Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(13): 2223-2235, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35134173

RESUMO

The genetic regulation of ovarian development remains largely unclear. Indeed, in most cases of impaired ovarian development-such as 46,XX disorders of sex development (DSD) without SRY, and premature ovarian insufficiency (POI)-the genetic causes have not been identified, and the vast majority of disease-associated sequence variants could lie within non-coding regulatory sequences. In this study, we aimed to identify enhancers of five ovarian genes known to play key roles in early ovarian development, basing our analysis on the expression of enhancer derived transcripts (eRNAs), which are considered to characterize active enhancers. Temporal expression profile changes in mouse WT1-positive ovarian cells were obtained from cap analysis of gene expression at E13.5, E16.5 and P0. We compared the chronological expression profiles of ovarian-specific eRNA with expression profiles for each of the ovarian-specific genes, yielding two candidate sequences for enhancers of Wnt4 and Rspo1. Both sequences are conserved between mouse and human, and we confirmed their enhancer activities using transient expression assays in murine granulosa cells. Furthermore, by sequencing the region in patients with impaired ovarian development in 24 patients, such as POI, gonadal dysgenesis and 46,XX DSD, we identified rare single nucleotide variants in both sequences. Our results demonstrate that combined analysis of the temporal expression profiles of eRNA and mRNA of target genes presents a powerful tool for locating cis-element enhancers, and a means of identifying disease-associated sequence variants that lie within non-coding regulatory sequences, thus advancing an important unmet need in forward human genetics.


Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Animais , Elementos Facilitadores Genéticos/genética , Feminino , Variação Genética , Humanos , Menopausa Precoce/genética , Camundongos , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo , RNA/genética , Fatores de Tempo
2.
Hum Genet ; 142(7): 879-907, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148394

RESUMO

Premature ovarian insufficiency (POI) is a common cause of infertility in women, characterised by amenorrhea and elevated FSH under the age of 40 years. In some cases, POI is syndromic in association with other features such as sensorineural hearing loss in Perrault syndrome. POI is a heterogeneous disease with over 80 causative genes known so far; however, these explain only a minority of cases. Using whole-exome sequencing (WES), we identified a MRPL50 homozygous missense variant (c.335T > A; p.Val112Asp) shared by twin sisters presenting with POI, bilateral high-frequency sensorineural hearing loss, kidney and heart dysfunction. MRPL50 encodes a component of the large subunit of the mitochondrial ribosome. Using quantitative proteomics and western blot analysis on patient fibroblasts, we demonstrated a loss of MRPL50 protein and an associated destabilisation of the large subunit of the mitochondrial ribosome whilst the small subunit was preserved. The mitochondrial ribosome is responsible for the translation of subunits of the mitochondrial oxidative phosphorylation machinery, and we found patient fibroblasts have a mild but significant decrease in the abundance of mitochondrial complex I. These data support a biochemical phenotype associated with MRPL50 variants. We validated the association of MRPL50 with the clinical phenotype by knockdown/knockout of mRpL50 in Drosophila, which resulted abnormal ovarian development. In conclusion, we have shown that a MRPL50 missense variant destabilises the mitochondrial ribosome, leading to oxidative phosphorylation deficiency and syndromic POI, highlighting the importance of mitochondrial support in ovarian development and function.


Assuntos
Disgenesia Gonadal 46 XX , Perda Auditiva Neurossensorial , Insuficiência Ovariana Primária , Feminino , Humanos , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Mitocôndrias/genética , Mutação de Sentido Incorreto , Insuficiência Ovariana Primária/genética , Animais , Drosophila melanogaster
3.
Hum Mutat ; 43(3): 362-379, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34918413

RESUMO

SRY is the Y-chromosomal gene that determines male sex development in humans and most other mammals. After three decades of study, we still lack a detailed understanding of which domains of the SRY protein are required to engage the pathway of gene activity leading to testis development. Some insight has been gained from the study of genetic variations underlying differences/disorders of sex determination (DSD), but the lack of a system of experimentally generating SRY mutations and studying their consequences in vivo has limited progress in the field. To address this issue, we generated a mouse model carrying a human SRY transgene able to drive testis determination in XX mice. Using CRISPR-Cas9 gene editing, we generated novel genetic modifications in each of SRY's three domains (N-terminal, HMG box, and C-terminal) and performed a detailed analysis of their molecular and cellular effects on embryonic testis development. Our results provide new functional insights unique to human SRY and present a versatile and powerful system in which to functionally analyze variations of SRY including known and novel pathogenic variants found in DSD.


Assuntos
Edição de Genes , Camundongos Transgênicos , Proteína da Região Y Determinante do Sexo , Testículo , Animais , Humanos , Masculino , Camundongos , Domínios Proteicos , Proteína da Região Y Determinante do Sexo/genética , Testículo/metabolismo
4.
Mol Hum Reprod ; 26(9): 665-677, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32634216

RESUMO

Infertility, a global problem affecting up to 15% of couples, can have varied causes ranging from natural ageing to the pathological development or function of the reproductive organs. One form of female infertility is premature ovarian insufficiency (POI), affecting up to 1 in 100 women and characterised by amenorrhoea and elevated FSH before the age of 40. POI can have a genetic basis, with over 50 causative genes identified. Non-obstructive azoospermia (NOA), a form of male infertility characterised by the absence of sperm in semen, has an incidence of 1% and is similarly heterogeneous. The genetic basis of male and female infertility is poorly understood with the majority of cases having no known cause. Here, we study a case of familial infertility including a proband with POI and her brother with NOA. We performed whole-exome sequencing (WES) and identified a homozygous STAG3 missense variant that segregated with infertility. STAG3 encodes a component of the meiosis cohesin complex required for sister chromatid separation. We report the first pathogenic homozygous missense variant in STAG3 and the first STAG3 variant associated with both male and female infertility. We also demonstrate limitations of WES for the analysis of homologous DNA sequences, with this variant being ambiguous or missed by independent WES protocols and its homozygosity only being established via long-range nested PCR.


Assuntos
Azoospermia/genética , Proteínas de Ciclo Celular/genética , Mutação de Sentido Incorreto , Insuficiência Ovariana Primária/genética , Adulto , Consanguinidade , Feminino , Homozigoto , Humanos , Infertilidade Feminina/genética , Infertilidade Masculina/genética , Masculino , Linhagem , Irmãos
5.
Proc Natl Acad Sci U S A ; 114(6): E941-E950, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115725

RESUMO

Understanding environmental influences on sex ratios is important for the study of the evolution of sex-determining mechanisms and for evaluating the effects of global warming and chemical pollution. Fishes exhibit sexual plasticity, but the underlying mechanisms of environmental effects on their reproduction are unclear even in the well-established teleost research model, the zebrafish. Here we established the conditions to study the effects of elevated temperature on zebrafish sex. We showed that sex ratio response to elevated temperature is family-specific and typically leads to masculinization (female-to-male sex reversal), resulting in neomales. These results uncovered genotype-by-environment interactions that support a polygenic sex determination system in domesticated (laboratory) zebrafish. We found that some heat-treated fish had gene expression profiles similar to untreated controls of the same sex, indicating that they were resistant to thermal effects. Further, most neomales had gonadal transcriptomes similar to that of regular males. Strikingly, we discovered heat-treated females that displayed a normal ovarian phenotype but with a "male-like" gonadal transcriptome. Such major transcriptomic reprogramming with preserved organ structure has never been reported. Juveniles were also found to have a male-like transcriptome shortly after exposure to heat. These findings were validated by analyzing the expression of genes and signaling pathways associated with sex differentiation. Our results revealed a lasting thermal effect on zebrafish gonads, suggesting new avenues for detection of functional consequences of elevated temperature in natural fish populations in a global warming scenario.


Assuntos
Gônadas/metabolismo , Temperatura Alta , Diferenciação Sexual/genética , Transcriptoma , Peixe-Zebra/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Gônadas/embriologia , Gônadas/crescimento & desenvolvimento , Masculino , Modelos Animais , Razão de Masculinidade , Temperatura , Testículo/embriologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Proteínas de Peixe-Zebra/genética
6.
Hum Mutat ; 39(12): 1861-1874, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30067310

RESUMO

Nuclear receptor subfamily 5 group A member 1/Steroidogenic factor 1 (NR5A1; SF-1; Ad4BP) mutations cause 46,XY disorders of sex development (DSD), with phenotypes ranging from developmentally mild (e.g., hypospadias) to severe (e.g., complete gonadal dysgenesis). The molecular mechanism underlying this spectrum is unclear. During sex determination, SF-1 regulates SOX9 (SRY [sex determining region Y]-box 9) expression. We hypothesized that SF-1 mutations in 46,XY DSD patients affect SOX9 expression via the Testis-specific Enhancer of Sox9 core element, TESCO. Our objective was to assess the ability of 20 SF-1 mutants found in 46,XY DSD patients to activate TESCO. Patient DNA was sequenced for SF-1 mutations and mutant SF-1 proteins were examined for transcriptional activity, protein expression, sub-cellular localization and in silico structural defects. Fifteen of the 20 mutants showed reduced SF-1 activation on TESCO, 11 with atypical sub-cellular localization. Fourteen SF-1 mutants were predicted in silico to alter DNA, ligand or cofactor interactions. Our study may implicate aberrant SF-1-mediated transcriptional regulation of SOX9 in 46,XY DSDs.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual/genética , Elementos Facilitadores Genéticos , Mutação , Fatores de Transcrição SOX9/genética , Fator Esteroidogênico 1/genética , Adolescente , Adulto , Criança , Pré-Escolar , Simulação por Computador , Regulação da Expressão Gênica , Células HEK293 , Humanos , Lactente , Recém-Nascido , Ligantes , Masculino , Ligação Proteica , Análise de Sequência de DNA/métodos , Fator Esteroidogênico 1/química , Fator Esteroidogênico 1/metabolismo
7.
Reproduction ; 155(1): 15-23, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29030492

RESUMO

Activin A regulates testicular and epididymal development, but the role of activin B in the epididymis and vas deferens is unknown. Mouse models with reduced activin A (Inhba+/- and InhbaBK/+), or its complete absence (InhbaBK/BK), were investigated to identify specific roles of activins in the male reproductive tract. In 8-week-old Inhba+/- mice, serum activin A decreased by 70%, with a 50% reduction of gene expression and protein in the testis, epididymis and vas deferens. Activin B and the activin-binding protein, follistatin, were similar to wild-type. Testis weights were slightly reduced in Inhba+/- mice, but the epididymis and vas deferens were normal, while the mice were fertile. Activin A was decreased by 70% in the serum, testis, epididymis and vas deferens of InhbaBK/+ mice and was undetectable in InhbaBK/BK mice, but activin B and follistatin levels were similar to wild-type. In 6-week-old InhbaBK/BK mice, testis weights were 60% lower and epididymal weights were 50% lower than in either InhbaBK/+ or wild-type mice. The cauda epididymal epithelium showed infoldings and less intra-luminal sperm, similar to 3.5-week-old wild-type mice, but at 8 weeks, no structural differences in the testis or epididymis were noted between InhbaBK/BK and wild-type mice. Thus, Inhbb can compensate for Inhba in regulating epididymal morphology, although testis and epididymal maturation is delayed in mice lacking Inhba Crucially, reduction or absence of activin A, at least in the presence of normal activin B levels, does not lead to major defects in the adult epididymis or vas deferens.


Assuntos
Epididimo/metabolismo , Regulação da Expressão Gênica , Subunidades beta de Inibinas/fisiologia , Ducto Deferente/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout
8.
Biol Reprod ; 90(2): 45, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24174574

RESUMO

Zebrafish males undergo a "juvenile ovary-to-testis" gonadal transformation process. Several genes, including nuclear receptor subfamily 5, group A (nr5a) and anti-Müllerian hormone (amh), and pathways such as Tp53-mediated germ-cell apoptosis have been implicated in zebrafish testis formation. However, our knowledge of the regulation of this complex process is incomplete, and much remains to be investigated about the molecular pathways and network of genes that control it. Using a microarray-based analysis of transforming zebrafish male gonads, we demonstrated that their transcriptomes undergo transition from an ovary-like pattern to an ovotestis to a testis-like profile. Microarray results also validated the previous histological and immunohistochemical observation that there is high variation in the duration and extent of commitment to the juvenile ovary phase among individuals. Interestingly, global gene expression profiling of diverging zebrafish juvenile ovaries and transforming ovotestes revealed that some members of the canonical Wnt/beta-catenin signaling pathway were differentially expressed between these two phases. To investigate whether Wnt/beta-catenin signaling plays a role in zebrafish gonad differentiation, we used the Tg (hsp70l:dkk1b-GFP)w32 line to inhibit Wnt/beta-catenin signaling during gonad differentiation. Activation of dkk1b-GFP expression by heat shock resulted in an increased proportion of males and corresponding decrease in gonadal aromatase gene (cyp19a1a) expression. The Wnt target gene, lymphocyte enhancer binding factor 1 (lef1), was also down-regulated in the process. Together, these results provide the first functional evidence that, similarly to mammals, Wnt/beta-catenin signaling is a "pro-female" pathway that regulates gonad differentiation in zebrafish.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Gônadas/embriologia , Diferenciação Sexual/genética , Via de Sinalização Wnt/fisiologia , Peixe-Zebra , Animais , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/veterinária , Feminino , Perfilação da Expressão Gênica , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Masculino , Análise em Microsséries , Ovário/embriologia , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Testículo/embriologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
9.
Genes (Basel) ; 15(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38540391

RESUMO

Disruption of meiosis and DNA repair genes is associated with female fertility disorders like premature ovarian insufficiency (POI). In this study, we identified a homozygous missense variant in the HELQ gene (c.596 A>C; p.Gln199Pro) through whole exome sequencing in a POI patient, a condition associated with disrupted ovarian function and female infertility. HELQ, an enzyme involved in DNA repair, plays a crucial role in repairing DNA cross-links and has been linked to germ cell maintenance, fertility, and tumour suppression in mice. To explore the potential association of the HELQ variant with POI, we used CRISPR/Cas9 to create a knock-in mouse model harbouring the equivalent of the human HELQ variant identified in the POI patient. Surprisingly, Helq knock-in mice showed no discernible phenotype, with fertility levels, histological features, and follicle development similar to wild-type mice. Despite the lack of observable effects in mice, the potential role of HELQ in human fertility, especially in the context of POI, should not be dismissed. Larger studies encompassing diverse ethnic populations and alternative functional approaches will be necessary to further examine the role of HELQ in POI. Our results underscore the potential uncertainties associated with genomic variants and the limitations of in vivo animal modelling.


Assuntos
Infertilidade Feminina , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Camundongos , DNA Helicases/genética , Homozigoto , Infertilidade Feminina/genética , Mutação de Sentido Incorreto , Insuficiência Ovariana Primária/genética
10.
J Biol Chem ; 287(45): 37926-38, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988238

RESUMO

Testis differentiation in zebrafish involves juvenile ovary to testis transformation initiated by an apoptotic wave. The molecular regulation of this transformation process is not fully understood. NF-κB is activated at an early stage of development and has been shown to interact with steroidogenic factor-1 in mammals, leading to the suppression of anti-Müllerian hormone (Amh) gene expression. Because steroidogenic factor-1 and Amh are important for proper testis development, NF-κB-mediated induction of anti-apoptotic genes could, therefore, also play a role in zebrafish gonad differentiation. The aim of this study was to examine the potential role of NF-κB in zebrafish gonad differentiation. Exposure of juvenile zebrafish to heat-killed Escherichia coli activated the NF-κB pathways and resulted in an increased ratio of females from 30 to 85%. Microarray and quantitative real-time-PCR analysis of gonads showed elevated expression of NF-κB-regulated genes. To confirm the involvement of NF-κB-induced anti-apoptotic effects, zebrafish were treated with sodium deoxycholate, a known inducer of NF-κB or NF-κB activation inhibitor (NAI). Sodium deoxycholate treatment mimicked the effect of heat-killed bacteria and resulted in an increased proportion of females from 25 to 45%, whereas the inhibition of NF-κB using NAI resulted in a decrease in females from 45 to 20%. This study provides proof for an essential role of NF-κB in gonadal differentiation of zebrafish and represents an important step toward the complete understanding of the complicated process of sex differentiation in this species and possibly other cyprinid teleosts as well.


Assuntos
NF-kappa B/metabolismo , Ovário/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Linhagem Celular , Ácido Desoxicólico/farmacologia , Escherichia coli/imunologia , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Temperatura Alta , Masculino , Modelos Genéticos , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Análise de Sequência com Séries de Oligonucleotídeos , Ovário/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Diferenciação Sexual/efeitos dos fármacos , Diferenciação Sexual/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Testículo/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
11.
Chromosome Res ; 20(1): 191-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22215485

RESUMO

In most mammals, the Y chromosomal Sry gene initiates testis formation within the bipotential gonad, resulting in male development. SRY is a transcription factor and together with SF1 it directly up-regulates the expression of the pivotal sex-determining gene Sox9 via a 1.3-kb cis-regulatory element (TESCO) which contains an evolutionarily conserved region (ECR) of 180 bp. Remarkably, several rodent species appear to determine sex in the absence of Sry and a Y chromosome, including the mole voles Ellobius lutescens and Ellobius tancrei, whereas Ellobius fuscocapillus of the same genus retained Sry. The sex-determining mechanisms in the Sry-negative species remain elusive. We have cloned and sequenced 1.1 kb of E. lutescens TESCO which shares 75% sequence identity with mouse TESCO indicating that testicular Sox9 expression in E. lutescens might still be regulated via TESCO. We have also cloned and sequenced the ECRs of E. tancrei and E. fuscocapillus. While the three Ellobius ECRs are highly similar (94-97% sequence identity), they all display a 14-bp deletion (Δ14) removing a highly conserved SOX/TCF site. Introducing Δ14 into mouse TESCO increased both basal activity and SF1-mediated activation of TESCO in HEK293T cells. We propose a model whereby Δ14 may have triggered up-regulation of Sox9 in XX gonads leading to destabilization of the XY/XX sex-determining mechanism in Ellobius. E. lutescens/E. tancrei and E. fuscocapillus could have independently stabilized their sex determination mechanisms by Sry-independent and Sry-dependent approaches, respectively.


Assuntos
Arvicolinae/genética , Regulação da Expressão Gênica , Fatores de Transcrição SOX9/metabolismo , Processos de Determinação Sexual , Cromossomo Y/metabolismo , Animais , Arvicolinae/metabolismo , Arvicolinae/fisiologia , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Sequência Conservada , Evolução Molecular , Feminino , Variação Genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fatores de Transcrição SOX9/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência , Testículo/citologia , Testículo/metabolismo , Testículo/fisiologia , Cromossomo Y/genética
12.
J Med Genet ; 48(12): 825-30, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22051515

RESUMO

BACKGROUND: The early gonad is bipotential and can differentiate into either a testis or an ovary. In XY embryos, the SRY gene triggers testicular differentiation and subsequent male development via its action on a single gene, SOX9. The supporting cell lineage of the bipotential gonad will differentiate as testicular Sertoli cells if SOX9 is expressed and conversely will differentiate as ovarian granulosa cells when SOX9 expression is switched off. RESULTS: Through copy number variation mapping this study identified duplications upstream of the SOX9 gene in three families with an isolated 46,XX disorder of sex development (DSD) and an overlapping deletion in one family with two probands with an isolated 46,XY DSD. The region of overlap between these genomic alterations, and previously reported deletions and duplications at the SOX9 locus associated with syndromic and isolated cases of 46,XX and 46,XY DSD, reveal a minimal non-coding 78 kb sex determining region located in a gene desert 517-595 kb upstream of the SOX9 promoter. CONCLUSIONS: These data indicate that a non-coding regulatory region critical for gonadal SOX9 expression and subsequent normal sex development is located far upstream of the SOX9 promoter. Its copy number variations are the genetic basis of isolated 46,XX and 46,XY DSDs of variable severity (ranging from mild to complete sex reversal). It is proposed that this region contains a gonad specific SOX9 transcriptional enhancer(s), the gain or loss of which results in genomic imbalance sufficient to activate or inactivate SOX9 gonadal expression in a tissue specific manner, switch sex determination, and result in isolated DSD.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/genética , Disgenesia Gonadal 46 XY/genética , Gonadoblastoma/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição SOX9/genética , Transtornos 46, XX do Desenvolvimento Sexual/metabolismo , Transtornos 46, XX do Desenvolvimento Sexual/patologia , Alelos , Criança , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Duplicação Gênica , Disgenesia Gonadal 46 XY/metabolismo , Disgenesia Gonadal 46 XY/patologia , Gonadoblastoma/patologia , Haplótipos , Humanos , Lactente , Masculino , Linhagem , Fatores de Transcrição SOX9/metabolismo , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo
13.
Sex Dev ; 16(2-3): 80-91, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35760052

RESUMO

SOX genesare master regulatory genes controlling development and are fundamental to the establishment of sex determination in a multitude of organisms. The discovery of the master sex-determining gene SRY in 1990 was pivotal for the understanding of how testis development is initiated in mammals. With this discovery, an entire family of SOX factors were uncovered that play crucial roles in cell fate decisions during development. The importance of SOX genes in human reproductive development is evident from the various disorders of sex development (DSD) upon loss or overexpression of SOX gene function. Here, we review the roles that SOX genes play in gonad development and their involvement in DSD. We start with an overview of sex determination and differentiation, DSDs, and the SOX gene family and function. We then provide detailed information and discussion on SOX genes that have been implicated in DSDs, both at the gene and regulatory level. These include SRY, SOX9, SOX3, SOX8, and SOX10. This review provides insights on the crucial balance of SOX gene expression levels needed for gonad development and maintenance and how changes in these levels can lead to DSDs.


Assuntos
Transtornos do Desenvolvimento Sexual , Fatores de Transcrição SOX9 , Animais , Humanos , Masculino , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/metabolismo , Processos de Determinação Sexual/genética , Diferenciação Sexual , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Testículo/metabolismo
14.
Mol Cell Endocrinol ; 546: 111570, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051551

RESUMO

Complete androgen insensitivity syndrome (CAIS), where 46,XY individuals present as female, is caused by variants in the androgen receptor gene (AR). We analyzed the DNA of a patient with suspected CAIS using a targeted gene sequencing panel and whole exome sequencing (WES) but did not detect any small nucleotide variants in AR. Analysis of WES data using our bioinformatics pipeline designed to detect copy number variations (CNV) uncovered a rare duplication of exon 2 of AR. Using array comparative genomic hybridization, the duplication was found to span 43.6 kb and is predicted to cause a frameshift and loss of AR protein. We confirmed the power of our WES-CNV detection protocol by identifying pathogenic CNVs in FSHR and NR5A1 in previously undiagnosed patients with disorders of sex development. Our findings illustrate the usefulness of CNV analysis in WES data to detect pathogenic genomic changes that may go undetected using only standard analysis protocols.


Assuntos
Síndrome de Resistência a Andrógenos , Variações do Número de Cópias de DNA , Síndrome de Resistência a Andrógenos/genética , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA/genética , Exoma/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Sequenciamento do Exoma/métodos
15.
Eur J Hum Genet ; 30(2): 219-228, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34707299

RESUMO

Premature ovarian insufficiency (POI), affecting 1 in 100 women, is characterised by loss of ovarian function associated with elevated gonadotropin, before the age of 40. In addition to infertility, patients face increased risk of comorbidities such as heart disease, osteoporosis, cancer and/or early mortality. We used whole exome sequencing to identify the genetic cause of POI in seven women. Each had biallelic candidate variants in genes with a primary role in DNA damage repair and/or meiosis. This includes two genes, REC8 and HROB, not previously associated with autosomal recessive POI. REC8 encodes a component of the cohesin complex and HROB encodes a factor that recruits MCM8/9 for DNA damage repair. In silico analyses, combined with concordant mouse model phenotypes support these as new genetic causes of POI. We also identified novel variants in MCM8, NUP107, STAG3 and HFM1 and a known variant in POF1B. Our study highlights the pivotal role of meiosis in ovarian function. We identify novel variants, consolidate the pathogenicity of variants previously considered of unknown significance, and propose HROB and REC8 variants as new genetic causes while exploring their link to pathogenesis.


Assuntos
Insuficiência Ovariana Primária , Animais , Proteínas de Ciclo Celular/genética , Cromossomos , DNA Helicases/genética , Proteínas de Ligação a DNA , Feminino , Humanos , Meiose/genética , Camundongos , Fenótipo , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/patologia , Sequenciamento do Exoma
16.
J Clin Endocrinol Metab ; 107(12): 3328-3340, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36074910

RESUMO

CONTEXT: Premature ovarian insufficiency (POI) is a common form of female infertility that usually presents as an isolated condition but can be part of various genetic syndromes. Early diagnosis and treatment of POI can minimize comorbidity and improve health outcomes. OBJECTIVE: We aimed to determine the genetic cause of syndromic POI, intellectual disability, neutropenia, and cataracts. METHODS: We performed whole-exome sequencing (WES) followed by functional validation via RT-PCR, RNAseq, and quantitative proteomics, as well as clinical update of previously reported patients with variants in the caseinolytic peptidase B (CLPB) gene. RESULTS: We identified causative variants in CLPB, encoding a mitochondrial disaggregase. Variants in this gene are known to cause an autosomal recessive syndrome involving 3-methylglutaconic aciduria, neurological dysfunction, cataracts, and neutropenia that is often fatal in childhood; however, there is likely a reporting bias toward severe cases. Using RNAseq and quantitative proteomics we validated causation and gained insight into genotype:phenotype correlation. Clinical follow-up of patients with CLPB deficiency who survived to adulthood identified POI and infertility as a common postpubertal ailment. CONCLUSION: A novel splicing variant is associated with CLPB deficiency in an individual who survived to adulthood. POI is a common feature of postpubertal female individuals with CLPB deficiency. Patients with CLPB deficiency should be referred to pediatric gynecologists/endocrinologists for prompt POI diagnosis and hormone replacement therapy to minimize associated comorbidities.


Assuntos
Catarata , Menopausa Precoce , Neutropenia , Insuficiência Ovariana Primária , Feminino , Humanos , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Transcriptoma , Proteômica , Insuficiência Ovariana Primária/genética , Fenótipo , Catarata/genética
17.
Sex Dev ; 15(5-6): 392-410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34634785

RESUMO

Disorders of sex development (DSD) are a complex group of conditions with highly variable clinical phenotypes, most often caused by failure of gonadal development. DSD are estimated to occur in around 1.7% of all live births. Whilst the understanding of genes involved in gonad development has increased exponentially, approximately 50% of patients with a DSD remain without a genetic diagnosis, possibly implicating non-coding genomic regions instead. Here, we review how variants in the non-coding genome of DSD patients can be identified using techniques such as array comparative genomic hybridization (CGH) to detect copy number variants (CNVs), and more recently, whole genome sequencing (WGS). Once a CNV in a patient's non-coding genome is identified, putative regulatory elements such as enhancers need to be determined within these vast genomic regions. We will review the available online tools and databases that can be used to refine regions with potential enhancer activity based on chromosomal accessibility, histone modifications, transcription factor binding site analysis, chromatin conformation, and disease association. We will also review the current in vitro and in vivo techniques available to demonstrate the functionality of the identified enhancers. The review concludes with a clinical update on the enhancers linked to DSD.


Assuntos
Transtornos do Desenvolvimento Sexual , Desenvolvimento Sexual , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA/genética , Transtornos do Desenvolvimento Sexual/diagnóstico , Transtornos do Desenvolvimento Sexual/genética , Genoma , Humanos
18.
Maturitas ; 131: 78-86, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31787151

RESUMO

Ovarian deficiency, including diminished ovarian reserve and premature ovarian insufficiency, represents one of the main causes of female infertility. Little is known of the genetic basis of diminished ovarian reserve, while premature ovarian insufficiency often has a genetic basis, with genes affecting various processes. NR5A1 is a key gene required for gonadal function, and variants are associated with a wide phenotypic spectrum of disorders of sexual development, and are found in 0.26-8% of patients with premature ovarian insufficiency. As there is some debate about the extent of involvement of NR5A1 in the pathogenesis of ovarian deficiency, we performed an in-depth analysis of NR5A1 variants detected in a cohort of 142 patients with premature ovarian insufficiency, diminished ovarian reserve, or unexplained infertility associated with normal ovarian function. We identified rare non-synonymous protein-altering variants in 2.8 % of women with ovarian deficiency and no such variants in our small cohort of women with infertility but normal ovarian function. We observed previously reported variants associated with premature ovarian insufficiency in patients with diminished ovarian reserve, highlighting a genetic relationship between these conditions. We confirmed functional impairment resulting from a p.Val15Met variant, detected for the first time in a patient with premature ovarian insufficiency. The remaining variants were associated with preserved transcriptional activity and localization of NR5A1, indicating that rare NR5A1 variants may be incorrectly curated if functional studies are not undertaken, and/or that NR5A1 variants may have only a subtle impact on protein function and/or confer risk of ovarian deficiency via oligogenic inheritance.


Assuntos
Infertilidade Feminina/genética , Menopausa Precoce/genética , Reserva Ovariana , Insuficiência Ovariana Primária/genética , Fator Esteroidogênico 1/genética , Adulto , Alelos , População Negra , Estudos de Coortes , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Infertilidade Feminina/etnologia , Menopausa Precoce/etnologia , Mutação , Insuficiência Ovariana Primária/etnologia
19.
Maturitas ; 141: 9-19, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33036707

RESUMO

Ovarian deficiency, including premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR), represents one of the main causes of female infertility. POI is a genetically heterogeneous condition but current understanding of its genetic basis is far from complete, with the cause remaining unknown in the majority of patients. The genes that regulate DOR have been reported but the genetic basis of DOR has not been explored in depth. Both conditions are likely to lie along a continuum of degrees of decrease in ovarian reserve. We performed genomic analysis via whole exome sequencing (WES) followed by in silico analyses and functional experiments to investigate the genetic cause of ovarian deficiency in ten affected women. We achieved diagnoses for three of them, including the identification of novel variants in STAG3, GDF9, and FANCM. We identified potentially causative FSHR variants in another patient. This is the second report of biallelic GDF9 and FANCM variants, and, combined with functional support, validates these genes as bone fide autosomal recessive "POI genes". We also identified new candidate genes, NRIP1, XPO1, and MACF1. These genes have been linked to ovarian function in mouse, pig, and zebrafish respectively, but never in humans. In the case of NRIP1, we provide functional support for the deleterious nature of the variant via SUMOylation and luciferase/ß-galactosidase reporter assays. Our study provides multiple insights into the genetic basis of POI/DOR. We have further elucidated the involvement of GDF9, FANCM, STAG3 and FSHR in POI pathogenesis, and propose new candidate genes, NRIP1, XPO1, and MACF1, which should be the focus of future studies.


Assuntos
Carioferinas/genética , Proteínas dos Microfilamentos/genética , Proteína 1 de Interação com Receptor Nuclear/genética , Reserva Ovariana/genética , Insuficiência Ovariana Primária/genética , Receptores Citoplasmáticos e Nucleares/genética , Adolescente , Proteínas de Ciclo Celular/genética , DNA Helicases/genética , Feminino , Genômica , Fator 9 de Diferenciação de Crescimento/genética , Humanos , Infertilidade Feminina , Menopausa Precoce/genética , Doenças Ovarianas , Sequenciamento do Exoma , Adulto Jovem , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA