Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(22): 5541-5558.e22, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34644528

RESUMO

Retrotransposons mediate gene regulation in important developmental and pathological processes. Here, we characterized the transient retrotransposon induction during preimplantation development of eight mammals. Induced retrotransposons exhibit similar preimplantation profiles across species, conferring gene regulatory activities, particularly through long terminal repeat (LTR) retrotransposon promoters. A mouse-specific MT2B2 retrotransposon promoter generates an N-terminally truncated Cdk2ap1ΔN that peaks in preimplantation embryos and promotes proliferation. In contrast, the canonical Cdk2ap1 peaks in mid-gestation and represses cell proliferation. This MT2B2 promoter, whose deletion abolishes Cdk2ap1ΔN production, reduces cell proliferation and impairs embryo implantation, is developmentally essential. Intriguingly, Cdk2ap1ΔN is evolutionarily conserved in sequence and function yet is driven by different promoters across mammals. The distinct preimplantation Cdk2ap1ΔN expression in each mammalian species correlates with the duration of its preimplantation development. Hence, species-specific transposon promoters can yield evolutionarily conserved, alternative protein isoforms, bestowing them with new functions and species-specific expression to govern essential biological divergence.


Assuntos
Sequência Conservada , Desenvolvimento Embrionário/genética , Proteínas Quinases/metabolismo , Retroelementos/genética , Proteínas Supressoras de Tumor/metabolismo , Animais , Sequência de Bases , Blastocisto/metabolismo , Proliferação de Células , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Mamíferos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Regiões Promotoras Genéticas , Isoformas de Proteínas/metabolismo
2.
Nat Immunol ; 23(8): 1236-1245, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35882933

RESUMO

Tissue-resident memory T cells (TRM cells) provide rapid and superior control of localized infections. While the transcription factor Runx3 is a critical regulator of CD8+ T cell tissue residency, its expression is repressed in CD4+ T cells. Here, we show that, as a direct consequence of this Runx3-deficiency, CD4+ TRM cells lacked the transforming growth factor (TGF)-ß-responsive transcriptional network that underpins the tissue residency of epithelial CD8+ TRM cells. While CD4+ TRM cell formation required Runx1, this, along with the modest expression of Runx3 in CD4+ TRM cells, was insufficient to engage the TGF-ß-driven residency program. Ectopic expression of Runx3 in CD4+ T cells incited this TGF-ß-transcriptional network to promote prolonged survival, decreased tissue egress, a microanatomical redistribution towards epithelial layers and enhanced effector functionality. Thus, our results reveal distinct programming of tissue residency in CD8+ and CD4+ TRM cell subsets that is attributable to divergent Runx3 activity.


Assuntos
Memória Imunológica , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
3.
Nat Immunol ; 22(9): 1140-1151, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34426691

RESUMO

Tissue-resident memory T (TRM) cells are non-recirculating cells that exist throughout the body. Although TRM cells in various organs rely on common transcriptional networks to establish tissue residency, location-specific factors adapt these cells to their tissue of lodgment. Here we analyze TRM cell heterogeneity between organs and find that the different environments in which these cells differentiate dictate TRM cell function, durability and malleability. We find that unequal responsiveness to TGFß is a major driver of this diversity. Notably, dampened TGFß signaling results in CD103- TRM cells with increased proliferative potential, enhanced function and reduced longevity compared with their TGFß-responsive CD103+ TRM counterparts. Furthermore, whereas CD103- TRM cells readily modified their phenotype upon relocation, CD103+ TRM cells were comparatively resistant to transdifferentiation. Thus, despite common requirements for TRM cell development, tissue adaptation of these cells confers discrete functional properties such that TRM cells exist along a spectrum of differentiation potential that is governed by their local tissue microenvironment.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Plasticidade Celular/imunologia , Microambiente Celular/imunologia , Memória Imunológica/imunologia , Animais , Antígenos CD/imunologia , Linfócitos T CD8-Positivos/citologia , Feminino , Cadeias alfa de Integrinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta1/metabolismo
4.
Nat Immunol ; 17(4): 422-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26950239

RESUMO

T cell responses are guided by cytokines that induce transcriptional regulators, which ultimately control differentiation of effector and memory T cells. However, it is unknown how the activities of these molecular regulators are coordinated and integrated during the differentiation process. Using genetic approaches and transcriptional profiling of antigen-specific CD8(+) T cells, we reveal a common program of effector differentiation that is regulated by IL-2 and IL-12 signaling and the combined activities of the transcriptional regulators Blimp-1 and T-bet. The loss of both T-bet and Blimp-1 leads to abrogated cytotoxic function and ectopic IL-17 production in CD8(+) T cells. Overall, our data reveal two major overlapping pathways of effector differentiation governed by the availability of Blimp-1 and T-bet and suggest a model for cytokine-induced transcriptional changes that combine, quantitatively and qualitatively, to promote robust effector CD8(+) T cell differentiation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Interleucina-12/imunologia , Interleucina-2/imunologia , Proteínas com Domínio T/imunologia , Fatores de Transcrição/imunologia , Animais , Infecções por Arenaviridae/imunologia , Imunoprecipitação da Cromatina , Citocinas/imunologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Vírus da Influenza A Subtipo H1N1 , Interleucina-17/imunologia , Vírus da Coriomeningite Linfocítica , Camundongos , Infecções por Orthomyxoviridae/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT4/imunologia , Fator de Transcrição STAT5/imunologia , Análise de Sequência de RNA , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 120(33): e2203828120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549298

RESUMO

Cellular omics such as single-cell genomics, proteomics, and microbiomics allow the characterization of tissue and microbial community composition, which can be compared between conditions to identify biological drivers. This strategy has been critical to revealing markers of disease progression, such as cancer and pathogen infection. A dedicated statistical method for differential variability analysis is lacking for cellular omics data, and existing methods for differential composition analysis do not model some compositional data properties, suggesting there is room to improve model performance. Here, we introduce sccomp, a method for differential composition and variability analyses that jointly models data count distribution, compositionality, group-specific variability, and proportion mean-variability association, being aware of outliers. sccomp provides a comprehensive analysis framework that offers realistic data simulation and cross-study knowledge transfer. Here, we demonstrate that mean-variability association is ubiquitous across technologies, highlighting the inadequacy of the very popular Dirichlet-multinomial distribution. We show that sccomp accurately fits experimental data, significantly improving performance over state-of-the-art algorithms. Using sccomp, we identified differential constraints and composition in the microenvironment of primary breast cancer.


Assuntos
Genômica , Microbiota , Proteômica/métodos , Simulação por Computador , Algoritmos
6.
Nucleic Acids Res ; 50(16): e96, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35758618

RESUMO

Normalization of single cell RNA-seq data remains a challenging task. The performance of different methods can vary greatly between datasets when unwanted factors and biology are associated. Most normalization methods also only remove the effects of unwanted variation for the cell embedding but not from gene-level data typically used for differential expression (DE) analysis to identify marker genes. We propose RUV-III-NB, a method that can be used to remove unwanted variation from both the cell embedding and gene-level counts. Using pseudo-replicates, RUV-III-NB explicitly takes into account potential association with biology when removing unwanted variation. The method can be used for both UMI or read counts and returns adjusted counts that can be used for downstream analyses such as clustering, DE and pseudotime analyses. Using published datasets with different technological platforms, kinds of biology and levels of association between biology and unwanted variation, we show that RUV-III-NB manages to remove library size and batch effects, strengthen biological signals, improve DE analyses, and lead to results exhibiting greater concordance with independent datasets of the same kind. The performance of RUV-III-NB is consistent and is not sensitive to the number of factors assumed to contribute to the unwanted variation.


Assuntos
Perfilação da Expressão Gênica , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , RNA-Seq , Análise de Sequência de RNA/métodos
7.
BMC Genomics ; 24(1): 349, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365517

RESUMO

T cell receptor repertoires can be profiled using next generation sequencing (NGS) to measure and monitor adaptive dynamical changes in response to disease and other perturbations. Genomic DNA-based bulk sequencing is cost-effective but necessitates multiplex target amplification using multiple primer pairs with highly variable amplification efficiencies. Here, we utilize an equimolar primer mixture and propose a single statistical normalization step that efficiently corrects for amplification bias post sequencing. Using samples analyzed by both our open protocol and a commercial solution, we show high concordance between bulk clonality metrics. This approach is an inexpensive and open-source alternative to commercial solutions.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Linfócitos T , Sequência de Bases , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Receptores de Antígenos de Linfócitos T alfa-beta/genética
8.
Proc Natl Acad Sci U S A ; 116(20): 9775-9784, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31028141

RESUMO

Concerted examination of multiple collections of single-cell RNA sequencing (RNA-seq) data promises further biological insights that cannot be uncovered with individual datasets. Here we present scMerge, an algorithm that integrates multiple single-cell RNA-seq datasets using factor analysis of stably expressed genes and pseudoreplicates across datasets. Using a large collection of public datasets, we benchmark scMerge against published methods and demonstrate that it consistently provides improved cell type separation by removing unwanted factors; scMerge can also enhance biological discovery through robust data integration, which we show through the inference of development trajectory in a liver dataset collection.


Assuntos
Metanálise como Assunto , Análise de Sequência de RNA , Análise de Célula Única , Software , Algoritmos , Animais , Desenvolvimento Embrionário , Análise Fatorial , Expressão Gênica , Humanos , Camundongos
9.
Mol Syst Biol ; 16(6): e9389, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32567229

RESUMO

Automated cell type identification is a key computational challenge in single-cell RNA-sequencing (scRNA-seq) data. To capitalise on the large collection of well-annotated scRNA-seq datasets, we developed scClassify, a multiscale classification framework based on ensemble learning and cell type hierarchies constructed from single or multiple annotated datasets as references. scClassify enables the estimation of sample size required for accurate classification of cell types in a cell type hierarchy and allows joint classification of cells when multiple references are available. We show that scClassify consistently performs better than other supervised cell type classification methods across 114 pairs of reference and testing data, representing a diverse combination of sizes, technologies and levels of complexity, and further demonstrate the unique components of scClassify through simulations and compendia of experimental datasets. Finally, we demonstrate the scalability of scClassify on large single-cell atlases and highlight a novel application of identifying subpopulations of cells from the Tabula Muris data that were unidentified in the original publication. Together, scClassify represents state-of-the-art methodology in automated cell type identification from scRNA-seq data.


Assuntos
Células/metabolismo , Animais , Análise por Conglomerados , Bases de Dados como Assunto , Humanos , Leucócitos Mononucleares/metabolismo , Aprendizado de Máquina , Camundongos , Pâncreas/metabolismo , Tamanho da Amostra , Software
10.
Nucleic Acids Res ; 47(12): 6073-6083, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31114909

RESUMO

The Nanostring nCounter gene expression assay uses molecular barcodes and single molecule imaging to detect and count hundreds of unique transcripts in a single reaction. These counts need to be normalized to adjust for the amount of sample, variations in assay efficiency and other factors. Most users adopt the normalization approach described in the nSolver analysis software, which involves background correction based on the observed values of negative control probes, a within-sample normalization using the observed values of positive control probes and normalization across samples using reference (housekeeping) genes. Here we present a new normalization method, Removing Unwanted Variation-III (RUV-III), which makes vital use of technical replicates and suitable control genes. We also propose an approach using pseudo-replicates when technical replicates are not available. The effectiveness of RUV-III is illustrated on four different datasets. We also offer suggestions on the design and analysis of studies involving this technology.


Assuntos
Perfilação da Expressão Gênica/métodos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Células Dendríticas/metabolismo , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ativação Linfocitária/genética , Imagem Individual de Molécula
11.
Nucleic Acids Res ; 47(8): e46, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30793194

RESUMO

Systematic variation in the methylation of cytosines at CpG sites plays a critical role in early development of humans and other mammals. Of particular interest are regions of differential methylation between parental alleles, as these often dictate monoallelic gene expression, resulting in parent of origin specific control of the embryonic transcriptome and subsequent development, in a phenomenon known as genomic imprinting. Using long-read nanopore sequencing we show that, with an average genomic coverage of ∼10, it is possible to determine both the level of methylation of CpG sites and the haplotype from which each read arises. The long-read property is exploited to characterize, using novel methods, both methylation and haplotype for reads that have reduced basecalling precision compared to Sanger sequencing. We validate the analysis both through comparison of nanopore-derived methylation patterns with those from Reduced Representation Bisulfite Sequencing data and through comparison with previously reported data. Our analysis successfully identifies known imprinting control regions (ICRs) as well as some novel differentially methylated regions which, due to their proximity to hitherto unknown monoallelically expressed genes, may represent new ICRs.


Assuntos
Genoma , Impressão Genômica , Técnicas de Genotipagem , Haplótipos , Análise de Sequência de DNA/estatística & dados numéricos , Alelos , Animais , Mapeamento Cromossômico , Ilhas de CpG , Metilação de DNA , Embrião de Mamíferos/química , Embrião de Mamíferos/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Placenta/química , Placenta/metabolismo , Gravidez
12.
BMC Bioinformatics ; 21(1): 553, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261552

RESUMO

BACKGROUND: RNA sequencing allows the study of both gene expression changes and transcribed mutations, providing a highly effective way to gain insight into cancer biology. When planning the sequencing of a large cohort of samples, library size is a fundamental factor affecting both the overall cost and the quality of the results. Here we specifically address how overall library size influences the detection of somatic mutations in RNA-seq data in two acute myeloid leukaemia datasets. RESULTS : We simulated shallower sequencing depths by downsampling 45 acute myeloid leukaemia samples (100 bp PE) that are part of the Leucegene project, which were originally sequenced at high depth. We compared the sensitivity of six methods of recovering validated mutations on the same samples. The methods compared are a combination of three popular callers (MuTect, VarScan, and VarDict) and two filtering strategies. We observed an incremental loss in sensitivity when simulating libraries of 80M, 50M, 40M, 30M and 20M fragments, with the largest loss detected with less than 30M fragments (below 90%, average loss of 7%). The sensitivity in recovering insertions and deletions varied markedly between callers, with VarDict showing the highest sensitivity (60%). Single nucleotide variant sensitivity is relatively consistent across methods, apart from MuTect, whose default filters need adjustment when using RNA-Seq. We also analysed 136 RNA-Seq samples from the TCGA-LAML cohort (50 bp PE) and assessed the change in sensitivity between the initial libraries (average 59M fragments) and after downsampling to 40M fragments. When considering single nucleotide variants in recurrently mutated myeloid genes we found a comparable performance, with a 6% average loss in sensitivity using 40M fragments. CONCLUSIONS: Between 30M and 40M 100 bp PE reads are needed to recover 90-95% of the initial variants on recurrently mutated myeloid genes. To extend this result to another cancer type, an exploration of the characteristics of its mutations and gene expression patterns is suggested.


Assuntos
Biblioteca Gênica , Polimorfismo de Nucleotídeo Único/genética , RNA-Seq/métodos , Sequência de Bases , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética
13.
Genome Res ; 27(12): 2050-2060, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29097403

RESUMO

The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing remains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for detecting rearrangements, GRIDSS (Genome Rearrangement IDentification Software Suite). GRIDSS is a multithreaded structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel positional de Bruijn graph-based assembler. By combining assembly, split read, and read pair evidence using a probabilistic scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line, and patient tumor data, recently winning SV subchallenge #5 of the ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge. On human cell line data, GRIDSS halves the false discovery rate compared to other recent methods while matching or exceeding their sensitivity. GRIDSS identifies nontemplate sequence insertions, microhomologies, and large imperfect homologies, estimates a quality score for each breakpoint, stratifies calls into high or low confidence, and supports multisample analysis.


Assuntos
Rearranjo Gênico , Genômica/métodos , Software , Linhagem Celular , Simulação por Computador , Genoma , Variação Estrutural do Genoma , Humanos , Neoplasias/genética , Plasmodium falciparum/genética , Sensibilidade e Especificidade
14.
Bioinformatics ; 35(24): 5155-5162, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31197307

RESUMO

MOTIVATION: Dropout is a common phenomenon in single-cell RNA-seq (scRNA-seq) data, and when left unaddressed it affects the validity of the statistical analyses. Despite this, few current methods for differential expression (DE) analysis of scRNA-seq data explicitly model the process that gives rise to the dropout events. We develop DECENT, a method for DE analysis of scRNA-seq data that explicitly and accurately models the molecule capture process in scRNA-seq experiments. RESULTS: We show that DECENT demonstrates improved DE performance over existing DE methods that do not explicitly model dropout. This improvement is consistently observed across several public scRNA-seq datasets generated using different technological platforms. The gain in improvement is especially large when the capture process is overdispersed. DECENT maintains type I error well while achieving better sensitivity. Its performance without spike-ins is almost as good as when spike-ins are used to calibrate the capture model. AVAILABILITY AND IMPLEMENTATION: The method is implemented as a publicly available R package available from https://github.com/cz-ye/DECENT. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Célula Única , Software , Perfilação da Expressão Gênica , RNA-Seq , Análise de Sequência de RNA
15.
Bioinformatics ; 35(4): 560-570, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30084929

RESUMO

MOTIVATION: A synoptic view of the human genome benefits chiefly from the application of nucleic acid sequencing and microarray technologies. These platforms allow interrogation of patterns such as gene expression and DNA methylation at the vast majority of canonical loci, allowing granular insights and opportunities for validation of original findings. However, problems arise when validating against a "gold standard" measurement, since this immediately biases all subsequent measurements towards that particular technology or protocol. Since all genomic measurements are estimates, in the absence of a "gold standard" we instead empirically assess the measurement precision and sensitivity of a large suite of genomic technologies via a consensus modelling method called the row-linear model. This method is an application of the American Society for Testing and Materials Standard E691 for assessing interlaboratory precision and sources of variability across multiple testing sites. Both cross-platform and cross-locus comparisons can be made across all common loci, allowing identification of technology- and locus-specific tendencies. RESULTS: We assess technologies including the Infinium MethylationEPIC BeadChip, whole genome bisulfite sequencing (WGBS), two different RNA-Seq protocols (PolyA+ and Ribo-Zero) and five different gene expression array platforms. Each technology thus is characterised herein, relative to the consensus. We showcase a number of applications of the row-linear model, including correlation with known interfering traits. We demonstrate a clear effect of cross-hybridisation on the sensitivity of Infinium methylation arrays. Additionally, we perform a true interlaboratory test on a set of samples interrogated on the same platform across twenty-one separate testing laboratories. AVAILABILITY AND IMPLEMENTATION: A full implementation of the row-linear model, plus extra functions for visualisation, are found in the R package consensus at https://github.com/timpeters82/consensus. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Metilação de DNA , Genômica , Genoma Humano , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Software
16.
J Neurooncol ; 149(3): 401, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33026635

RESUMO

For the reference citation '[57]' in the second paragraph of the Results section of the original article there was no corresponding entry in the References section. It should have referred to the below mentioned article by Ebrahimkhani et al. (2018).

17.
J Neurooncol ; 149(3): 391-400, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32915353

RESUMO

PURPOSE: A circulating biomarker has potential to provide more accurate information for glioma progression post treatment, however no such biomarker is currently available. We aimed to discover a microRNA serum biomarker for longitudinal monitoring of glioma patients. METHODS: A prospectively collected cohort of 91 glioma patients and 17 healthy controls underwent pre and post-operative serum miRNA profiling using Nanostring®. Differentially expressed miRNAs were discovered using a machine learning random forest analysis. Candidate miRNAs were then assessed by droplet digital PCR in 11 patients with multiple follow up samples and compared to tumor volume based on magnetic resonance imaging. RESULTS: A 9-gene miRNA signature was identified that could distinguish between glioma and healthy controls with 99.8% accuracy. Two miRNAs miR-223 and miR-320e, best demonstrated dynamic changes that correlated closely with tumor volume in LGG and GBM respectively. Importantly, miRNA levels did not increase in two cases of pseudo-progression, indicating the potential utility of this test in guiding treatment decisions. CONCLUSIONS: We identified a highly accurate 9-miRNA signature associated with glioma serum. Additionally, we observed dynamic changes in specific miRNAs correlating with tumor volume over long-term follow up. These results support a large prospective validation study of serum miRNA biomarkers in glioma.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/sangue , Glioma/sangue , MicroRNAs/genética , Recidiva Local de Neoplasia/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Feminino , Seguimentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Glioma/cirurgia , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Estudos Prospectivos , Adulto Jovem
18.
PLoS Comput Biol ; 15(2): e1006745, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30753182

RESUMO

New approaches to lineage tracking have allowed the study of differentiation in multicellular organisms over many generations of cells. Understanding the phenotypic variability observed in these lineage trees requires new statistical methods. Whereas an invariant cell lineage, such as that for the nematode Caenorhabditis elegans, can be described by a lineage map, defined as the pattern of phenotypes overlaid onto the binary tree, a traditional lineage map is static and does not describe the variability inherent in the cell lineages of higher organisms. Here, we introduce lineage variability maps which describe the pattern of second-order variation in lineage trees. These maps can be undirected graphs of the partial correlations between every lineal position, or directed graphs showing the dynamics of bifurcated patterns in each subtree. We show how to infer these graphical models for lineages of any depth from sample sizes of only a few pedigrees. This required developing the generalized spectral analysis for a binary tree, the natural framework for describing tree-structured variation. When tested on pedigrees from C. elegans expressing a marker for pharyngeal differentiation potential, the variability maps recover essential features of the known lineage map. When applied to highly-variable pedigrees monitoring cell size in T lymphocytes, the maps show that most of the phenotype is set by the founder naive T cell. Lineage variability maps thus elevate the concept of the lineage map to the population level, addressing questions about the potency and dynamics of cell lineages and providing a way to quantify the progressive restriction of cell fate with increasing depth in the tree.


Assuntos
Padronização Corporal/genética , Linhagem da Célula/genética , Biologia Computacional/métodos , Animais , Caenorhabditis elegans/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Variação Genética/genética , Modelos Biológicos , Fenótipo
19.
Mol Cell ; 48(4): 509-20, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23084833

RESUMO

Emerging evidence suggests that Argonaute (Ago)/Piwi proteins have diverse functions in the nucleus and cytoplasm, but the molecular mechanisms employed in the nucleus remain poorly defined. The Tetrahymena thermophila Ago/Piwi protein Twi12 is essential for growth and functions in the nucleus. Twi12-bound small RNAs (sRNAs) are 3' tRNA fragments that contain modified bases and thus are attenuated for base pairing to targets. We show that Twi12 assembles an unexpected complex with the nuclear exonuclease Xrn2. Twi12 functions to stabilize and localize Xrn2, as well as to stimulate its exonuclease activity. Twi12 function depends on sRNA binding, which is required for its nuclear import. Depletion of Twi12 or Xrn2 induces a cellular ribosomal RNA processing defect known to result from limiting Xrn2 activity in other organisms. Our findings suggest a role for an Ago/Piwi protein and 3' tRNA fragments in nuclear RNA metabolism.


Assuntos
Proteínas Argonautas/metabolismo , Núcleo Celular/metabolismo , Exorribonucleases/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , Tetrahymena/genética , Proteínas Argonautas/genética , Núcleo Celular/enzimologia , Núcleo Celular/genética , RNA de Transferência/genética , Tetrahymena/citologia , Tetrahymena/metabolismo
20.
Circulation ; 138(23): 2648-2661, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30571257

RESUMO

BACKGROUND: Acute rheumatic fever (ARF) and rheumatic heart disease are autoimmune consequences of group A streptococcus infection and remain major causes of cardiovascular morbidity and mortality around the world. Improved treatment has been stymied by gaps in understanding key steps in the immunopathogenesis of ARF and rheumatic heart disease. This study aimed to identify (1) effector T cell cytokine(s) that might be dysregulated in the autoimmune response of patients with ARF by group A streptococcus, and (2) an immunomodulatory agent that suppresses this response and could be clinically translatable to high-risk patients with ARF. METHODS: The immune response to group A streptococcus was analyzed in peripheral blood mononuclear cells from an Australian Aboriginal ARF cohort by a combination of multiplex cytokine array, flow cytometric analysis, and global gene expression analysis by RNA sequencing. The immunomodulatory drug hydroxychloroquine was tested for effects on this response. RESULTS: We found a dysregulated interleukin-1ß-granulocyte-macrophage colony-stimulating factor (GM-CSF) cytokine axis in ARF peripheral blood mononuclear cells exposed to group A streptococcus in vitro, whereby persistent interleukin-1ß production is coupled to overproduction of GM-CSF and selective expansion of CXCR3+CCR4-CCR6- CD4 T cells. CXCR3+CCR4-CCR6- CD4 T cells are the major source of GM-CSF in human CD4 T cells and CXCL10, a CXCR3 ligand and potent T helper 1 chemoattractant, was elevated in sera from patients with ARF. GM-CSF has recently emerged as a key T cell-derived effector cytokine in numerous autoimmune diseases, including myocarditis, and the production of CXCL10 may explain selective trafficking of these cells to the heart. We provide evidence that interleukin-1ß amplifies the expansion of GM-CSF-expressing CD4 T cells, which is effectively suppressed by hydroxychloroquine. RNA sequencing showed shifts in gene expression profiles and differentially expressed genes in peripheral blood mononuclear cells derived from patients at different clinical stages of ARF. CONCLUSIONS: Given the safety profile of hydroxychloroquine and its clinical pedigree in treating autoimmune diseases such as rheumatoid arthritis, where GM-CSF plays a pivotal role, we propose that hydroxychloroquine could be repurposed to reduce the risk of rheumatic heart disease after ARF.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Hidroxicloroquina/farmacologia , Interleucina-1beta/metabolismo , Febre Reumática/patologia , Adolescente , Adulto , Proteína C-Reativa/análise , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Criança , Citocinas/análise , Citocinas/genética , Citocinas/metabolismo , Feminino , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Febre Reumática/metabolismo , Streptococcus pyogenes/imunologia , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA