, motivating the development of drug conjugates that can undergo a chemoselective ROS-triggered release. Melatonin (MLT) and the reactive electrophile p-benzoquinone methide ( p-QM) have evidenced either cytoprotective or cytotoxic effects in biological systems, depending on the dose, cellular targets, and time of exposure. In this study, we report the synthesis and biological activity of two MLT derivatives linked to ROS-responsive arylboronate triggers (P1 and P2), which can be activated by endogenously generated hydrogen peroxide (H2O2) to release MLT, or 5-methoxytryptamine (5-MeOT), and p-QM-intermediates. Their H2O2-induced activation mechanism was studied by HPLC-DAD-MS. P1, which rapidly releases MLT and p-QM, was able to strongly induce the Nrf2 antioxidant signaling pathway, but was ineffective to provide protection against H2O2-mediated oxidative damage. By contrast, P1 exhibited strong toxic effects in HeLa cancer cells, without causing significant toxicity to normal NCTC-2544 cells. Similar, although more limited, effects were exerted by P2. In both cases, cytotoxicity was accompanied by depletion of cellular glutathione (GSH), probably as a consequence of p-QM release, and increased ROS levels. A role for MLT in toxicity was also observed, suggesting that the P1 released products, MLT and p-QM, contributed additively to promote cell death.


Assuntos
Ácidos Borônicos/farmacologia , Desenho de Fármacos , Peróxido de Hidrogênio/farmacologia , Melatonina/farmacologia , Ácidos Borônicos/síntese química , Ácidos Borônicos/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células HeLa , Humanos , Peróxido de Hidrogênio/síntese química , Peróxido de Hidrogênio/química , Melatonina/síntese química , Melatonina/química , Estrutura Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Mol Sci ; 20(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108968

RESUMO

Melatonin (MLT) is a neurohormone that regulates many physiological functions including sleep, pain, thermoregulation, and circadian rhythms. MLT acts mainly through two G-protein-coupled receptors named MT1 and MT2, but also through an MLT type-3 receptor (MT3). However, the role of MLT receptor subtypes in thermoregulation is still unknown. We have thus investigated the effects of selective and non-selective MLT receptor agonists/antagonists on body temperature (Tb) in rats across the 12/12-h light-dark cycle. Rectal temperature was measured every 15 min from 4:00 a.m. to 9:30 a.m. and from 4:00 p.m. to 9:30 p.m., following subcutaneous injection of each compound at either 5:00 a.m. or 5:00 p.m. MLT (40 mg/kg) had no effect when injected at 5 a.m., whereas it decreased Tb during the light phase only when injected at 5:00 p.m. This effect was blocked by the selective MT2 receptor antagonist 4P-PDOT and the non-selective MT1/MT2 receptor antagonist, luzindole, but not by the α1/MT3 receptors antagonist prazosin. However, unlike MLT, neither the selective MT1 receptor partial agonist UCM871 (14 mg/kg) nor the selective MT2 partial agonist UCM924 (40 mg/kg) altered Tb during the light phase. In contrast, UCM871 injected at 5:00 p.m. increased Tb at the beginning of the dark phase, whereas UCM924 injected at 5:00 a.m. decreased Tb at the end of the dark phase. These effects were blocked by luzindole and 4P-PDOT, respectively. The MT3 receptor agonist GR135531 (10 mg/kg) did not affect Tb. These data suggest that the simultaneous activation of both MT1 and MT2 receptors is necessary to regulate Tb during the light phase, whereas in a complex but yet unknown manner, they regulate Tb differently during the dark phase. Overall, MT1 and MT2 receptors display complementary but also distinct roles in modulating circadian fluctuations of Tb.


Assuntos
Temperatura Corporal/efeitos dos fármacos , Melatonina/administração & dosagem , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Acetamidas/administração & dosagem , Acetamidas/farmacologia , Compostos de Anilina/administração & dosagem , Compostos de Anilina/farmacologia , Animais , Injeções Subcutâneas , Masculino , Melatonina/farmacologia , Fotoperíodo , Ratos , Ratos Wistar , Receptor MT1 de Melatonina/antagonistas & inibidores , Receptor MT2 de Melatonina/antagonistas & inibidores , Receptor MT2 de Melatonina/metabolismo , Tetra-Hidronaftalenos/administração & dosagem , Tetra-Hidronaftalenos/farmacologia , Triptaminas/administração & dosagem , Triptaminas/farmacologia
7.
J Org Chem ; 80(6): 3217-22, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25699684

RESUMO

The selective C3-alkylation of indoles with N-protected ethanolamines involving the "borrowing hydrogen" strategy is described. This method provides convenient and sustainable access to several tryptamine derivatives.


Assuntos
Alquilantes/química , Amino Álcoois/química , Indóis/química , Irídio/química , Compostos Organometálicos/química , Triptaminas/síntese química , Catálise , Estrutura Molecular , Triptaminas/química
8.
Int J Mol Sci ; 15(9): 16114-33, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25222552

RESUMO

Melatonin is an endogenous molecule involved in many pathophysiological processes. In addition to the control of circadian rhythms, its antioxidant and neuroprotective properties have been widely described. Thus far, different bivalent compounds composed by a melatonin molecule linked to another neuroprotective agent were synthesized and tested for their ability to block neurodegenerative processes in vitro and in vivo. To identify a novel class of potential neuroprotective compounds, we prepared a series of bivalent ligands, in which a prototypic melatonergic ligand is connected to an imidazole-based H3 receptor antagonist through a flexible linker. Four imidazolyl-alkyloxy-anilinoethylamide derivatives, characterized by linkers of different length, were synthesized and their binding affinity for human MT1, MT2 and H3 receptor subtypes was evaluated. Among the tested compounds, 14c and 14d, bearing a pentyl and a hexyl linker, respectively, were able to bind to all receptor subtypes at micromolar concentrations and represent the first bivalent melatonergic/histaminergic ligands reported so far. These preliminary results, based on binding affinity evaluation, pave the way for the future development of new dual-acting compounds targeting both melatonin and histamine receptors, which could represent promising therapeutic agents for the treatment of neurodegenerative pathologies.


Assuntos
Antagonistas dos Receptores Histamínicos/síntese química , Receptor MT1 de Melatonina/antagonistas & inibidores , Receptor MT2 de Melatonina/antagonistas & inibidores , Receptores Histamínicos H3/química , Sítios de Ligação , Antagonistas dos Receptores Histamínicos/química , Humanos , Imidazóis/síntese química , Imidazóis/química , Ligantes , Simulação de Acoplamento Molecular , Piperidinas/síntese química , Piperidinas/química , Ligação Proteica , Estrutura Terciária de Proteína , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Receptores Histamínicos H3/metabolismo
9.
Beilstein J Org Chem ; 10: 1991-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25246958

RESUMO

The reaction of 3-substituted indoles with dehydroalanine (Dha) derivatives under Lewis acid-mediated conditions has been investigated. The formation of 2-substituted tryptophans is proposed to occur through a selective alkylative dearomatization-cyclization followed by C3- to C2-alkyl migration and rearomatization.

10.
Nat Commun ; 15(1): 1705, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402219

RESUMO

Circulating monocytes participate in pain chronification but the molecular events that cause their deployment are unclear. Using a mouse model of hyperalgesic priming (HP), we show that monocytes enable progression to pain chronicity through a mechanism that requires transient activation of the hydrolase, N-acylethanolamine acid amidase (NAAA), and the consequent suppression of NAAA-regulated lipid signaling at peroxisome proliferator-activated receptor-α (PPAR-α). Inhibiting NAAA in the 72 hours following administration of a priming stimulus prevented HP. This effect was phenocopied by NAAA deletion and depended on PPAR-α recruitment. Mice lacking NAAA in CD11b+ cells - monocytes, macrophages, and neutrophils - were resistant to HP induction. Conversely, mice overexpressing NAAA or lacking PPAR-α in the same cells were constitutively primed. Depletion of monocytes, but not resident macrophages, generated mice that were refractory to HP. The results identify NAAA-regulated signaling in monocytes as a control node in the induction of HP and, potentially, the transition to pain chronicity.


Assuntos
Amidoidrolases , Monócitos , Humanos , Inibidores Enzimáticos/farmacologia , Hiperalgesia/genética , Lipídeos , Dor , PPAR alfa , Animais , Camundongos
11.
Int J Mol Sci ; 14(4): 8093-121, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23584026

RESUMO

Melatonin exerts many of its actions through the activation of two G protein-coupled receptors (GPCRs), named MT1 and MT2. So far, a number of different MT1 and MT2 receptor homology models, built either from the prototypic structure of rhodopsin or from recently solved X-ray structures of druggable GPCRs, have been proposed. These receptor models differ in the binding modes hypothesized for melatonin and melatonergic ligands, with distinct patterns of ligand-receptor interactions and putative bioactive conformations of ligands. The receptor models will be described, and they will be discussed in light of the available information from mutagenesis experiments and ligand-based pharmacophore models. The ability of these ligand-receptor complexes to rationalize structure-activity relationships of known series of melatonergic compounds will be commented upon.


Assuntos
Receptor MT1 de Melatonina/química , Receptor MT2 de Melatonina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Humanos , Ligantes , Melatonina/análogos & derivados , Melatonina/química , Melatonina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
12.
J Neurosci ; 31(50): 18439-52, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22171046

RESUMO

Melatonin activates two brain G-protein coupled receptors, MT(1) and MT(2), whose differential roles in the sleep-wake cycle remain to be defined. The novel MT(2) receptor partial agonist, N-{2-[(3-methoxyphenyl) phenylamino] ethyl} acetamide (UCM765), is here shown to selectively promote non-rapid eye movement sleep (NREMS) in rats and mice. The enhancement of NREMS by UCM765 is nullified by the pharmacological blockade or genetic deletion of MT(2) receptors. MT(2), but not MT(1), knock-out mice show a decrease in NREMS compared to the wild strain. Immunohistochemical labeling reveals that MT(2) receptors are localized in sleep-related brain regions, and notably the reticular thalamic nucleus (Rt). Microinfusion of UCM765 in the Rt promotes NREMS, and its systemic administration induces an increase in firing and rhythmic burst activity of Rt neurons, which is blocked by the MT(2) antagonist 4-phenyl-2-propionamidotetralin. Since developing hypnotics that increase NREMS without altering sleep architecture remains a medical challenge, MT(2) receptors may represent a novel target for the treatment of sleep disorders.


Assuntos
Acetamidas/farmacologia , Compostos de Anilina/farmacologia , Neurônios/efeitos dos fármacos , Receptor MT2 de Melatonina/metabolismo , Sono/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/genética
13.
J Org Chem ; 77(14): 6351-7, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22724919

RESUMO

An efficient, one-pot reductive alkylation of indoles with N-protected aminoethyl acetals in the presence of TES/TFA is reported. It represents the first general method for the direct synthesis of tryptamine derivatives from indoles and nitrogen-functionalized acetals. This convergent and versatile approach employs safe and inexpensive reagents, proceeds under mild conditions, and tolerates several functional groups. The new procedure was efficiently applied to a gram-scale synthesis of both luzindole, a reference MT2-selective melatonin receptor antagonist, and melatonin.


Assuntos
Indóis/química , Triptaminas/síntese química , Alquilação , Estrutura Molecular , Estereoisomerismo , Triptaminas/química
14.
J Pineal Res ; 53(1): 29-37, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22017484

RESUMO

Melatonin receptors have been described to activate different G protein-dependent signaling pathways, both in laboratory, heterologous, cellular models and in physiological conditions. Furthermore, the constitutive activity of G protein-coupled receptors has been shown to be key in physiological and pathological conditions. In the case of melatonin receptors, information is rather scare and concerns only MT1 receptors. In the present report, we show that the G protein-coupled melatonin receptors do have a constitutive, nonmelatonin-induced signaling activity using two cellular models of different origins, the Chinese hamster ovary cell line and Neuro2A, a neuroblastoma cell line. Furthermore, we show that this constitutive activity involves mainly Gi proteins, which is consistent with the common knowledge on the melatonin receptors. Importantly, we also describe, for the first time, inverse agonist properties for melatonin ligands. Although it is clear than more in-depth, biochemistry-based studies will be required to better understand by which pathway(s) the constitutively active melatonin receptors transfer melatonin information into intracellular biochemical events; our data open interesting perspectives for understanding the importance of the constitutive activity of melatonin receptors in physiological conditions.


Assuntos
Melatonina/metabolismo , Receptor MT1 de Melatonina , Receptor MT2 de Melatonina , Transdução de Sinais/fisiologia , Animais , Células CHO , Clonagem Molecular , Cricetinae , Cricetulus , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo
15.
Org Biomol Chem ; 10(2): 305-13, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22095411

RESUMO

An efficient and practical approach for the synthesis of all four stereoisomers of the MT(2) melatonin receptor ligand 4-phenyl-2-propionamidotetralin (4-P-PDOT), each in enantiomerically pure form (ee > 99.9%), was developed. The strategy involved an optical resolution procedure of the key precursor (±)-4-phenyl-2-tetralone with the unusual resolving agent (S)-mandelamide, through the formation of four dihydronaphtalene-spiro-oxazolidin-4-one diastereomers. Interestingly, NMR experimental observations in combination with geometric calculations, provided unambiguous configuration assignments of all stereocenters of the key spiro stereoisomers. Cleavage of each single spiro diastereomer under acidic conditions gave enantiopure (R)- or (S)-4-phenyl-2-tetralone, which were then converted to each 4-P-PDOT single enantiomer by using stereoselective reactions.


Assuntos
Tetra-Hidronaftalenos/síntese química , Tetralonas/química , Ligantes , Conformação Molecular , Fenômenos Ópticos , Receptores de Melatonina/química , Estereoisomerismo , Tetra-Hidronaftalenos/química , Tetra-Hidronaftalenos/farmacologia
16.
Expert Opin Drug Discov ; 17(4): 343-354, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35255751

RESUMO

INTRODUCTION: The neurohormone melatonin (N-acetyl-5-methoxytryptamine) regulates circadian rhythms exerting a variety of effects in the central nervous system and in periphery. These activities are mainly mediated by activation of MT1 and MT2 GPCRs. MT1/MT2 agonist compounds are used clinically for insomnia, depression, and circadian rhythm disturbances. AREA COVERED: The following review describes the design strategies that have led to the identification of melatonin receptor ligands, guided by in silico approaches and molecular modeling. Initial ligand-based design, mainly relying on pharmacophore modeling and 3D-QSAR, has been flanked by structure-based virtual screening, given the recent availability of MT1 and MT2 crystal structures. Receptor ligands with different activity profiles, agonist/antagonist and subtype-selective compounds, are available. EXPERT OPINION: An insight on the pharmacological characterization and therapeutic perspectives for relevant ligands is provided. In silico drug discovery has been instrumental in the design of novel ligands targeting melatonin receptors. Ligand-based approaches has led to the construction of a solid framework defining structure-activity relationships to obtain compounds with a tailored pharmacological profile. Structure-based techniques could integrate previous knowledge and provide compounds with novel chemotypes and pharmacological activity as drug candidates for disease conditions in which melatonin receptor ligands are currently being investigated, including cancer and pain.


Assuntos
Melatonina , Receptor MT1 de Melatonina , Descoberta de Drogas , Humanos , Ligantes , Melatonina/farmacologia , Receptor MT1 de Melatonina/agonistas , Receptor MT2 de Melatonina/agonistas
17.
Eur J Med Chem ; 243: 114762, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36150258

RESUMO

In crystal structures of melatonin MT1 and MT2 receptors, a lipophilic subpocket has been characterized which accommodates the phenyl ring of the potent agonist 2-phenylmelatonin. This subpocket appears a key structural element to achieve high binding affinity and selectivity for the MT2 receptor. A series of 2-arylindole ligands was synthesized to probe the requirements for the optimal occupation and interaction with the 2-phenyl binding pocket. Thermodynamic integration simulations applied to MT1 and MT2 receptors in complex with the α-naphthyl derivative provided a rationale for the MT2-selectivity and investigation on the binding mode of a couple of atropisomers allowed to define the available space and arrangement of substituents inside the subpocket. Interestingly, more hydrophilic 2-aza-substituted compounds displayed high binding affinity and molecular dynamics simulations highlighted polar interaction with residues from the subpocket that could be responsible for their potency.


Assuntos
Melatonina , Receptor MT1 de Melatonina , Receptor MT2 de Melatonina , Ligantes , Melatonina/análogos & derivados , Melatonina/química , Melatonina/metabolismo , Simulação de Dinâmica Molecular , Receptor MT1 de Melatonina/química , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/química , Receptor MT2 de Melatonina/metabolismo
18.
ACS Chem Neurosci ; 13(9): 1382-1394, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35420022

RESUMO

Melatonin is a neurohormone that modulates several physiological functions in mammals through the activation of melatonin receptor type 1 and 2 (MT1 and MT2). The melatonergic system is an emerging therapeutic target for new pharmacological interventions in the treatment of sleep and mood disorders; thus, imaging tools to further investigate its role in the brain are highly sought-after. We aimed to develop selective radiotracers for in vivo imaging of both MT1 and MT2 by positron emission tomography (PET). We identified four previously reported MT ligands with picomolar affinities to the target based on different scaffolds which were also amenable for radiolabeling with either carbon-11 or fluorine-18. [11C]UCM765, [11C]UCM1014, [18F]3-fluoroagomelatine ([18F]3FAGM), and [18F]fluoroacetamidoagomelatine ([18F]FAAGM) have been synthesized in high radiochemical purity and evaluated in wild-type rats. All four tracers showed moderate to high brain permeability in rats with maximum standardized uptake values (SUVmax of 2.53, 1.75, 3.25, and 4.47, respectively) achieved 1-2 min after tracer administration, followed by a rapid washout from the brain. Several melatonin ligands failed to block the binding of any of the PET tracer candidates, while in some cases, homologous blocking surprisingly resulted in increased brain retention. Two 18F-labeled agomelatine derivatives were brought forward to PET scans in non-human primates and autoradiography on human brain tissues. No specific binding has been detected in blocking studies. To further investigate pharmacokinetic properties of the putative tracers, microsomal stability, plasma protein binding, log D, and membrane bidirectional permeability assays have been conducted. Based on the results, we conclude that the fast first pass metabolism by the enzymes in liver microsomes is the likely reason of the failure of our PET tracer candidates. Nevertheless, we showed that PET imaging can serve as a valuable tool to investigate the brain permeability of new therapeutic compounds targeting the melatonergic system.


Assuntos
Melatonina , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Flúor/metabolismo , Ligantes , Mamíferos/metabolismo , Melatonina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Ratos , Receptores de Melatonina/metabolismo
19.
J Org Chem ; 76(2): 704-7, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21175194

RESUMO

A new, robust, and reliable method has been developed for the selective reductive N-alkylation of primary and secondary aromatic amines with some functionalized acetals using TFA/Et(3)SiH as a reagent combination. A variety of unsymmetrically substituted ethylenediamines can be synthesized in a one-pot procedure in excellent yields at room temperature. This new procedure offers significant advantages over previous synthetic approaches, including brevity, mild reaction conditions, excellent yields, and high functional group tolerance.


Assuntos
Acetais/química , Compostos de Anilina/química , Etilenodiaminas/química , Etilenodiaminas/síntese química , Silanos/química , Ácido Trifluoracético/química , Alquilação , Catálise , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oxirredução
20.
Bioorg Med Chem ; 19(16): 4910-6, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21775151

RESUMO

We report the synthesis, binding properties and intrinsic activity at MT(1) and MT(2) melatonin receptors of new dimeric melatonin receptor ligands in which two units of the monomeric agonist N-{2-[(3-methoxyphenyl)methylamino]ethyl}acetamide (1) are linked together through different anchor points. Dimerization of compound 1 through the methoxy substituent leads to a substantial improvement in selectivity for the MT(1) receptor, and to a partial agonist behavior. Compound 3a, with a trimethylene linker, was the most selective for the MT(1) subtype (112-fold selectivity) and compound 3d, characterized by a hexamethylene spacer, had the highest MT(1) binding affinity (pK(iMT1)=8.47) and 54-fold MT(1)-selectivity. Dimerization through the aniline nitrogen of 1 abolished MT(1) selectivity, leading to compounds with either a full agonist or an antagonist behavior depending on the nature of the linker.


Assuntos
Terapia de Alvo Molecular , Receptores de Melatonina/química , Células 3T3 , Animais , Dimerização , Desenho de Fármacos , Células HEK293 , Humanos , Ligantes , Camundongos , Ligação Proteica , Ratos , Receptores de Melatonina/agonistas , Receptores de Melatonina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA