Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EBioMedicine ; 43: 138-149, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31000418

RESUMO

BACKGROUND: Certain tumors rely heavily on their DNA repair capability to survive the DNA damage induced by chemotherapeutic agents. Therefore, it is important to monitor the dynamics of DNA repair in patient samples during the course of their treatment, in order to determine whether a particular drug regimen perturbs the DNA repair networks in cancer cells and provides therapeutic benefits. Quantitative measurement of proteins and/or their posttranslational modification(s) at DNA double strand breaks (DSBs) induced by laser microirradiation provides an applicable diagnostic approach to examine DNA repair and its dynamics. However, its use is restricted to adherent cell lines and not employed in suspension tumor cells that include the many hematological malignancies. METHODS: Here, we report the development of an assay to laser micro-irradiate and quantitatively measure DNA repair transactions at DSB sites in normal mononuclear cells and a variety of suspension leukemia and lymphoma cells including primary patient samples. FINDINGS: We show that global changes in the H3K27me3-ac switch modulated by inhibitors of Class I HDACs, EZH2 methyltransferase and (or) H3K27me3 demethylases do not reflect the dynamic changes in H3K27me3 that occur at double-strand break sites during DNA repair. INTERPRETATION: Results from our mechanistic studies and proof-of-principle data with patient samples together show the effectiveness of using the modified micro-laser-based assay to examine DNA repair directly in suspension cancer cells, and has important clinical implications by serving as a valuable tool to assess drug efficacies in hematological cancer cells that grow in suspension.


Assuntos
Células Sanguíneas/metabolismo , Células Sanguíneas/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Epigênese Genética , Lasers , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA/efeitos da radiação , Reparo do DNA , Histonas , Humanos , Terapia com Luz de Baixa Intensidade , Linfoma Difuso de Grandes Células B/genética
2.
Cell Rep ; 21(2): 431-441, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29020629

RESUMO

Secretory cells produce diverse cargoes, yet how they regulate concomitant secretory traffic remains insufficiently explored. Rab GTPases control intracellular vesicular transport. To map secretion pathways, we generated a library of lentivirus-expressed dominant-negative Rab mutants and used it in a large-scale screen to identify regulators of hepatic lipoprotein secretion. We identified several candidate pathways, including those mediated by Rab11 and Rab8. Surprisingly, inhibition of Rab1b, the major regulator of transport from the endoplasmic reticulum to the Golgi, differently affected the secretion of the very-low-density lipoprotein components ApoE and ApoB100, despite their final association on mature secreted lipoprotein particles. Since hepatitis C virus (HCV) incorporates ApoE and ApoB100 into its virus particle, we also investigated infectious HCV secretion and show that its regulation by Rab1b mirrors that of ApoB100. These observations reveal differential regulation of hepatocyte secretion by Rab1b and advance our understanding of lipoprotein assembly and lipoprotein and HCV secretion.


Assuntos
Apolipoproteínas/metabolismo , Via Secretória , Proteínas rab1 de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Exocitose , Células HEK293 , Hepacivirus/metabolismo , Humanos , Mutação , Proteínas rab1 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA