Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918178

RESUMO

Metals are important cofactors in the metabolic processes of cyanobacteria, including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as to reduce potential toxicity from excessive metal concentrations. Leptochelins A-C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus Leptothoe. Determination of the complex structures of these metabolites presented numerous challenges, but they were ultimately solved using integrated data from NMR, mass spectrometry and deductions from the biosynthetic gene cluster. The leptochelins are comprised of halogenated linear NRPS-PKS hybrid products with multiple heterocycles that have potential for hexadentate and tetradentate coordination with metal ions. The genomes of the three leptochelin producers were sequenced, and retrobiosynthetic analysis revealed one candidate biosynthetic gene cluster (BGC) consistent with the structure of leptochelin. The putative BGC is highly homologous in all three Leptothoe strains, and all possess genetic signatures associated with metallophores. Postcolumn infusion of metals using an LC-MS metabolomics workflow performed with leptochelins A and B revealed promiscuous binding of iron, copper, cobalt, and zinc, with greatest preference for copper. Iron depletion and copper toxicity experiments support the hypothesis that leptochelin metallophores may play key ecological roles in iron acquisition and in copper detoxification. In addition, the leptochelins possess significant cytotoxicity against several cancer cell lines.

2.
Inorg Chem ; 63(5): 2401-2417, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38265361

RESUMO

As cancer cells exhibit an increased uptake of iron, targeting the interaction with iron has become a straightforward strategy in the fight against cancer. This work comprehensively characterizes the chemical properties of 6-methyl-3-{(2E)-2-[1-(2-pyridinyl)ethylidene]hydrazino}-5H-[1,2,4]triazino[5,6-b]indole (VLX600), a clinically investigated iron chelator, in solution. Its protonation processes, lipophilicity, and membrane permeability as well as its complexation with essential metal ions were investigated using UV-visible, electron paramagnetic resonance, and NMR spectroscopic and computational methods. Formation constants revealed the following order of metal binding affinity at pH 7.4: Cu(II) > Fe(II) > Zn(II). The structures of VLX600 (denoted as HL) and the coordination modes in its metal complexes [Cu(II)(LH)Cl2], [Cu(II)(L)(CH3OH)Cl], [Zn(II)(LH)Cl2], and [Fe(II)(LH)2](NO3)2 were elucidated by single-crystal X-ray diffraction. Redox properties of the iron complexes characterized by cyclic voltammetry showed strong preference of VLX600 toward Fe(II) over Fe(III). In vitro cytotoxicity of VLX600 was determined in six different human cancer cell lines, with IC50 values ranging from 0.039 to 0.51 µM. Premixing VLX600 with Fe(III), Zn(II), and Cu(II) salts in stoichiometric ratios had a rather little effect overall, thus neither potentiating nor abolishing cytotoxicity. Together, although clinically investigated as an iron chelator, this is the first comprehensive solution study of VLX600 and its interaction with physiologically essential metal ions.


Assuntos
Complexos de Coordenação , Compostos Férricos , Hidrazonas , Triazóis , Humanos , Cobre/farmacologia , Cobre/química , Metais/química , Ferro/química , Íons , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Quelantes de Ferro/farmacologia , Compostos Ferrosos
3.
Drug Resist Updat ; 63: 100844, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533630

RESUMO

Selenium is an essential trace element that is crucial for cellular antioxidant defense against reactive oxygen species (ROS). Recently, many selenium-containing compounds have exhibited a wide spectrum of biological activities that make them promising scaffolds in Medicinal Chemistry, and, in particular, in the search for novel compounds with anticancer activity. Similarly, certain tellurium-containing compounds have also exhibited substantial biological activities. Here we provide an overview of the biological activities of seleno- and tellurocompounds including chemopreventive activity, antioxidant or pro-oxidant activity, modulation of the inflammatory processes, induction of apoptosis, modulation of autophagy, inhibition of multidrug efflux pumps such as P-gp, inhibition of cancer metastasis, selective targeting of tumors and enhancement of the cytotoxic activity of chemotherapeutic drugs, as well as overcoming tumor drug resistance. A review of the chemistry of the most relevant seleno- or tellurocompounds with activity against resistant cancers is also presented, paying attention to the synthesis of these compounds and to the preparation of bioactive selenium or tellurium nanoparticles. Based on these data, the use of these seleno- and tellurocompounds is a promising approach in the development of strategies that can drive forward the search for novel therapies or adjuvants of current therapies against drug-resistant cancers.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Selênio , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio , Selênio/química , Selênio/farmacologia , Selênio/uso terapêutico , Telúrio/química , Telúrio/farmacologia , Telúrio/uso terapêutico
4.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768386

RESUMO

Multidrug resistance (MDR) is a major challenge in cancer chemotherapy. Aiming at generating a small library of anticancer compounds for overcoming MDR, lycorine (1), a major Amaryllidaceae alkaloid isolated from Pancratium maritimum, was derivatized. Thirty-one new compounds (2-32) were obtained by chemical transformation of the hydroxyl groups of lycorine into mono- and di-carbamates. Compounds 1-32 were evaluated as MDR reversers, through the rhodamine-123 accumulation assay by flow cytometry and chemosensitivity assays, in resistant human colon adenocarcinoma cancer cells (Colo 320), overexpressing P-glycoprotein (P-gp, ABCB1). Significant inhibition of P-gp efflux activity was observed for the di-carbamate derivatives, mainly those containing aromatic substituents, at non-cytotoxic concentrations. Compound 5, bearing a benzyl substituent, and compounds 9 and 25, with phenethyl moieties, were among the most active, exhibiting strong inhibition at 2 µM, being more active than verapamil at 10-fold higher concentration. In drug combination assays, most compounds were able to synergize doxorubicin. Moreover, some derivatives showed a selective antiproliferative effect toward resistant cells, having a collateral sensitivity effect. In the ATPase assay, selected compounds (2, 5, 9, 19, 25, and 26) were shown to behave as inhibitors.


Assuntos
Adenocarcinoma , Alcaloides de Amaryllidaceae , Antineoplásicos , Neoplasias do Colo , Humanos , Alcaloides de Amaryllidaceae/farmacologia , Adenocarcinoma/tratamento farmacológico , Carbamatos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias do Colo/tratamento farmacológico , Resistência a Múltiplos Medicamentos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Antineoplásicos/farmacologia , Antineoplásicos/química , Doxorrubicina/farmacologia , Linhagem Celular Tumoral
5.
Bioorg Med Chem Lett ; 67: 128743, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447343

RESUMO

Antimicrobial resistance arises due to several adaptation mechanisms, being the overexpression of efflux pumps (EPs) one of the most worrisome. In bacteria, EPs can also play important roles in virulence, quorum-sensing (QS) and biofilm formation. To identify new potential antimicrobial adjuvants, a library of diarylpentanoids and chalcones was synthesized and tested. These compounds presented encouraging results in potentiating the activity of antimicrobials, being diarylpentanoid 13 the most promising. Compounds 9, 13, 16, 19, 22, and 23 displayed EP inhibitory effect, mainly in Staphylococcus aureus 272123. Compounds 13, 19, 22, and 23 exhibited inhibitory effect on biofilm formation in S. aureus 272,123 while 13 and 22 inhibited QS in the pair Sphingomonas paucimobilis Ezf 10-17 and Chromobacterium violaceum CV026. The overall results, demonstrated that diarylpentanoid 13 and chalcone 22 were active against all the resistance mechanisms tested, suggesting their potential as antimicrobial adjuvants.


Assuntos
Chalcona , Chalconas , Antibacterianos/farmacologia , Biofilmes , Chalcona/farmacologia , Chalconas/farmacologia , Chromobacterium , Percepção de Quorum , Staphylococcus aureus
6.
J Nat Prod ; 85(4): 910-916, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35293752

RESUMO

The detailed mycochemical analysis of the n-hexane extract of Pholiota populnea led to the isolation of four new lanostane diesters, named pholiols A-D (1-4), together with an acyclic triterpene, (3S,6E,10E,14E,18E,22S)-2,3,22,23-tetrahydroxy-2,6,10,15,19,23-hexamethyl-6,10,14,18-tetracosatetraene (5), ergosterol (6), and 3ß-hydroxyergosta-7,22-diene (7). The isolation was carried out by multistep flash chromatography, and the structures were elucidated using extensive spectroscopic analyses, including 1D and 2D NMR and MS measurements. The isolated metabolites (1-6) were investigated for cytotoxic activity against Colo205 and Colo320 colon adenocarcinoma and nontumoral MRC-5 cell lines. Among the tested compounds, ergosterol (6) showed substantial cytotoxic activity against all cell lines with IC50 values of 4.9 µM (Colo 205), 6.5 µM (Colo 320), and 0.50 µM (MRC) with no tumor cell selectivity. A P-glycoprotein efflux pump modulatory test on resistant Colo320 cells revealed that pholiols A (1) and B (2) and linear triterpene polyol 5 have the capacity to inhibit the efflux-pump overexpressed in the cells. Moreover, the drug interactions of triterpenes with doxorubicin were studied by the checkerboard method on Colo 320 cells. Pholiols B (2) and D (4) interacted in synergistic and acyclic triterpene 5 in a very strong synergistic manner; the combination index (CI) values at 50% of the growth inhibition dose (ED50) were found to be 0.348, 0.660, and 0.082, respectively. Our results indicate that P. populnea is a promising source for finding new triterpenes with significant chemosensitizing activity on cancer cells.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Triterpenos , Agaricales , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Citotoxinas/farmacologia , Resistência a Múltiplos Medicamentos , Ergosterol/farmacologia , Humanos , Estrutura Molecular , Triterpenos/química , Triterpenos/farmacologia
7.
Mar Drugs ; 20(5)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621966

RESUMO

The growing number of infectious diseases around the world threatens the effective response of antibiotics, contributing to the increase in antibiotic resistance seen as a global health problem. Currently, one of the main challenges in antimicrobial drug discovery is the search for new compounds that not only exhibit antimicrobial activity, but can also potentiate the antimicrobial activity and revert antibiotics' resistance, through the interference with several mechanisms, including the inhibition of efflux pumps (EPs) and biofilm formation. Inspired by macroalgae brominated bromophenol BDDE with antimicrobial activity, a series of 18 chalcone derivatives, including seven chalcones (9-15), six dihydrochalcones (16-18, and 22-24) and five diarylpropanes (19-21, and 25 and 26), was prepared and evaluated for its antimicrobial activity and potential to fight antibiotic resistance. Among them, chalcones 13 and 14 showed promising antifungal activity against the dermatophyte clinical strain of Trichophyton rubrum, and all compounds reversed the resistance to vancomycin in Enterococcus faecalis B3/101, with 9, 14, and 24 able to cause a four-fold decrease in the MIC of vancomycin against this strain. Compounds 17-24 displayed inhibition of EPs and the formation of biofilm by S. aureus 272123, suggesting that these compounds are inhibiting the EPs responsible for the extrusion of molecules involved in biofilm-related mechanisms. Interestingly, compounds 17-24 did not show cytotoxicity in mouse embryonic fibroblast cell lines (NIH/3T3). Overall, the results obtained suggest the potential of dihydrochalcones 16-18 and 22-24, and diarylpropanes 19-21, 25 and 26, as hits for bacterial EPs inhibition, as they are effective in the inhibition of EPs, but present other features that are important in this matter, such as the lack of antibacterial activity and cytotoxicity.


Assuntos
Anti-Infecciosos , Chalcona , Chalconas , Micoses , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Chalcona/farmacologia , Chalconas/farmacologia , Fibroblastos , Camundongos , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Relação Estrutura-Atividade , Vancomicina/farmacologia
8.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077085

RESUMO

The synthesis of alkyl 2-(4-hydroxyquinolin-2-yl) acetates and 1-phenyl-4-(phenylamino)pyridine-2,6(1H,3H)-dione was optimised. Starting from 4-hydroxyquinolines (4HQs), aminomethylation was carried out via the modified Mannich reaction (mMr) applying formaldehyde and piperidine, but a second paraformaldehyde molecule was incorporated into the Mannich product. The reaction also afforded the formation of bisquinoline derivatives. A new 1H-azeto [1,2-a]quinoline derivative was synthesised in two different ways; namely starting from the aminomethylated product or from the ester-hydrolysed 4HQ. When the aldehyde component was replaced with aromatic aldehydes, Knoevenagel condensation took place affording the formation of the corresponding benzylidene derivatives, with the concomitant generation of bisquinolines. The reactivity of salicylaldehyde and hydroxynaphthaldehydes was tested; under these conditions, partially saturated lactones were formed through spontaneous ring closure. The activity of the derivatives was assessed using doxorubicin-sensitive and -resistant colon adenocarcinoma cell lines and normal human fibroblasts. Some derivatives possessed selective toxicity towards resistant cancer cells compared to doxorubicin-sensitive cancer cells and normal fibroblasts. Cytotoxic activity of the benzylidene derivatives and the corresponding Hammett-Brown substituent were correlated.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Hidroxiquinolinas , Antineoplásicos/farmacologia , Compostos de Benzilideno , Citotoxinas , Doxorrubicina/farmacologia , Humanos
9.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142724

RESUMO

Multidrug resistance (MDR) is considered one of the major mechanisms responsible for the failure of numerous anticancer and antiviral chemotherapies. Various strategies to overcome the MDR phenomenon have been developed, and one of the most attractive research directions is focused on the inhibition of MDR transporters, membrane proteins that extrude cytotoxic drugs from living cells. Here, we report the results of our studies on a series newly synthesized of 5-arylidenerhodanines and their ability to inhibit the ABCB1 efflux pump in mouse T-lymphoma cancer cells. In the series, compounds possessing a triphenylamine moiety and the carboxyl group in their structure were of particular interest. These amphiphilic compounds showed over 17-fold stronger efflux pump inhibitory effects than verapamil. The cytotoxic and antiproliferative effects of target rhodanines on T-lymphoma cells were also investigated. A putative binding mode for 11, one of the most potent P-gp inhibitors tested here, was predicted by molecular docking studies and discussed with regard to the binding mode of verapamil.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antivirais/farmacologia , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Camundongos , Simulação de Acoplamento Molecular , Verapamil/farmacologia
10.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408806

RESUMO

Fluorine represents a privileged building block in pharmaceutical chemistry. Diethylaminosulfur-trifluoride (DAST) is a reagent commonly used for replacement of alcoholic hydroxyl groups with fluorine and is also known to catalyze water elimination and cyclic Beckmann-rearrangement type reactions. In this work we aimed to use DAST for diversity-oriented semisynthetic transformation of natural products bearing multiple hydroxyl groups to prepare new bioactive compounds. Four ecdysteroids, including a new constituent of Cyanotis arachnoidea, were selected as starting materials for DAST-catalyzed transformations. The newly prepared compounds represented combinations of various structural changes DAST was known to catalyze, and a unique cyclopropane ring closure that was found for the first time. Several compounds demonstrated in vitro antitumor properties. A new 17-N-acetylecdysteroid (13) exerted potent antiproliferative activity and no cytotoxicity on drug susceptible and multi-drug resistant mouse T-cell lymphoma cells. Further, compound 13 acted in significant synergism with doxorubicin without detectable direct ABCB1 inhibition. Our results demonstrate that DAST is a versatile tool for diversity-oriented synthesis to expand chemical space towards new bioactive compounds.


Assuntos
Ecdisteroides , Flúor , Animais , Catálise , Dietilaminas/química , Ecdisteroides/química , Flúor/química , Camundongos
11.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430768

RESUMO

Resistance to antibiotics is an emerging problem worldwide, which leads to an increase in morbidity and mortality rates. Several mechanisms are attributed to bacterial resistance, overexpression of efflux pumps being one of the most prominent. As an attempt to develop new effective antimicrobial drugs, which could be able to act against resistant bacterial strains and considering the antimicrobial potential of flavonoids and triazolyl flavonoid derivatives, in particular chalcones, a small library of chalcone derivatives was synthesized and evaluated for its potential to act as antimicrobials and/or adjuvants in combination with antibiotics towards resistant bacteria. Although only compound 7 was able to act as antibacterial, compounds 1, 2, 4, 5, 7, and 9 revealed to be able to potentiate the activity of antibiotics in resistant bacteria. Moreover, five compounds (3, 5-8) demonstrated to be effective inhibitors of efflux pumps in Salmonella enterica serovar Typhimurium SL1344, and four compounds (1, 3, 7, and 10) showed higher ability than reserpine to inhibit biofilm formation of resistant Staphylococcus aureus 272123. Together, our results showed the potential of these compounds regarding reversion of bacterial resistance.


Assuntos
Anti-Infecciosos , Chalcona , Chalconas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Chalcona/farmacologia , Chalconas/farmacologia , Triazóis/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Salmonella typhimurium , Resistência a Múltiplos Medicamentos
12.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430942

RESUMO

The overexpression of efflux pumps is one of the strategies used by bacteria to resist antibiotics and could be targeted to circumvent the antibiotic crisis. In this work, a series of trimethoxybenzoic acid derivatives previously described as antifouling compounds was explored for potential antimicrobial activity and efflux pump (EP) inhibition. First, docking studies on the acridine resistance proteins A and B coupled to the outer membrane channel TolC (AcrAB-TolC) efflux system and a homology model of the quinolone resistance protein NorA EP were performed on 11 potential bioactive trimethoxybenzoic acid and gallic acid derivatives. The synthesis of one new trimethoxybenzoic acid derivative (derivative 13) was accomplished. To investigate the potential of this series of 11 derivatives as antimicrobial agents, and in reverting drug resistance, the minimum inhibitory concentration was determined on several strains (bacteria and fungi), and synergy with antibiotics and EP inhibition were investigated. Derivative 10 showed antibacterial activity against the studied strains, derivatives 5 and 6 showed the ability to inhibit EPs in the acrA gene inactivated mutant Salmonella enterica serovar Typhimurium SL1344, and 6 also inhibited EPs in Staphylococcus aureus 272123. Structure-activity relationships highlighted trimethoxybenzoic acid as important for EP inhibitory activity. Although further studies are necessary, these results show the potential of simple trimethoxybenzoic acid derivatives as a source of feasible EP inhibitors.


Assuntos
Proteínas de Bactérias , Ácido Gálico , Ácido Gálico/farmacologia , Ácido Gálico/metabolismo , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Staphylococcus aureus/metabolismo
13.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614037

RESUMO

Multidrug resistance (MDR) in cancer is one of the major obstacles of chemotherapy. We have recently identified a series of 8-hydroxyquinoline Mannich base derivatives with MDR-selective toxicity, however with limited solubility. In this work, a novel 5-nitro-8-hydroxyquinoline-proline hybrid and its Rh(η5-C5Me5) and Ru(η6-p-cymene) complexes with excellent aqueous solubility were developed, characterized, and tested against sensitive and MDR cells. Complex formation of the ligand with essential metal ions was also investigated using UV-visible, circular dichroism, 1H NMR (Zn(II)), and electron paramagnetic resonance (Cu(II)) spectroscopic methods. Formation of mono and bis complexes was found in all cases with versatile coordination modes, while tris complexes were also formed with Fe(II) and Fe(III) ions, revealing the metal binding affinity of the ligand at pH 7.4: Cu(II) > Zn(II) > Fe(II) > Fe(III). The ligand and its Rh(III) complex displayed enhanced cytotoxicity against the resistant MES-SA/Dx5 and Colo320 human cancer cell lines compared to their chemosensitive counterparts. Both organometallic complexes possess high stability in solution, however the Ru(II) complex has lower chloride ion affinity and slower ligand exchange processes, along with the readiness to lose the arene ring that is likely connected to its inactivity.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Compostos Organometálicos , Rutênio , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Prolina , Solubilidade , Ligantes , Resistência a Múltiplos Medicamentos , Compostos Férricos , Rutênio/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Resistencia a Medicamentos Antineoplásicos , Água/química , Íons , Compostos Ferrosos , Compostos Organometálicos/química
14.
Molecules ; 27(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408443

RESUMO

The proton dissociation processes of two tridentate salicylidene aminoguanidine Schiff bases (SISC, Pro-SISC-Me), the solution stability and electrochemical properties of their Cu(II), Fe(II) and Fe(III) complexes were characterized using pH-potentiometry, cyclic voltammetry and UV-visible, 1H NMR and electron paramagnetic resonance spectroscopic methods. The structure of the proline derivative (Pro-SISC-Me) was determined by X-ray crystallography. The conjugation of L-proline to the simplest salicylidene aminoguanidine Schiff base (SISC) increased the water solubility due to its zwitterionic structure in a wide pH range. The formation of mono complexes with both ligands was found in the case of Cu(II) and Fe(II), while bis complexes were also formed with Fe(III). In the complexes these tridentate ligands coordinate via the phenolato O, azomethine N and the amidine N, except the complex [Fe(III)L2]+ of Pro-SISC-Me in which the (O,N) donor atoms of the proline moiety are coordinated beside the phenolato O, confirmed by single crystal X-ray crystallographic analysis. This binding mode yielded a stronger Fe(III) preference for Pro-SISC-Me over Fe(II) in comparison to SISC. This finding is also reflected in the lower redox potential value of the iron-Pro-SISC-Me complexes. The ligands alone were not cytotoxic against human colon cancer cell lines, while complexation of SISC with Cu(II) resulted in moderate activity, unlike the case of its more hydrophilic counterpart.


Assuntos
Complexos de Coordenação , Bases de Schiff , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Compostos Férricos , Compostos Ferrosos , Guanidinas , Humanos , Ligantes , Oxirredução , Prolina , Bases de Schiff/química , Bases de Schiff/farmacologia
15.
Molecules ; 28(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615247

RESUMO

A series of novel estradiol-based salicylaldehyde (thio)semicarbazones ((T)SCs) bearing (O,N,S) and (O,N,O) donor sets and their Cu(II) complexes were developed and characterized in detail by 1H and ¹³C nuclear magnetic resonance spectroscopy, UV-visible and electron paramagnetic resonance spectroscopy, electrospray ionization mass spectrometry and elemental analysis. The structure of the Cu(II)-estradiol-semicarbazone complex was revealed by X-ray crystallography. Proton dissociation constants of the ligands and stability constants of the metal complexes were determined in 30% (v/v) DMSO/H2O. Estradiol-(T)SCs form mono-ligand complexes with Cu(II) ions and exhibit high stability with the exception of estradiol-SC. The Cu(II) complexes of estradiol-TSC and its N,N-dimethyl derivative displayed the highest cytotoxicity among the tested compounds in MCF-7, MCF-7 KCR, DU-145, and A549 cancer cells. The complexes do not damage DNA according to both in vitro cell-free and cellular assays. All the Cu(II)-TSC complexes revealed significant activity against the Gram-positive Staphylococcus aureus bacteria strain. Estradiol-TSCs showed efficient antioxidant activity, which was decreased by complexation with Cu(II) ions. The exchange of estrone moiety to estradiol did not result in significant changes to physico-chemical and biological properties.


Assuntos
Complexos de Coordenação , Semicarbazonas , Tiossemicarbazonas , Semicarbazonas/química , Estrutura Molecular , Antioxidantes/farmacologia , Cobre/química , Estradiol/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antibacterianos/farmacologia , Cristalografia por Raios X , Ligantes , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química
16.
Pharm Biol ; 60(1): 1511-1519, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35952383

RESUMO

CONTEXT: Ambrosia artemisiifolia L. (Asteraceae) contains sesquiterpene lactones as characteristic secondary metabolites. Many of these compounds exert antiproliferative and cytotoxic effects. OBJECTIVE: To isolate the sesquiterpene lactones from the aerial part of A. artemisiifolia and to elucidate their cytotoxic, antiproliferative and antibacterial effects. MATERIALS AND METHODS: The compounds were identified by one-dimensional (1D) and 2D NMR, HR-MS spectroscopy from the methanol extract. Isolated compounds were investigated for their cytotoxic and antiproliferative effects on human colonic adenocarcinoma cell lines and human embryonal lung fibroblast cell line using MTT assay. The selectivity of the sesquiterpenes was calculated towards the normal cell line. To check the effect of drug interactions between compounds and doxorubicin, multidrug-resistant Colo 320 cells were used. RESULTS: A new seco-psilostachyinolide derivative, 1,10-dihydro-1'-noraltamisin, and seven known compounds were isolated from the methanol extract. Acetoxydihydrodamsin had the most potent cytotoxic effect on sensitive (Colo205) cell line (IC50 = 7.64 µM), also the strongest antiproliferative effect on Colo205 (IC50 = 5.14 µM) and Colo320 (IC50 = 3.67 µM) cell lines. 1'-Noraltamisin (IC50 = 8.78 µM) and psilostachyin (IC50 = 5.29 µM) showed significant antiproliferative effects on the multidrug-resistant Colo320 cell line and had moderate selectivity against human embryonal lung fibroblast cell line. Psilostachyin C exhibited cytotoxic effects on Colo205 cells (IC50 = 26.60 µM). None of the isolated compounds inhibited ABCB1 efflux pump (EP; P-glycoprotein) or the bacterial EPs. DISCUSSION AND CONCLUSIONS: Acetoxydihydrodamsin, 1'-noraltamisin, and psilostachyin showed the most remarkable cytotoxic and antiproliferative activity on tumour cell lines and exerted selectivity towards MRC-5 cell line.


Assuntos
Adenocarcinoma , Antineoplásicos , Sesquiterpenos , Adenocarcinoma/tratamento farmacológico , Ambrosia/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Lactonas/farmacologia , Metanol , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
17.
Inorg Chem ; 60(15): 11297-11319, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279079

RESUMO

Three new thiosemicarbazones (TSCs) HL1-HL3 as triapine analogues bearing a redox-active phenolic moiety at the terminal nitrogen atom were prepared. Reactions of HL1-HL3 with CuCl2·2H2O in anoxic methanol afforded three copper(II) complexes, namely, Cu(HL1)Cl2 (1), [Cu(L2)Cl] (2'), and Cu(HL3)Cl2 (3), in good yields. Solution speciation studies revealed that the metal-free ligands are stable as HL1-HL3 at pH 7.4, while being air-sensitive in the basic pH range. In dimethyl sulfoxide they exist as a mixture of E and Z isomers. A mechanism of the E/Z isomerization with an inversion at the nitrogen atom of the Schiff base imine bond is proposed. The monocationic complexes [Cu(L1-3)]+ are the most abundant species in aqueous solutions at pH 7.4. Electrochemical and spectroelectrochemical studies of 1, 2', and 3 confirmed their redox activity in both the cathodic and the anodic region of potentials. The one-electron reduction was identified as metal-centered by electron paramagnetic resonance spectroelectrochemistry. An electrochemical oxidation pointed out the ligand-centered oxidation, while chemical oxidations of HL1 and HL2 as well as 1 and 2' afforded several two-electron and four-electron oxidation products, which were isolated and comprehensively characterized. Complexes 1 and 2' showed an antiproliferative activity in Colo205 and Colo320 cancer cell lines with half-maximal inhibitory concentration values in the low micromolar concentration range, while 3 with the most closely related ligand to triapine displayed the best selectivity for cancer cells versus normal fibroblast cells (MRC-5). HL1 and 1 in the presence of 1,4-dithiothreitol are as potent inhibitors of mR2 ribonucleotide reductase as triapine.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cobre/química , Piridinas/química , Tiossemicarbazonas/química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Complexos de Coordenação/química , Eletroquímica , Humanos , Oxirredução , Soluções , Estereoisomerismo
18.
Bioorg Chem ; 106: 104485, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261846

RESUMO

Various classes of semi-synthetic analogs of poststerone, the product of oxidative cleavage of the C20-C22 bond in the side chain of the phytoecdysteroid 20-hydroxyecdysone, were synthesized. The analogs were obtained by reductive transformations using L-Selectride and H2-Pd/C, by molecular abeo-rearrangements using the DAST reagent or ultrasonic treatment in the NaI-Zn-DMF system, and by acid-catalyzed reactions of poststerone derivatives with various aldehydes (o-FC6H4CHO, m-CF3C6H4CHO, CO2Me(CH2)8CHO). The products were tested on a mouse lymphoma cell line pair, L5178 and its ABCB1-transfected multi-drug resistant counterpart, L5178MDR, for their in vitro activity alone and in combination with doxorubicin, and for the ability to inhibit the ABCB1 transporter. Among the tested compounds, new 2,3-dioxolane derivatives of the pregnane ecdysteroid were found to have a pronounced chemosensitizing activity towards doxorubicin and could be considered as promising candidates for further structure optimization for the development of effective chemosensitizing agents.


Assuntos
Antineoplásicos/farmacologia , Ecdisterona/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ecdisterona/síntese química , Ecdisterona/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
Bioorg Chem ; 109: 104735, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33640632

RESUMO

A series of 17 arylpiperazine derivatives of the 5-spiroimidazolidine-2,4-diones (6-22) has been explored, including variations in (i) the number of aromatic rings at position 5, (ii) the length of the linker, as well as (iii) the kind and position of the linked arylpiperazine terminal fragment. Synthesis (6-16) and X-ray crystallographic studies for representative compounds (8, 10, 14 and 18) have been performed. The ability to inhibit the tumor multidrug resistance (MDR) efflux pump P-glycoprotein (P-gp, ABCB1) overexpressed in mouse T-lymphoma cells was investigated. The cytotoxic and antiproliferative actions of the compounds on both the reference and the ABCB1-overproducing cells were also examined. The pharmacophore-based molecular modeling studies have been performed. ADMET properties in vitro of selected most active derivatives (6, 11 and 12) have been determined. All compounds, excluding 18, inhibited the cancer P-gp efflux pump with higher potency than that of reference verapamil. The spirofluorene derivatives with amine alkyl substituents at position 1, and the methyl group at position 3 (6-16), occurred the most potent P-gp inhibitors in the MDR T-lymphoma cell line. In particular, compounds 7 and 12 were 100-fold more potent than verapamil. Crystallography-supported pharmacophore-based SAR analysis has postulated specific structural properties that could explain this excellent cancer MDR-inhibitory action.


Assuntos
Antineoplásicos/farmacologia , Imidazolidinas/farmacologia , Linfoma de Células T/tratamento farmacológico , Compostos de Espiro/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazolidinas/síntese química , Imidazolidinas/química , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade
20.
Drug Resist Updat ; 52: 100713, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32615525

RESUMO

Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approaches are needed. Herein, we show some practical examples of in silico approaches such as pharmacophore modelling, as well as pharmacophore- and docking-based virtual screening for a fast and cost-effective repurposing of small molecule drugs against multidrug resistant cancers. We provide a timely and comprehensive overview of compounds with considerable potential to be repositioned for cancer therapeutics. These drugs are from diverse chemotherapeutic classes. We emphasize the scope and limitations of anthelmintics, antibiotics, antifungals, antivirals, antimalarials, antihypertensives, psychopharmaceuticals and antidiabetics that have shown extensive immunomodulatory, antiproliferative, pro-apoptotic, and antimetastatic potential. These drugs, either used alone or in combination with existing anticancer chemotherapeutics, represent strong candidates to prevent or overcome drug resistance. We particularly focus on outcomes and future perspectives of drug repositioning for the treatment of multidrug resistant tumors and discuss current possibilities and limitations of preclinical and clinical investigations.


Assuntos
Antineoplásicos/farmacologia , Reposicionamento de Medicamentos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Biologia Computacional , Simulação por Computador , Descoberta de Drogas/métodos , Humanos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA