RESUMO
Recent results from large-scale genomic projects suggest that allele frequencies, which are highly relevant for medical purposes, differ considerably across different populations. The need for a detailed catalog of local variability motivated the whole-exome sequencing of 267 unrelated individuals, representative of the healthy Spanish population. Like in other studies, a considerable number of rare variants were found (almost one-third of the described variants). There were also relevant differences in allelic frequencies in polymorphic variants, including â¼10,000 polymorphisms private to the Spanish population. The allelic frequencies of variants conferring susceptibility to complex diseases (including cancer, schizophrenia, Alzheimer disease, type 2 diabetes, and other pathologies) were overall similar to those of other populations. However, the trend is the opposite for variants linked to Mendelian and rare diseases (including several retinal degenerative dystrophies and cardiomyopathies) that show marked frequency differences between populations. Interestingly, a correspondence between differences in allelic frequencies and disease prevalence was found, highlighting the relevance of frequency differences in disease risk. These differences are also observed in variants that disrupt known drug binding sites, suggesting an important role for local variability in population-specific drug resistances or adverse effects. We have made the Spanish population variant server web page that contains population frequency information for the complete list of 170,888 variant positions we found publicly available (http://spv.babelomics.org/), We show that it if fundamental to determine population-specific variant frequencies to distinguish real disease associations from population-specific polymorphisms.
Assuntos
Doença/genética , Exoma , Bases de Dados de Ácidos Nucleicos , Resistência a Medicamentos/genética , Frequência do Gene , Predisposição Genética para Doença , Variação Genética , Genética Populacional/métodos , Humanos , Internet , Testes Farmacogenômicos , Polimorfismo Genético , Espanha/epidemiologiaRESUMO
Circulating tumor DNA (ctDNA) is a new circulating tumor biomarker which might be used as a prognostic biomarker in a way similar to circulating tumor cells (CTCs). Here, we used the high prevalence of TP53 mutations in triple negative breast cancer (TNBC) to compare ctDNA and CTC detection rates and prognostic value in metastatic TNBC patients. Forty patients were enrolled before starting a new line of treatment. TP53 mutations were characterized in archived tumor tissues and in plasma DNA using two next generation sequencing (NGS) platforms in parallel. Archived tumor tissue was sequenced successfully for 31/40 patients. TP53 mutations were found in 26/31 (84%) of tumor samples. The same mutation was detected in the matched plasma of 21/26 (81%) patients with an additional mutation found only in the plasma for one patient. Mutated allele fractions ranged from 2 to 70% (median 5%). The observed correlation between the two NGS approaches (R(2) = 0.903) suggested that ctDNA levels data were quantitative. Among the 27 patients with TP53 mutations, CTC count was ≥1 in 19 patients (70%) and ≥5 in 14 patients (52%). ctDNA levels had no prognostic impact on time to progression (TTP) or overall survival (OS), whereas CTC numbers were correlated with OS (p = 0.04) and marginally with TTP (p = 0.06). Performance status and elevated LDH also had significant prognostic impact. Here, absence of prognostic impact of baseline ctDNA level suggests that mechanisms of ctDNA release in metastatic TNBC may involve, beyond tumor burden, biological features that do not dramatically affect patient outcome.
Assuntos
DNA de Neoplasias/sangue , Células Neoplásicas Circulantes/patologia , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/patologia , Biomarcadores Tumorais/sangue , Progressão da Doença , Feminino , Humanos , Mutação/genética , Prognóstico , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/genéticaRESUMO
BACKGROUND: Cutaneous squamous-cell carcinomas and keratoacanthomas are common findings in patients treated with BRAF inhibitors. METHODS: We performed a molecular analysis to identify oncogenic mutations (HRAS, KRAS, NRAS, CDKN2A, and TP53) in the lesions from patients treated with the BRAF inhibitor vemurafenib. An analysis of an independent validation set and functional studies with BRAF inhibitors in the presence of the prevalent RAS mutation was also performed. RESULTS: Among 21 tumor samples, 13 had RAS mutations (12 in HRAS). In a validation set of 14 samples, 8 had RAS mutations (4 in HRAS). Thus, 60% (21 of 35) of the specimens harbored RAS mutations, the most prevalent being HRAS Q61L. Increased proliferation of HRAS Q61L-mutant cell lines exposed to vemurafenib was associated with mitogen-activated protein kinase (MAPK)-pathway signaling and activation of ERK-mediated transcription. In a mouse model of HRAS Q61L-mediated skin carcinogenesis, the vemurafenib analogue PLX4720 was not an initiator or a promoter of carcinogenesis but accelerated growth of the lesions harboring HRAS mutations, and this growth was blocked by concomitant treatment with a MEK inhibitor. CONCLUSIONS: Mutations in RAS, particularly HRAS, are frequent in cutaneous squamous-cell carcinomas and keratoacanthomas that develop in patients treated with vemurafenib. The molecular mechanism is consistent with the paradoxical activation of MAPK signaling and leads to accelerated growth of these lesions. (Funded by Hoffmann-La Roche and others; ClinicalTrials.gov numbers, NCT00405587, NCT00949702, NCT01001299, and NCT01006980.).
Assuntos
Carcinoma de Células Escamosas/genética , Genes ras , Indóis/uso terapêutico , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias Cutâneas/genética , Sulfonamidas/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis/administração & dosagem , Masculino , Camundongos , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Sulfonamidas/administração & dosagem , VemurafenibRESUMO
RO5263397 [(S)-4-(3-fluoro-2-methyl-phenyl)-4,5-dihydro-oxazol-2-ylamine], a new compound that showed promising results in animal models of schizophrenia, is mainly metabolized in humans by N-glucuronidation. Enzyme studies, using the (then) available commercial uridine 5'-diphosphate-glucuronosyltransferases (UGTs), suggested that UGT1A4 is responsible for its conjugation. In the first clinical trial, in which RO5263397 was administered orally to healthy human volunteers, a 136-fold above-average systemic exposure to the parent compound was found in one of the participants. Further administration in this trial identified two more such poor metabolizers, all three of African origin. Additional in vitro studies with recombinant UGTs showed that the contribution of UGT2B10 to RO5263397 glucuronidation is much higher than UGT1A4 at clinically relevant concentrations. DNA sequencing in all of these poor metabolizers identified a previously uncharacterized splice site mutation that prevents assembly of full-length UGT2B10 mRNA and thus functional UGT2B10 protein expression. Further DNA database analyses revealed the UGT2B10 splice site mutation to be highly frequent in individuals of African origin (45%), moderately frequent in Asians (8%) and almost unrepresented in Caucasians (<1%). A prospective study using hepatocytes from 20 individual African donors demonstrated a >100-fold lower intrinsic clearance of RO5263397 in cells homozygous for the splice site variant allele. Our results highlight the need to include UGT2B10 when screening the human UGTs for the enzymes involved in the glucuronidation of a new compound, particularly when there is a possibility of N-glucuronidation. Moreover, this study demonstrates the importance of considering different ethnicities during drug development.
Assuntos
População Negra/genética , Inativação Gênica , Glucuronosiltransferase/genética , Oxazóis/farmacocinética , Polimorfismo de Nucleotídeo Único , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Bases de Dados de Ácidos Nucleicos , Glucuronídeos/metabolismo , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Oxazóis/administração & dosagem , Especificidade por Substrato , Espectrometria de Massas em TandemRESUMO
BACKGROUND: Vemurafenib has been approved for the treatment of patients with advanced BRAF(V600E)-mutant melanoma. This report by the Vemurafenib Dermatology Working Group presents the characteristics of dermatologic adverse events (AEs) that occur in vemurafenib-treated patients, including cutaneous squamous cell carcinoma (cuSCC). METHODS: Dermatologic AEs were assessed from three ongoing trials of BRAF(V600E) mutation-positive advanced melanoma. Histologic central review and genetic characterization were completed for a subset of cuSCC lesions. RESULTS: A total of 520 patients received vemurafenib. The most commonly reported AEs were dermatologic AEs, occurring in 92%-95% of patients. Rash was the most common AE (64%-75% of patients), and the most common types were rash not otherwise specified, erythema, maculopapular rash, and folliculitis. Rash development did not appear to correlate with tumor response. Photosensitivity occurred in 35%-63% of patients, and palmar-plantar erythrodysesthesia (PPE) occurred in 8%-10% of patients. The severity of rash, photosensitivity, and PPE were mainly grade 1 or 2. In all, 19%-26% of patients developed cuSCC, mostly keratoacanthomas (KAs). The majority of patients with cuSCC continued therapy without dose reduction after resection. Genetic analysis of 29 cuSCC/KA samples demonstrated HRAS mutations in 41%. CONCLUSIONS: Dermatologic AEs associated with vemurafenib treatment in patients with melanoma were generally manageable with supportive care measures. Dose interruptions and/or reductions were required in <10% of patients.
Assuntos
Indóis/efeitos adversos , Indóis/uso terapêutico , Melanoma/tratamento farmacológico , Segunda Neoplasia Primária/induzido quimicamente , Dermatopatias/induzido quimicamente , Neoplasias Cutâneas/tratamento farmacológico , Sulfonamidas/efeitos adversos , Sulfonamidas/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ensaios Clínicos como Assunto , Feminino , Humanos , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Segunda Neoplasia Primária/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Neoplasias Cutâneas/patologia , Resultado do Tratamento , Vemurafenib , Adulto JovemRESUMO
The accuracy of common markers for PI3K/AKT and MAPK pathway activation in preclinical and clinical cancer biomarker studies depends on phosphoepitope stability and changes of phosphorylation under ischemia. Herein, we define conditions under which phosphoepitope-specific duplex immunohistochemistry (IHC) on formalin-fixed, paraffin-embedded tumor tissues reflects pathway activation in situ as accurately as possible, and identify activation patterns linked to mutational status, pathway dependency and tumor microenvironment in clinical tumor samples, cell culture and xenograft tissues. Systematically assessing robustness of pAKT, pERK1/2, pMEK1/2 and pmTOR detection and related markers in xenograft tissues exposed to ischemia, we show that control of preprocessing and ischemia times allows accurate interpretation of staining results. Phosphorylation patterns were then analyzed in 33 xenograft models and in 58 cases with breast cancer, including 21 paired samples of core-needle biopsies with corresponding mastectomy specimens, and 37 mastectomy samples obtained under rigorously controlled conditions minimizing ischemia time. Patterns of pAKT and pERK1/2 staining (predominant PI3K/AKT, predominant MAPK and concomitant activation) were associated with sensitivity to pathway inhibition and partially with the mutational status in cell lines and corresponding xenograft tumors. In contrast, no clear correlation between mutational status and staining patterns was observed in clinical breast cancer samples, suggesting that interaction with the human tumor microenvironment may interfere with the use of phosphoepitope-specific IHC as potential markers for pathway dependency. In contrast to core needle biopsies, surgically resected breast cancer samples showed evidence of severe signal changes comparable to those effects observed in xenograft tumors exposed to controlled ischemia.
Assuntos
Isquemia Fria , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Microambiente Tumoral/imunologia , Animais , Biópsia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos SCID , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Neoplasias/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transplante HeterólogoRESUMO
Polymorphisms of activating Fc-γ receptors (FCGRs) on natural killer cells and macrophages result in variable affinity for immunoglobulin G1 monoclonal antibodies and subsequently modulate antibody-dependent cellular cytotoxicity (ADCC) activity. Whether single-nucleotide polymorphisms of FCGRs correlate with survival of chronic lymphocytic leukemia (CLL) patients treated with a monoclonal antibody containing regimen is unclear. We assessed the FCGR3A and FCGR2A genotype of patients enrolled in the REACH trial, where patients received fludarabine and cyclophosphamide (FC) or rituximab plus FC (R-FC). FCGR3A and FCGR2A polymorphisms did not demonstrate prognostic significance in the FC arm (P = .42 and P = .64, respectively) or R-FC arm (P = .41 and P = .88, respectively) with respect to progression free survival. Patients with intermediate affinity genotypes (FV and HR) benefited significantly from addition of rituximab (hazard ratio = 0.55 [0.37-0.8 CI]; P = .0017 and hazard ratio = 0.63 [0.44-0.9 CI]; P = .011, respectively). Similar benefit was suggested for patients with high- affinity VV and HH (hazard ratio = 0.86 [0.4-1.84 CI]; P = .7 and hazard ratio = 0.7 [0.41-1.18 CI]; P = .18, respectively) and low-affinity FF and RR (hazard ratio = 0.85 [0.56-1.29 CI]; P = .44 and hazard ratio = 0.82 [0.47-1.42 CI]; P = .48, respectively). Overall, our results suggest that FCGR2A and FCGR3A polymorphisms do not significantly influence the outcomes of relapsed or refractory CLL patients treated with FC or the monoclonal antibody regimen R-FC.
Assuntos
Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Polimorfismo de Nucleotídeo Único/genética , Receptores de IgG/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Murinos/farmacocinética , Anticorpos Monoclonais Murinos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/uso terapêutico , Intervalo Livre de Doença , Feminino , Genótipo , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Rituximab , Resultado do Tratamento , Vidarabina/análogos & derivados , Vidarabina/uso terapêuticoRESUMO
OBJECTIVE: Tocilizumab, a monoclonal antibody to interleukin-6 receptor, was recently approved for the treatment of moderate-to-severe rheumatoid arthritis. Two patients during clinical development met laboratory, but not clinical, criteria for Hy's law with bilirubin elevations suspected as a result of genetic variation in uridine diphosphoglucose glucuronosyltransferase (UGT1A1) typical of Gilbert syndrome. METHODS: Genotyping of the two cases potentially meeting with Hy's law was performed using commercially available procedures. UGT1A1 single nucleotide polymorphism data were extracted from a genome-wide array database for 1187 patients from tocilizumab trials, and associations of UGT1A1 genotypes with bilirubin elevations were analyzed using logistic regression for associations with baseline and change from baseline in bilirubin levels as continuous variables. RESULTS: Bilirubin elevations were not associated with clinical adverse events. Both patients potentially meeting Hy's law carry homozygous UGT1A1*28 alleles and UGT1A1*60 alleles. UGT1A1*28 and three additional single nucleotide polymorphisms showed odds ratios greater than 25 for associations with elevated bilirubin. The presence of rs6742078 accounted for 32% of the total variance in bilirubin (P=2.2×10). CONCLUSION: Bilirubin increases occurring with tocilizumab appear to be related to anti-inflammatory effects extending to the liver. Thus, in the absence of other signs of hepatic dysfunction, bilirubin elevations after treatment with tocilizumab have a high probability of association with UGT1A1 polymorphism, which should alleviate concerns of serious hepatotoxicity. Our results underscore the value of genotyping in the clinical trial setting to avoid misinterpretations that could lead to terminating development of a promising new agent.
Assuntos
Anticorpos Monoclonais/efeitos adversos , Artrite Reumatoide/tratamento farmacológico , Bilirrubina/sangue , Doença de Gilbert/genética , Glucuronosiltransferase/genética , Hiperbilirrubinemia/etiologia , Hiperbilirrubinemia/genética , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Ensaios Clínicos Fase III como Assunto , Estudos de Associação Genética , Genótipo , Homozigoto , Humanos , Mutação , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The Eastern woodchuck (Marmota monax) has been extensively used in research of chronic hepatitis B and liver cancer because its infection with the woodchuck hepatitis virus closely resembles a human hepatitis B virus infection. Development of novel immunotherapeutic approaches requires genetic information on immune pathway genes in this animal model. The woodchuck genome was assembled with a combination of high-coverage whole-genome shotgun sequencing of Illumina paired-end, mate-pair libraries and fosmid pool sequencing. The result is a 2.63 Gigabase (Gb) assembly with a contig N50 of 74.5 kilobases (kb), scaffold N50 of 892 kb, and genome completeness of 99.2%. RNA sequencing (RNA-seq) from seven different tissues aided in the annotation of 30,873 protein-coding genes, which in turn encode 41,826 unique protein products. More than 90% of the genes have been functionally annotated, with 82% of them containing open reading frames. This genome sequence and its annotation will enable further research in chronic hepatitis B and hepatocellular carcinoma and contribute to the understanding of immunological responses in the woodchuck.
Assuntos
Genoma , Hepatite B Crônica/virologia , Marmota/genética , Marmota/virologia , Animais , Sequência de Bases , Análise por Conglomerados , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Marmota/imunologia , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , FilogeniaRESUMO
Checkpoint inhibitor therapy has been a breakthrough in cancer research, but only some patients with cancer derive substantial benefit. Although mechanisms underlying sensitivity and resistance to checkpoint inhibitors are being elucidated, the importance of organ-specific regulation of immunity is currently underappreciated. Here, we call for a greater understanding of tissue-specific immunoregulation, namely, "tissue-specific immunostats," to make advances in treatments for cancer. A better understanding of how individual organs at baseline regulate the immune system could enable an improved precision medicine approach to cancer immunotherapy. Cancer Discov; 8(4); 395-402. ©2018 AACR.
Assuntos
Sistema Imunitário , Neoplasias/imunologia , Neoplasias/terapia , Animais , Humanos , Imunoterapia , Camundongos , Especificidade de Órgãos , Medicina de PrecisãoRESUMO
Focused interviews were conducted with global pharmaceutical company representatives in order to derive a consistent view on drug target identification/validation challenges, collaborative strategies, and future developments in a precompetitive space. Analysis revealed translation into clinical utility as a major hurdle of novel drug target validation, originating from lack of biological understanding, irreproducibility of published results, and lack of valid animal models. Direct and close collaborations with academia are the preferred model to tackle basic research on novel drug targets in high-risk projects. Efforts to conduct target identification in large precompetitive consortia are acknowledged with some doubts about the pace of progress and data-sharing policies, while concept to extend the precompetitive space to target validation in phase II trials was curtailed to niche indications together with a revision of current intellectual property (IP) practice. Public-private partnerships in established areas are forecasted to increase. Novel emerging themes are toxicology data sharing, joint genetic patient data analysis, and reimbursement concepts.
RESUMO
BACKGROUND: Tuberous sclerosis complex (TSC) is a genetic disease characterized by benign tumor growths in multiple organs and neurological symptoms induced by mTOR hyperfunction. Because the molecular pathology is highly complex and the etiology poorly understood, we employed a defined human neuronal model with a single mTOR activating mutation to dissect the disease-relevant molecular responses driving the neuropathology and suggest new targets for treatment. METHODS: We investigate the disease phenotype of TSC by neural differentiation of a human stem cell model that had been deleted for TSC2 by genome editing. Comprehensive genomic analysis was performed by RNA sequencing and ribosome profiling to obtain a detailed genome-wide description of alterations on both the transcriptional and translational level. The molecular effect of mTOR inhibitors used in the clinic was monitored and comparison to published data from patient biopsies and mouse models highlights key pathogenic processes. RESULTS: TSC2-deficient neural stem cells showed severely reduced neuronal maturation and characteristics of astrogliosis instead. Transcriptome analysis indicated an active inflammatory response and increased metabolic activity, whereas at the level of translation ribosomal transcripts showed a 5'UTR motif-mediated increase in ribosome occupancy. Further, we observed enhanced protein synthesis rates of angiogenic growth factors. Treatment with mTOR inhibitors corrected translational alterations but transcriptional dysfunction persisted. CONCLUSIONS: Our results extend the understanding of the molecular pathophysiology of TSC brain lesions, and suggest phenotype-tailored pharmacological treatment strategies.
RESUMO
INTRODUCTION: Exon 19 deletions and the exon 21 L858R mutation of the epidermal growth factor receptor gene (EGFR) predict activity of EGFR tyrosine kinase inhibitors, including erlotinib; however, the ability of less common EGFR mutations to predict efficacy of erlotinib is unclear. METHODS: The efficacy of erlotinib in individual patients with rare EGFR mutations from the MERIT, SATURN, TITAN, TRUST, ATLAS, BeTa, and FASTACT-2 trials was analyzed and compared with data from the literature. RESULTS: In the patients tested for biomarkers, the frequency of rare mutations identified here ranged from 1.7% (eight of 467) in the SATURN study to 7.4% (27 of 364) in ATLAS. Some rare mutations were associated with greater clinical benefit from EGFR tyrosine kinase inhibitor therapy or improved prognosis independent of treatment, whereas others appeared to have a poorer prognosis. In particular, exon 18 G719 mutations, exon 19 K757R and E746G mutations, the exon 20 S768I mutation, and the exon 21 G836S mutation appeared to confer a good outcome with erlotinib treatment, whereas exon 18 S720I showed a particularly poor outcome. Owing to the small number of patients with each mutation, however, it is difficult to confirm whether these rare mutations do indeed confer sensitivity or resistance to erlotinib. CONCLUSIONS: Erlotinib can have different efficacy depending on the specific EGFR mutation. More research is needed to create a central database such as the My Cancer Genome database of rare mutations to definitively confirm whether these mutations are activating, resistant, or neutral.
Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ensaios Clínicos como Assunto , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Resultado do TratamentoRESUMO
PURPOSE To assess pharmacodynamic effects and intrinsic and acquired resistance mechanisms of the BRAF inhibitor vemurafenib in BRAF(V600)-mutant melanoma, leading to an understanding of the mechanism of action of vemurafenib and ultimately to optimization of metastatic melanoma therapy. METHODS In the phase II clinical study NP22657 (BRIM-2), patients received oral doses of vemurafenib (960 mg twice per day). Serial biopsies were collected to study changes in mitogen-activated protein kinase (MAPK) signaling, cell-cycle progression, and factors causing intrinsic or acquired resistance by immunohistochemistry, DNA sequencing, or somatic mutation profiling. Results Vemurafenib inhibited MAPK signaling and cell-cycle progression. An association between the decrease in extracellular signal-related kinase (ERK) phosphorylation and objective response was observed in paired biopsies (n = 22; P = .013). Low expression of phosphatase and tensin homolog showed a modest association with lower response. Baseline mutations in MEK1(P124) coexisting with BRAF(V600) were noted in seven of 92 samples; their presence did not preclude objective tumor responses. Acquired resistance to vemurafenib associated with reactivation of MAPK signaling as observed by elevated ERK1/2 phosphorylation levels in progressive lesions and the appearance of secondary NRAS(Q61) mutations or MEK1(Q56P) or MEK1(E203K) mutations. These two activating MEK1 mutations had not previously been observed in vivo in biopsies of progressive melanoma tumors. CONCLUSION Vemurafenib inhibits tumor proliferation and oncogenic BRAF signaling through the MAPK pathway. Acquired resistance results primarily from MAPK reactivation driven by the appearance of secondary mutations in NRAS and MEK1 in subsets of patients. The data suggest that inhibition downstream of BRAF should help to overcome acquired resistance.
Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Sulfonamidas/farmacologia , Administração Oral , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Feminino , GTP Fosfo-Hidrolases/genética , Humanos , Imuno-Histoquímica , Indóis/administração & dosagem , MAP Quinase Quinase 1/genética , Masculino , Melanoma/secundário , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutação Puntual , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Sulfonamidas/administração & dosagem , Células Tumorais Cultivadas , VemurafenibRESUMO
Heterogeneity in the underlying mechanisms of disease processes and inter-patient variability in drug responses are major challenges in drug development. To address these challenges, biomarker strategies based on a range of platforms, such as microarray gene-expression technologies, are increasingly being applied to elucidate these sources of variability and thereby potentially increase drug development success rates. With the aim of enhancing understanding of the regulatory significance of such biomarker data by regulators and sponsors, the US Food and Drug Administration initiated a programme in 2004 to allow sponsors to submit exploratory genomic data voluntarily, without immediate regulatory impact. In this article, a selection of case studies from the first 5 years of this programme - which is now known as the voluntary exploratory data submission programme, and also involves collaboration with the European Medicines Agency - are discussed, and general lessons are highlighted.
Assuntos
Aprovação de Drogas , Perfilação da Expressão Gênica , United States Food and Drug Administration , Alanina Transaminase/sangue , Azetidinas/efeitos adversos , Azetidinas/uso terapêutico , Benzilaminas/efeitos adversos , Benzilaminas/uso terapêutico , Carcinoma de Células Renais/diagnóstico , Europa (Continente) , Fluoruracila/efeitos adversos , Marcadores Genéticos , Humanos , Cooperação Internacional , Neoplasias Renais/diagnóstico , Transplante de Rim , Farmacogenética , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Cloridrato de Prasugrel , Medicina de Precisão , Tiofenos/farmacocinética , Tiofenos/uso terapêutico , Estados UnidosRESUMO
Renal transplant outcomes exhibit large inter-individual variability, possibly on account of genetic variation in immune-response mediators and genes influencing the pharmacodynamics/pharmacokinetics of immunosuppressants. We examined 21 polymorphisms from 10 genes in 237 de novo renal transplant recipients participating in an open-label, multicenter study [Cyclosporine Avoidance Eliminates Serious Adverse Renal-toxicity (CAESAR)] investigating renal function and biopsy-proven acute rejection (BPAR) with different cyclosporine A regimens and mycophenolate mofetil. Genes were selected for their immune response and pharmacodynamic/pharmacokinetic relevance and were tested for association with BPAR. Four polymorphisms were significantly associated with BPAR. The ABCB1 2677T allele tripled the odds of developing BPAR (OR: 3.16, 95% CI [1.50-6.67]; P=0.003), as did the presence of at least one IMPDH2 3757C allele (OR: 3.39, 95% CI [1.42-8.09]; P=0.006). BPAR was almost fivefold more likely in patients homozygous for IL-10 -592A (OR: 4.71, 95% CI [1.52-14.55]; P=0.007) and twice as likely in patients with at least one A allele of TNF-alpha G-308A (OR: 2.18, 95% CI [1.08-4.41]; P=0.029). There were no statistically significant interactions between polymorphisms, or the different treatment regimens. Variation in genes of immune response and pharmacodynamic/pharmacokinetic relevance may be important in understanding acute rejection after renal transplant.