Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Urol ; 199(6): 1494-1501, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29339080

RESUMO

PURPOSE: Prostate circulating tumor cells escape into peripheral blood and enter bone marrow as disseminated tumor cells, representing an early step before conventionally detectable metastasis. It is unclear how frequently this occurs in localized disease and existing detection methods rely on epithelial markers with low specificity and sensitivity. We used multiple methodologies of disseminated tumor cell detection in bone marrow harvested at radical prostatectomy. MATERIALS AND METHODS: Bone marrow was harvested from 208 clinically localized cases, 16 controls and 5 metastatic cases with peripheral blood obtained from 37 metastatic cases. Samples were evaluated at 4 centers with 4 distinct platforms using antibody enrichment with the AdnaTest (Qiagen®) or VERSA (versatile exclusion based rare sample analysis), or whole sample interrogation with the RareCyte platform (Seattle, Washington) or HD-SCA (high definition single cell assay) using traditional epithelial markers and prostate specific markers. We investigated the sensitivity and specificity of these markers by evaluating expression levels in control and metastatic cases. RESULTS: EpCAM, NKX3.1 and AR were nonspecifically expressed in controls and in most samples using AdnaTest with no relation to perioperative variables. Only 1 patient with localized disease showed positive results for the prostate specific marker PSA. With the VERSA platform no localized case demonstrated disseminated tumor cells. With the RareCyte and HD-SCA platforms only a single patient had 1 disseminated tumor cell. CONCLUSIONS: Evaluation across multiple platforms revealed that epithelial markers are nonspecific in bone marrow and, thus, not suitable for disseminated tumor cell detection. Using prostate specific markers disseminated tumor cells were typically not detected in patients with localized prostate cancer.


Assuntos
Medula Óssea/patologia , Células Neoplásicas Circulantes/patologia , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Adulto , Idoso , Biópsia , Estudos de Coortes , Molécula de Adesão da Célula Epitelial/análise , Proteínas de Homeodomínio/análise , Humanos , Calicreínas/análise , Masculino , Pessoa de Meia-Idade , Próstata/patologia , Próstata/cirurgia , Antígeno Prostático Específico/análise , Neoplasias da Próstata/cirurgia , Receptores Androgênicos/análise , Fatores de Transcrição/análise
2.
Nucleic Acids Res ; 40(5): 2234-46, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22102588

RESUMO

6S RNAs function through interaction with housekeeping forms of RNA polymerase holoenzyme (Eσ(70) in Escherichia coli, Eσ(A) in Bacillus subtilis). Escherichia coli 6S RNA accumulates to high levels during stationary phase, and has been shown to be released from Eσ(70) during exit from stationary phase by a process in which 6S RNA serves as a template for Eσ(70) to generate product RNAs (pRNAs). Here, we demonstrate that not only does pRNA synthesis occur, but it is an important mechanism for regulation of 6S RNA function that is required for cells to exit stationary phase efficiently in both E. coli and B. subtilis. Bacillus subtilis has two 6S RNAs, 6S-1 and 6S-2. Intriguingly, 6S-2 RNA does not direct pRNA synthesis under physiological conditions and its non-release from Eσ(A) prevents efficient outgrowth in cells lacking 6S-1 RNA. The behavioral differences in the two B. subtilis RNAs clearly demonstrate that they act independently, revealing a higher than anticipated diversity in 6S RNA function globally. Overexpression of a pRNA-synthesis-defective 6S RNA in E. coli leads to decreased cell viability, suggesting pRNA synthesis-mediated regulation of 6S RNA function is important at other times of growth as well.


Assuntos
Bacillus subtilis/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/biossíntese , Transcrição Gênica , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Sequência de Bases , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Viabilidade Microbiana , Dados de Sequência Molecular , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA não Traduzido , Fator sigma/metabolismo
3.
NPJ Precis Oncol ; 8(1): 104, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760413

RESUMO

Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA expression is lost in a significant number of CRPC tumors. The identification of additional cell surface targets is necessary to develop new therapeutic approaches. Here, we performed a comprehensive analysis of the expression heterogeneity and co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except for NEPC. We further demonstrated that AR alterations were associated with higher expression of PSMA and TROP2. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we show a tight correlation between epigenetic states, particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived xenografts. Collectively, these findings provide insights into patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with implications for the clinical development of cell surface targeting agents in CRPC.

4.
Anal Chem ; 85(20): 9764-70, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24016179

RESUMO

The path from gene (DNA) to gene product (RNA or protein) is the foundation of genotype giving rise to phenotype. Comparison of genomic analyses (DNA) with paired transcriptomic studies (mRNA) is critical to evaluating the pathogenic processes that give rise to human disease. The ability to analyze both DNA and mRNA from the same sample is not only important for biologic interrogation but also to minimize variance (e.g., sample loss) unrelated to the biology. Existing methods for RNA and DNA purification from a single sample are typically time-consuming and labor intensive or require large sample sizes to split for separate RNA and DNA extraction procedures. Thus, there is a need for more efficient and cost-effective methods to purify both RNA and DNA from a single sample. To address this need, we have developed a technique, termed SNARE (Selective Nucleic Acid Removal via Exclusion), that uses pinned oil interfaces to simultaneous purify mRNA and DNA from a single sample. A unique advantage of SNARE is the elimination of dilutive wash and centrifugation processes that are fundamental to conventional methods where sample is typically discarded. This minimizes loss and maximizes recovery by allowing nondilutive reinterrogation of the sample. We demonstrate that SNARE is more sensitive than commercially available kits, robustly and repeatably achieving mRNA and DNA purification from extremely low numbers of cells for downstream analyses. In addition to sensitivity, SNARE is fast, easy to use, and cost-effective and requires no laboratory infrastructure or hazardous chemicals. We demonstrate the clinical utility of the SNARE with prostate cancer circulating tumor cells to demonstrate its ability to perform both genomic and transcriptomic interrogation on rare cell populations that would be difficult to achieve with any current method.


Assuntos
Fracionamento Químico/métodos , DNA/isolamento & purificação , Técnicas Analíticas Microfluídicas/métodos , Sequência de Bases , Soluções Tampão , Linhagem Celular Tumoral , DNA/genética , Gravitação , Humanos , Masculino , Mutação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Tensão Superficial
5.
Clin Cancer Res ; 29(12): 2324-2335, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36939530

RESUMO

PURPOSE: Men with metastatic castration-resistant prostate cancer (mCRPC) frequently develop resistance to androgen receptor signaling inhibitor (ARSI) treatment; therefore, new therapies are needed. Trophoblastic cell-surface antigen (TROP-2) is a transmembrane protein identified in prostate cancer and overexpressed in multiple malignancies. TROP-2 is a therapeutic target for antibody-drug conjugates (ADC). EXPERIMENTAL DESIGN: TROP-2 gene (TACSTD2) expression and markers of treatment resistance from prostate biopsies were analyzed using data from four previously curated cohorts of mCRPC (n = 634) and the PROMOTE study (dbGaP accession phs001141.v1.p1, n = 88). EPCAM or TROP-2-positive circulating tumor cells (CTC) were captured from peripheral blood for comparison of protein (n = 15) and gene expression signatures of treatment resistance (n = 40). We assessed the efficacy of TROP-2-targeting agents in a mouse xenograft model generated from prostate cancer cell lines. RESULTS: We demonstrated that TACSTD2 is expressed in mCRPC from luminal and basal tumors but at lower levels in patients with neuroendocrine prostate cancer. Patients previously treated with ARSI showed no significant difference in TACSTD2 expression, whereas patients with detectable AR-V7 expression showed increased expression. We observed that TROP-2 can serve as a cell surface target for isolating CTCs, which may serve as a predictive biomarker for ADCs. We also demonstrated that prostate cancer cell line xenografts can be targeted specifically by labeled anti-TROP-2 agents in vivo. CONCLUSIONS: These results support further studies on TROP-2 as a therapeutic and diagnostic target for mCRPC.


Assuntos
Células Neoplásicas Circulantes , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Animais , Camundongos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Isoformas de Proteínas/genética , Células Neoplásicas Circulantes/patologia , Antagonistas de Receptores de Andrógenos/farmacologia
6.
Res Sq ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38196594

RESUMO

Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To fully capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA expression is lost in a significant number of CRPC tumors, and the identification of additional cell surface targets is necessary in order to develop new therapeutic approaches. Here, we performed a comprehensive analysis of the expression and co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except for NEPC. We observed variable intra-tumoral and inter-tumoral heterogeneity and no dominant metastatic site predilections for TROP2, DLL3, and CEACAM5. We further show that AR amplifications were associated with higher expression of PSMA and TROP2 but lower DLL3 and CEACAM5 levels. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we demonstrate a tight correlation between epigenetic states, particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived xenografts. Collectively, these findings provide novel insights into the patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with important implications for the clinical development of cell surface targeting agents in CRPC.

7.
J Surg Res ; 176(2): 639-48, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22440934

RESUMO

BACKGROUND: Donor brain death (BD) triggers a systemic inflammatory response that reduces organ quality and increases immunogenicity of the graft. We characterized the early innate immune response induced by BD in the liver and peripheral blood of hemodinamically stable non-human primates (NHP). METHODS: Rhesus macaques were assigned to either brain death or control group. BD was induced by inflation of a subdurally placed catheter and confirmed clinically and by cerebral angiography. Animals were monitored for 6 h after BD and managed to maintain hemodynamic stability. RESULTS: Cortisol, epinephrine, nor-epinephrine, and IL-6 levels were elevated immediately after BD induction. Neutrophils and monocytes significantly increased in circulation following BD induction, while dendritic cells were decreased at 6 h post-induction. Flow cytometry revealed increased expression of chemokine receptors CxCR1, CxCR2, CCR2, and CCR5 in peripheral blood leukocytes from NHP subjected to BD. Microarray analysis demonstrated a significant up-regulation of genes related to innate inflammatory responses, toll-like receptor signaling, stress pathways, and apoptosis/cell death in BD subjects. Conversely, pathways related to glucose, lipid, and protein metabolism were down-regulated. In addition, increased expression of SOCS3, S100A8/A9, ICAM-1, MHC class II, neutrophil accumulation, and oxidative stress markers (carboxy-methyl-lysine and hydroxynonenal) were detected by immunoblot and immunohistochemistry. CONCLUSIONS: Activation of the innate immune response after BD in association with a down-regulation of genes associated with cell metabolism pathways in the liver. These findings may provide a potential explanation for the reduced post-transplant function of organs from brain dead donors. In addition, this work suggests potential novel targets to improve donor management strategies.


Assuntos
Morte Encefálica/imunologia , Hepatite/imunologia , Imunidade Inata/imunologia , Transplante de Fígado , Fígado/imunologia , Doadores de Tecidos , Animais , Citocinas/sangue , Epinefrina/sangue , Perfilação da Expressão Gênica , Hepatite/genética , Hidrocortisona/sangue , Imunidade Inata/genética , Células de Kupffer/imunologia , Linfócitos/imunologia , Macaca mulatta , Neutrófilos/imunologia , Norepinefrina/sangue , Receptores Toll-Like/metabolismo
8.
Clin Epigenetics ; 14(1): 37, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35272673

RESUMO

BACKGROUND: DNA methylation alterations have emerged as hallmarks of cancer and have been proposed as screening, prognostic, and predictive biomarkers. Traditional approaches for methylation analysis have relied on bisulfite conversion of DNA, which can damage DNA and is not suitable for targeted gene analysis in low-input samples. Here, we have adapted methyl-CpG-binding domain protein 2 (MBD2)-based DNA enrichment for use on a semi-automated exclusion-based sample preparation (ESP) platform for robust and scalable enrichment of methylated DNA from low-input samples, called SEEMLIS. RESULTS: We show that combining methylation-sensitive enzyme digestion with ESP-based MBD2 enrichment allows for single gene analysis with high sensitivity for GSTP1 in highly impure, heterogenous samples. We also show that ESP-based MBD2 enrichment coupled with targeted pre-amplification allows for analysis of multiple genes with sensitivities approaching the single cell level in pure samples for GSTP1 and RASSF1 and sensitivity down to 14 cells for these genes in highly impure samples. Finally, we demonstrate the potential clinical utility of SEEMLIS by successful detection of methylated gene signatures in circulating tumor cells (CTCs) from patients with prostate cancer with varying CTC number and sample purity. CONCLUSIONS: SEEMLIS is a robust assay for targeted DNA methylation analysis in low-input samples, with flexibility at multiple steps. We demonstrate the feasibility of this assay to analyze DNA methylation in prostate cancer cells using CTCs from patients with prostate cancer as a real-world example of a low-input analyte of clinical importance. In summary, this novel assay provides a platform for determining methylation signatures in rare cell populations with broad implications for research as well as clinical applications.


Assuntos
Metilação de DNA , Neoplasias da Próstata , Ilhas de CpG , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glutationa S-Transferase pi/genética , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/patologia
9.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36317634

RESUMO

BackgroundNeuroendocrine prostate cancer (NEPC) is an aggressive subtype, the presence of which changes the prognosis and management of metastatic prostate cancer.MethodsWe performed analytical validation of a Circulating Tumor Cell (CTC) multiplex RNA qPCR assay to identify the limit of quantification (LOQ) in cell lines, synthetic cDNA, and patient samples. We next profiled 116 longitudinal samples from a prospectively collected institutional cohort of 17 patients with metastatic prostate cancer (7 NEPC, 10 adenocarcinoma) as well as 265 samples from 139 patients enrolled in 3 adenocarcinoma phase II trials of androgen receptor signaling inhibitors (ARSIs). We assessed a NEPC liquid biomarker via the presence of neuroendocrine markers and the absence of androgen receptor (AR) target genes.ResultsUsing the analytical validation LOQ, liquid biomarker NEPC detection in the longitudinal cohort had a per-sample sensitivity of 51.35% and a specificity of 91.14%. However, when we incorporated the serial information from multiple liquid biopsies per patient, a unique aspect of this study, the per-patient predictions were 100% accurate, with a receiver-operating-curve (ROC) AUC of 1. In the adenocarcinoma ARSI trials, the presence of neuroendocrine markers, even while AR target gene expression was retained, was a strong negative prognostic factor.ConclusionOur analytically validated CTC biomarker can detect NEPC with high diagnostic accuracy when leveraging serial samples that are only feasible using liquid biopsies. Patients with expression of NE genes while retaining AR-target gene expression may indicate the transition to neuroendocrine differentiation, with clinical characteristics consistent with this phenotype.FundingNIH (DP2 OD030734, 1UH2CA260389, R01CA247479, and P30 CA014520), Department of Defense (PC190039 and PC200334), and Prostate Cancer Foundation (Movember Foundation - PCF Challenge Award).


Assuntos
Adenocarcinoma , Neoplasias da Próstata , Humanos , Masculino , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Biomarcadores , Transdução de Sinais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
10.
Endocr Relat Cancer ; 28(9): 645-655, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34280123

RESUMO

Castration-resistant prostate cancer (CRPC) is driven by AR gene aberrations that arise during androgen receptor (AR)-targeted therapy. AR amplification and mutations have been profiled in circulating tumor cells (CTCs), but whether AR gene rearrangements can be assessed in CTCs is unknown. In this study, we leveraged CRPC cell lines with defined AR gene rearrangements to develop and validate a CTC DNA analysis approach that utilized whole genome amplification and targeted DNA-sequencing of AR and other genes important in CRPC. We tested the utility of this approach by analyzing matched CTC DNA and plasma cell-free DNA (cfDNA) from a case series of ten CRPC patients. One of ten CTC samples and two of ten cfDNA samples were positive for AR gene rearrangements. All AR gene rearrangements were discordant between matched liquid biopsy samples. One patient harbored separate AR gene rearrangements in CTC DNA and cfDNA, but concordant AR amplification and AR T878A mutation. This patient also displayed concordant loss of TP53 and PTEN, but the loss of RB1 in cfDNA only. The overall frequency of discordant alterations in these genes between matched CTC DNA and cfDNA was high. This study establishes the technical feasibility of analyzing structural rearrangements, mutations, and copy number variants in AR and other CRPC genes using two different sources of DNA from a single blood sample. Paired CTC DNA and cfDNA analysis may have utility for capturing the heterogeneity of genetic alterations in CRPC patients.


Assuntos
Ácidos Nucleicos Livres , Células Neoplásicas Circulantes , Neoplasias de Próstata Resistentes à Castração , Rearranjo Gênico , Humanos , Biópsia Líquida , Masculino , Células Neoplásicas Circulantes/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética
11.
Clin Cancer Res ; 27(13): 3610-3619, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33849963

RESUMO

PURPOSE: Enzalutamide is a second-generation androgen receptor (AR) inhibitor that has improved overall survival (OS) in metastatic castration-resistant prostate cancer (CRPC). However, nearly all patients develop resistance. We designed a phase II multicenter study of enzalutamide in metastatic CRPC incorporating tissue and blood biomarkers to dissect mechanisms driving resistance. PATIENTS AND METHODS: Eligible patients with metastatic CRPC underwent a baseline metastasis biopsy and then initiated enzalutamide 160 mg daily. A repeat metastasis biopsy was obtained at radiographic progression from the same site when possible. Blood for circulating tumor cell (CTC) analysis was collected at baseline and progression. The primary objective was to analyze mechanisms of resistance in serial biopsies. Whole-exome sequencing was performed on tissue biopsies. CTC samples underwent RNA sequencing. RESULTS: A total of 65 patients initiated treatment, of whom 22 (33.8%) had received prior abiraterone. Baseline biopsies were enriched for alterations in AR (mutations, amplifications) and tumor suppression genes (PTEN, RB1, and TP53), which were observed in 73.1% and 92.3% of baseline biopsies, respectively. Progression biopsies revealed increased AR amplifications (64.7% at progression vs. 53.9% at baseline) and BRCA2 alterations (64.7% at progression vs. 38.5% at baseline). Genomic analysis of baseline and progression CTC samples demonstrated increased AR splice variants, AR-regulated genes, and neuroendocrine markers at progression. CONCLUSIONS: Our results demonstrate that a large proportion of enzalutamide-treated patients have baseline and progression alterations in the AR pathway and tumor suppressor genes. We demonstrate an increased number of BRCA2 alterations post-enzalutamide, highlighting the importance of serial tumor sampling in CRPC.


Assuntos
Benzamidas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Idoso , Humanos , Masculino , Metástase Neoplásica , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/patologia
12.
Mol Oncol ; 15(9): 2330-2344, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33604999

RESUMO

Although therapeutic options for patients with advanced renal cell carcinoma (RCC) have increased in the past decade, no biomarkers are yet available for patient stratification or evaluation of therapy resistance. Given the dynamic and heterogeneous nature of clear cell RCC (ccRCC), tumor biopsies provide limited clinical utility, but liquid biopsies could overcome these limitations. Prior liquid biopsy approaches have lacked clinically relevant detection rates for patients with ccRCC. This study employed ccRCC-specific markers, CAIX and CAXII, to identify circulating tumor cells (CTC) from patients with metastatic ccRCC. Distinct subtypes of ccRCC CTCs were evaluated for PD-L1 and HLA-I expression and correlated with patient response to therapy. CTC enumeration and expression of PD-L1 and HLA-I correlated with disease progression and treatment response, respectively. Longitudinal evaluation of a subset of patients demonstrated potential for CTC enumeration to serve as a pharmacodynamic biomarker. Further evaluation of phenotypic heterogeneity among CTCs is needed to better understand the clinical utility of this new biomarker.


Assuntos
Carcinoma de Células Renais/diagnóstico , Neoplasias Renais/diagnóstico , Células Neoplásicas Circulantes , Adulto , Idoso , Antígeno B7-H1/sangue , Biomarcadores Tumorais/sangue , Carcinoma de Células Renais/sangue , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Antígenos de Histocompatibilidade Classe I/sangue , Humanos , Neoplasias Renais/sangue , Neoplasias Renais/patologia , Biópsia Líquida , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica
13.
J Clin Oncol ; 39(26): 2926-2937, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34197212

RESUMO

PURPOSE: Nearly all men with prostate cancer treated with androgen receptor (AR) signaling inhibitors (ARSIs) develop resistance via diverse mechanisms including constitutive activation of the AR pathway, driven by AR genomic structural alterations, expression of AR splice variants (AR-Vs), or loss of AR dependence and lineage plasticity termed neuroendocrine prostate cancer. Understanding these de novo acquired ARSI resistance mechanisms is critical for optimizing therapy. MATERIALS AND METHODS: A novel liquid biopsy technology was used to collect mRNA from circulating tumor cells (CTCs) to measure expression of AR-Vs, AR targets, and neuroendocrine prostate cancer markers. An institutional review board-approved prospective cohort (N = 99) was used to identify patterns of gene expression. Two prospective multicenter phase II clinical trials of ARSIs for men with castration-resistant prostate cancer (ClinicalTrials.gov: NCT01942837 [enzalutamide, N = 21] and NCT02025010 [abiraterone, N = 27]) were used to further validate these findings. RESULTS: Hierarchical clustering of CTC transcripts identified two distinct clusters. Cluster 2 (C2) exhibited increased expression of AR-regulated genes and was associated with worse overall survival (median 8.6 v 22.4 months; P < .01; hazard ratio [HR] = 3.45 [1.9 to 6.14]). In multivariable analysis, C2 was prognostic independent of other clinicopathologic variables. AR-V status was not significant when accounting for C2. Upon further validation in pooled multicenter phase II trials, C2 was associated with worse overall survival (15.2 months v not reached; P < .01; HR = 8.43 [2.74 to 25.92]), prostate-specific antigen progression-free survival (3.6 v 12 months; P < .01; HR = 4.64 [1.53 to 14.11]), and radiographic progression-free survival (2.7 v 40.6 months; P < .01; HR = 4.64 [1.82 to 17.41]). CONCLUSION: We demonstrate that a transcriptional profile detectable in CTCs obtained from liquid biopsies can serve as an independent prognostic marker beyond AR-V7 in patients with metastatic prostate cancer and can be used to identify the emergence of multiple ARSI resistance mechanisms. This is currently being investigated in additional prospective trials.


Assuntos
Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase Multiplex , Células Neoplásicas Circulantes/metabolismo , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo , Antagonistas de Androgênios/uso terapêutico , Androstenos/uso terapêutico , Benzamidas/uso terapêutico , Tomada de Decisão Clínica , Ensaios Clínicos Fase II como Assunto , Humanos , Biópsia Líquida , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/patologia , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Valor Preditivo dos Testes , Intervalo Livre de Progressão , Estudos Prospectivos , Neoplasias da Próstata/sangue , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Fatores de Tempo , Estados Unidos
14.
SLAS Technol ; 25(2): 162-176, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31983266

RESUMO

Comprehensive analysis of tumor heterogeneity requires robust methods for the isolation and analysis of single cells from patient samples. An ideal approach would be fully compatible with downstream analytic methods, such as advanced genomic testing. These endpoints necessitate the use of live cells at high purity. A multitude of microfluidic circulating tumor cell (CTC) enrichment technologies exist, but many of those perform bulk sample enrichment and are not, on their own, capable of single-cell interrogation. To address this, we developed an affordable semiautomated single-cell aspirator (SASCA) to further enrich rare-cell populations from a specialized microwell array, per their phenotypic markers. Immobilization of cells within microwells, integrated with a real-time image processing software, facilitates the detection and precise isolation of targeted cells that have been optimally seeded into the microwells. Here, we demonstrate the platform capabilities through the aspiration of target cells from an impure background population, where we obtain purity levels of 90%-100% and demonstrate the enrichment of the target population with high-quality RNA extraction. A range of low cell numbers were aspirated using SASCA before undergoing whole transcriptome and genome analysis, exhibiting the ability to obtain endpoints from low-template inputs. Lastly, CTCs from patients with castration-resistant prostate cancer were isolated with this platform and the utility of this method was confirmed for rare-cell isolation. SASCA satisfies a need for an affordable option to isolate single cells or highly purified subpopulations of cells to probe complex mechanisms driving disease progression and resistance in patients with cancer.


Assuntos
Microfluídica/instrumentação , Microfluídica/métodos , Células Neoplásicas Circulantes/patologia , Análise de Célula Única/instrumentação , Automação , Contagem de Células , Linhagem Celular Tumoral , Humanos , Masculino , Probabilidade , Neoplasias de Próstata Resistentes à Castração/patologia
15.
Mol Oncol ; 14(8): 1898-1909, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32255253

RESUMO

Centrosome amplification (CA) is a common phenomenon in cancer, promotes genomic stability and cancer evolution, and has been reported to promote metastasis. CA promotes a stochastic gain/loss of chromosomes during cell division, known as chromosomal instability (CIN). However, it is unclear whether CA is present in circulating tumor cells (CTCs), the seeds for metastasis. Here, we surveyed CA in CTCs from human subjects with metastatic breast cancer. CTCs were captured by CD45 exclusion and selection of EpCAM-positive cells using an exclusion-based sample preparation technology platform known as VERSA (versatile exclusion-based rare sample analysis). Centriole amplification (centrin foci> 4) is the definitive assay for CA. However, determination of centrin foci is technically challenging and incompatible with automated analysis. To test if the more technically accessible centrosome marker pericentrin could serve as a surrogate for centriole amplification in CTCs, cells were stained with pericentrin and centrin antibodies to evaluate CA. This assay was first validated using breast cancer cell lines and a nontransformed epithelial cell line model of inducible CA, then translated to CTCs. Pericentrin area and pericentrin area x intensity correlate well with centrin foci, validating pericentrin as a surrogate marker of CA. CA is found in CTCs from 75% of subjects, with variability in the percentage and extent of CA in individual circulating cells in a given subject, similar to the variability previously seen in primary tumors and cell lines. In summary, we created, validated, and implemented a novel method to assess CA in CTCs from subjects with metastatic breast cancer. Such an assay will be useful for longitudinal monitoring of CA in cancer patients and in prospective clinical trials for assessing the impact of CA on response to therapy.


Assuntos
Antígenos/metabolismo , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Centrossomo/metabolismo , Células Neoplásicas Circulantes/metabolismo , Idoso , Antígenos/sangue , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Centríolos/metabolismo , Centrossomo/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Humanos , Antígenos Comuns de Leucócito/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Regulação para Cima
16.
J Clin Oncol ; 38(31): 3662-3671, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32897830

RESUMO

PURPOSE: Intrapatient treatment response heterogeneity is under-recognized. Quantitative total bone imaging (QTBI) using 18F-NaF positron emission tomography/computed tomography (PET/CT) scans is a tool that allows characterization of interlesional treatment response heterogeneity in bone. Understanding spatial-temporal response is important to identify individuals who may benefit from treatment beyond progression. PATIENTS AND METHODS: Men with progressive metastatic castration-resistant prostate cancer (mCRPC) with at least two lesions on bone scintigraphy were enrolled and treated with enzalutamide 160 mg daily (ClinicalTrials.gov identifier: NCT02384382). 18F-NaF PET/CT scans were obtained at baseline (PET1), week 13 (PET2), and at the time of prostate-specific antigen (PSA) progression, standard radiographic or clinical progression, or at 2 years without progression (PET3). QTBI was used to determine lesion-level response. The primary end point was the proportion of men with at least one responding bone lesion on PET3 using QTBI. RESULTS: Twenty-three men were enrolled. Duration on treatment ranged from 1.4 to 34.1 months. In general, global standardized uptake value (SUV) metrics decreased while on enzalutamide (PET2) and increased at the time of progression (PET3). The most robust predictor of PSA progression was change in SUVhetero (PET1 to PET3; hazard ratio, 3.88; 95% CI, 1.24 to 12.1). Although overall functional disease burden improved during enzalutamide treatment, an increase in total burden (SUVtotal) was seen at the time of progression, as measured by 18F-NaF PET/CT. All (22/22) evaluable men had at least one responding bone lesion at PET3 using QTBI. CONCLUSION: We found that the proportion of progressing lesions was low, indicating that a substantial number of lesions appear to continue to benefit from enzalutamide beyond progression. Selective targeting of nonresponding lesions may be a reasonable approach to extend benefit.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/tratamento farmacológico , Células Neoplásicas Circulantes , Feniltioidantoína/análogos & derivados , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Benzamidas , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Progressão da Doença , Radioisótopos de Flúor , Humanos , Masculino , Pessoa de Meia-Idade , Nitrilas , Feniltioidantoína/efeitos adversos , Feniltioidantoína/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Antígeno Prostático Específico/sangue , Neoplasias de Próstata Resistentes à Castração/patologia , Fluoreto de Sódio , Resultado do Tratamento , Carga Tumoral
17.
J Cell Physiol ; 220(2): 341-7, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19334038

RESUMO

Pro-inflammatory cytokines (PIC) impair islet viability and function by activating inflammatory pathways that induce both necrosis and apoptosis. The aim of this study was to utilize an in vitro rat islet model to evaluate the efficacy of a clinically approved IL-1 receptor antagonist (Anakinra) in blocking PIC induced islet impairment. Isolated rat islets were cultured for 48 h +/- PIC (IL-1beta, IFNgamma, and TNFalpha) and +/-IL-1ra then assayed for cellular integrity by flow cytometry, MAPK phosphorylation by proteome array, and gene expression by RT-PCR. Nitric oxide (NO) release into the culture media was measured by Griess reaction. Islet functional potency was tested by glucose stimulated insulin secretion (GSIS) and by transplantation into streptozotocin-induced diabetic NOD.scid mice. Rat islets cultured with PIC upregulated genes for NOS2a, COX2, IL6, IL1b, TNFa, and HMOX1. IL-1ra prevented the PIC induced upregulation of all of these genes except for TNFa. Inhibition of PIC induced iNOS by NG-monomethyl-L-arginine (NMMA) only blocked the increased expression of HMOX1. IL-1ra completely abrogated the effects of PIC with respect to NO production, necrosis, apoptosis, mitochondrial dysfunction, GSIS, and in vivo potency. IL-1ra was not effective at preventing the induction of necrosis or apoptosis by exogenous NO. These data demonstrate that Anakinra is an effective agent to inhibit the activation of IL-1beta dependent inflammatory pathways in cultured rat islets and support the extension of its application to human islets in vitro and potentially as a post transplant therapy.


Assuntos
Apoptose/imunologia , Citocinas , Interleucina-1beta/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Necrose/imunologia , Receptores de Interleucina-1/antagonistas & inibidores , Animais , Células Cultivadas , Citocinas/imunologia , Citocinas/farmacologia , Ativação Enzimática , Humanos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Ilhotas Pancreáticas/citologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Ratos , Ratos Endogâmicos Lew , Receptores de Interleucina-1/metabolismo
18.
Lab Chip ; 18(22): 3446-3458, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30334061

RESUMO

Rare cell populations provide a patient-centric tool to monitor disease treatment, response, and resistance. However, understanding rare cells is a complex problem, which requires cell isolation/purification and downstream molecular interrogation - processes challenged by non-target populations, which vary patient-to-patient and change with disease. As such, cell isolation platforms must be amenable to a range of sample types while maintaining high efficiency and purity. The multiplexed technology for automated extraction (mTAE) is a versatile magnetic bead-based isolation platform that facilitates positive, negative, and combinatorial selection with integrated protein staining and nucleic acid isolation. mTAE is validated by isolating circulating tumor cells (CTCs) - a model rare cell population - from breast and prostate cancer patient samples. Negative selection yielded high efficiency capture of CTCs while positive selection yielded higher purity with an average of only 95 contaminant cells captured per milliliter of processed whole blood. With combinatorial selection, an overall increase in capture efficiency was observed, highlighting the potential significance of integrating multiple capture approaches on a single platform. Following capture (and staining), on platform nucleic acid extraction enabled the detection of androgen receptor-related transcripts from CTCs isolated from prostate cancer patients. The flexibility (e.g. negative, positive, combinatorial selection) and capabilities (e.g. isolation, protein staining, and nucleic acid extraction) of mTAE enable users to freely interrogate specific cell populations, a capability required to understand the potential of emerging rare cell populations and readily adapt to the heterogeneity presented across clinical samples.


Assuntos
Separação Celular/instrumentação , Métodos Analíticos de Preparação de Amostras , Linhagem Celular , Desenho de Equipamento , Humanos , Células Neoplásicas Circulantes/patologia , Integração de Sistemas
19.
Oncogene ; 37(21): 2817-2836, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29511352

RESUMO

Tumor metastasis depends on the dynamic regulation of cell adhesion through ß1-integrin. The Cub-Domain Containing Protein-1, CDCP1, is a transmembrane glycoprotein which regulates cell adhesion. Overexpression and loss of CDCP1 have been observed in the same cancer types to promote metastatic progression. Here, we demonstrate reduced CDCP1 expression in high-grade, primary prostate cancers, circulating tumor cells and tumor metastases of patients with castrate-resistant prostate cancer. CDCP1 is expressed in epithelial and not mesenchymal cells, and its cell surface and mRNA expression declines upon stimulation with TGFß1 and epithelial-to-mesenchymal transition. Silencing of CDCP1 in DU145 and PC3 cells resulted in 3.4-fold higher proliferation of non-adherent cells and 4.4-fold greater anchorage independent growth. CDCP1-silenced tumors grew in 100% of mice, compared to 30% growth of CDCP1-expressing tumors. After CDCP1 silencing, cell adhesion and migration diminished 2.1-fold, caused by loss of inside-out activation of ß1-integrin. We determined that the loss of CDCP1 reduces CDK5 kinase activity due to the phosphorylation of its regulatory subunit, CDK5R1/p35, by c-SRC on Y234. This generates a binding site for the C2 domain of PKCδ, which in turn phosphorylates CDK5 on T77. The resulting dissociation of the CDK5R1/CDK5 complex abolishes the activity of CDK5. Mutations of CDK5-T77 and CDK5R1-Y234 phosphorylation sites re-establish the CDK5/CDKR1 complex and the inside-out activity of ß1-integrin. Altogether, we discovered a new mechanism of regulation of CDK5 through loss of CDCP1, which dynamically regulates ß1-integrin in non-adherent cells and which may promote vascular dissemination in patients with advanced prostate cancer.


Assuntos
Antígenos CD/genética , Antígenos CD/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Regulação para Baixo , Integrina beta1/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Animais , Antígenos de Neoplasias , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Gradação de Tumores , Metástase Neoplásica , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo
20.
J Clin Oncol ; 40(5): 520-522, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34878806
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA