RESUMO
Genetic and epigenetic alterations have been identified that lead to transcriptional deregulation in cancers. Genetic mechanisms may affect single genes or regions containing several neighboring genes, as has been shown for DNA copy number changes. It was recently reported that epigenetic suppression of gene expression can also extend to a whole region; this is known as long-range epigenetic silencing. Various techniques are available for identifying regional genetic alterations, but no large-scale analysis has yet been carried out to obtain an overview of regional epigenetic alterations. We carried out an exhaustive search for regions susceptible to such mechanisms using a combination of transcriptome correlation map analysis and array CGH data for a series of bladder carcinomas. We validated one candidate region experimentally, demonstrating histone methylation leading to the loss of expression of neighboring genes without DNA methylation.
Assuntos
Dosagem de Genes , Transcrição Gênica , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Cromossomos Humanos Par 3/genética , Metilação de DNA , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Análise de Sequência com Séries de OligonucleotídeosRESUMO
Completion of the working draft of the human genome has made it possible to analyze the expression of genes according to their position on the chromosomes. Here, we used a transcriptome data analysis approach involving for each gene the calculation of the correlation between its expression profile and those of its neighbors. We used the U133 Affymetrix transcriptome data set for a series of 130 invasive ductal breast carcinomas to construct chromosomal maps of gene expression correlation (transcriptome correlation map). This highlighted nonrandom clusters of genes along the genome with correlated expression in tumors. Some of the gene clusters identified by this method probably arose because of genetic alterations, as most of the chromosomes with the highest percentage of correlated genes (1q, 8p, 8q, 16p, 16q, 17q, and 20q) were also the most frequent sites of genomic alterations in breast cancer. Our analysis showed that several known breast tumor amplicons (at 8p11-p12, 11q13, and 17q12) are located within clusters of genes with correlated expression. Using hierarchical clustering on samples and a Treeview representation of whole chromosome arms, we observed a higher-order organization of correlated genes, sometimes involving very large chromosomal domains that could extend to a whole chromosome arm. Transcription correlation maps are a new way of visualizing transcriptome data. They will help to identify new genes involved in tumor progression and new mechanisms of gene regulation in tumors.