Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 23(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35008923

RESUMO

Graphene is a versatile compound with several outstanding properties, providing a combination of impressive surface area, high strength, thermal and electrical properties, with a wide array of functionalization possibilities. This review aims to present an introduction of graphene and presents a comprehensive up-to-date review of graphene as an antimicrobial and coating application in medicine and dentistry. Available articles on graphene for biomedical applications were reviewed from January 1957 to August 2020) using MEDLINE/PubMed, Web of Science, and ScienceDirect. The selected articles were included in this study. Extensive research on graphene in several fields exists. However, the available literature on graphene-based coatings in dentistry and medical implant technology is limited. Graphene exhibits high biocompatibility, corrosion prevention, antimicrobial properties to prevent the colonization of bacteria. Graphene coatings enhance adhesion of cells, osteogenic differentiation, and promote antibacterial activity to parts of titanium unaffected by the thermal treatment. Furthermore, the graphene layer can improve the surface properties of implants which can be used for biomedical applications. Hence, graphene and its derivatives may hold the key for the next revolution in dental and medical technology.


Assuntos
Materiais Revestidos Biocompatíveis , Grafite/farmacologia , Próteses e Implantes , Anti-Infecciosos/farmacologia , Regeneração Óssea , Propriedades de Superfície , Engenharia Tecidual
2.
J Nanosci Nanotechnol ; 19(7): 3804-3810, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30764937

RESUMO

The aim of this study was to evaluate the mechanical and tribological properties of graphene oxide/silver nanoparticle (GO/AgNP) coated medical grade nickel-titanium (NiTi) alloy. The alloy substrates were coated using electrophoretic deposition at 30 V for 1, 5, and 10 min and were characterized by SEM, Raman spectroscopy, EDS, and surface profilometer. Mechanical and tribological tests were performed for hardness, Young's modulus, and friction coefficient. The data were analyzed using the Kruskal-Wallis test at a significance level of 0.05 to compare the coatings' roughness, thickness, friction coefficient, and hardness at the different coating times. The GO/AgNP coatings were confirmed with Raman spectroscopy, which demonstrated the presence of D bands and G bands at ∼1300 cm-1 and ∼1600 cm-1. The intensity ratios of the D and G bands (ID/IG) were 0.838, 0.836, and 0.837 in the 1, 5, and 10 min coated groups, respectively. The coating thickness ranged from 0.46-1.34 µm and the mean surface roughness (Ra) ranged from 50.72-69.93 nm. Increasing the coating time from 1-10 min increased the roughness, thickness, and Young's modulus of surface coating. The friction coefficients of the coated NiTi alloy were significantly lower compared with that of the uncoated NiTi allloy (p < 0.001). The GO/AgNP nanocomposite coated NiTi alloy demonstrated improved mechanical strength and a reduced friction coefficient that would be more favorable for biomedical applications.


Assuntos
Nanopartículas Metálicas , Titânio , Ligas , Materiais Revestidos Biocompatíveis , Grafite , Teste de Materiais , Níquel , Prata , Propriedades de Superfície
3.
J Clin Dent ; 28(3): 56-61, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29211952

RESUMO

OBJECTIVES: We have previously reported on progress toward the refinement of profilometry-based abrasivity testing of dentifrices using a V8 brushing machine and tactile or optical measurement of dentin wear. The general application of this technique may be advanced by demonstration of successful inter-laboratory confirmation of the method. The objective of this study was to explore the capability of different laboratories in the assessment of dentifrice abrasivity using a profilometry-based evaluation technique developed in our Mason laboratories. In addition, we wanted to assess the interchangeability of human and bovine specimens. METHODS: Participating laboratories were instructed in methods associated with Radioactive Dentin Abrasivity-Profilometry Equivalent (RDA-PE) evaluation, including site visits to discuss critical elements of specimen preparation, masking, profilometry scanning, and procedures. Laboratories were likewise instructed on the requirement for demonstration of proportional linearity as a key condition for validation of the technique. Laboratories were provided with four test dentifrices, blinded for testing, with a broad range of abrasivity. In each laboratory, a calibration curve was developed for varying V8 brushing strokes (0, 4,000, and 10,000 strokes) with the ISO abrasive standard. Proportional linearity was determined as the ratio of standard abrasion mean depths created with 4,000 and 10,000 strokes (2.5 fold differences). Criteria for successful calibration within the method (established in our Mason laboratory) was set at proportional linearity = 2.5 ± 0.3. RDA-PE was compared to Radiotracer RDA for the four test dentifrices, with the latter obtained by averages from three independent Radiotracer RDA sites. Individual laboratories and their results were compared by 1) proportional linearity and 2) acquired RDA-PE values for test pastes. RESULTS: Five sites participated in the study. One site did not pass proportional linearity objectives. Data for this site are not reported at the request of the researchers. Three of the remaining four sites reported herein tested human dentin and all three met proportional linearity objectives for human dentin. Three of four sites participated in testing bovine dentin and all three met the proportional linearity objectives for bovine dentin. RDA-PE values for test dentifrices were similar between sites. All four sites that met proportional linearity requirement successfully identified the dentifrice formulated above the industry standard 250 RDA (as RDA-PE). The profilometry method showed at least as good reproducibility and differentiation as Radiotracer assessments. It was demonstrated that human and bovine specimens could be used interchangeably. CONCLUSIONS: The standardized RDA-PE method was reproduced in multiple laboratories in this inter-laboratory study. Evidence supports that this method is a suitable technique for ISO method 11609 Annex B.


Assuntos
Dentifrícios , Abrasão Dentária , Animais , Bovinos , Dentifrícios/efeitos adversos , Dentina , Humanos , Teste de Materiais , Reprodutibilidade dos Testes , Escovação Dentária , Cremes Dentais
4.
Heliyon ; 10(4): e26005, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375289

RESUMO

The present study investigated the influence of pore size of strut-based Diamond and surface-based Gyroid structures for their suitability as medical implants. Samples were made additively from laser powder bed fusion process with a relative density of 0.3 and pore sizes ranging from 300 to 1300 µm. They were subsequently examined for their manufacturability and mechanical properties. In addition, non-Newtonian computational fluid dynamics and discrete phase models were conducted to assess pressure drop and cell seeding efficiency. The results showed that both Diamond and Gyroid had higher as-built densities with smaller pore sizes. However, Gyroid demonstrated better manufacturability as its relative density was closer to the as-designed one. In addition, based on mechanical testing, the elastic modulus was largely unaffected by pore size, but post-yielding behaviors differed, especially in Diamond. High mechanical sensitivity in Diamond could be explained partly by Finite Element simulations, which revealed stress localization in Diamond and more uniform stress distribution in Gyroid. Furthermore, we defined the product of the normalized specific surface, normalized pressure drop, and cell seeding efficiency as the indicator of an optimal pore size, in which this factor identified an optimal pore size of approximately 500 µm for both Diamond and Gyroid. Besides, based on such criterion, Gyroid exhibited greater applicability as bone scaffolds. In summary, this study provides comprehensive assessment of the effect of pore size and demonstrates the efficient estimation of an in-silico framework for evaluating lattice structures as medical implants, which could be applied to other lattice architectures.

5.
Eur J Dent ; 17(1): 136-142, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35279819

RESUMO

OBJECTIVE: Polylactic acid (PLA) is one of the most widely used materials in three-dimensional (3D) printing technology due to its multiple advantages such as biocompatibility and biodegradable. However, there is still a lack of study on 3D printing PLA for use as a denture base material. The goal of this study was to compare 3D printing PLA to traditional poly(methyl methacrylate) (PMMA) as a denture basis. MATERIALS AND METHODS: The PMMA (M) and PLA (L) specimens were fabricated by compression molding, and fuse deposition modeling technique, respectively. Each specimen group was divided into three different temperature groups of 25°C (25), 37°C (37), and 55°C (55). The glass transition temperature (Tg) of raw materials and specimen was investigated using differential scanning calorimetry. The heat deflection temperature (HDT) of each material was also observed. STATISTICAL ANALYSIS: The data of flexural strength and flexural modulus were analyzed with two-way analysis of variance, and Tukey honestly significant difference. The Tg and HDT data, on the other hand, were descriptively analyzed. RESULTS: The results showed that PLA had lower flexural strength than PMMA in all temperature conditions, while the PMMA 25°C (M25) and PMMA 37°C (M37) obtained the highest mean values. PLA 25°C (L25) and PLA 37°C (L37) had significant higher flexural modulus than the other groups. However, the flexural properties of L55 could not be observed, which may be explained by Tg and HDT of PLA. CONCLUSION: PLA only meets the flexural modulus requirement, although it was greater than flexural modulus of PMMA. On the other hand, PMMA can meet both good flexural strength and modulus requirement. However, increase in temperature could reduce flexural strength and flexural modulus of PMMA and PLA.

6.
Sci Rep ; 13(1): 16904, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803035

RESUMO

Poly(lactic acid) (PLA) is gaining popularity in manufacturing due to environmental concerns. When comparing to poly(methyl methacrylate) (PMMA), PLA exhibits low melting and glass transition temperature (Tg). To enhance the properties of these polymers, a PMMA/PLA blend has been introduced. This study aimed to investigate the optimal ratio of PMMA/PLA blends for potential dental applications based on their mechanical properties, physical properties, and biocompatibility. The PMMA/PLA blends were manufactured by melting and mixing using twin screw extruder and prepared into thermoplastic polymer beads. The specimens of neat PMMA (M100), three different ratios of PMMA/PLA blends (M75, M50, and M25), and neat PLA (M0) were fabricated with injection molding technique. The neat polymers and polymer blends were investigated in terms of flexural properties, Tg, miscibility, residual monomer, water sorption, water solubility, degradation, and biocompatibility. The data was statistically analyzed. The results indicated that Tg of PMMA/PLA blends was increased with increasing PMMA content. PMMA/PLA blends were miscible in all composition ratios. The flexural properties of polymer blends were superior to those of neat PMMA and neat PLA. The biocompatibility was not different among different composition ratios. Additionally, the other parameters of PMMA/PLA blends were improved as the PMMA ratio decreased. Thus, the optimum ratio of PMMA/PLA blends have the potential to serve as novel sustainable biomaterial for extensive dental applications.


Assuntos
Materiais Biocompatíveis , Polimetil Metacrilato , Poliésteres/metabolismo , Polímeros , Água
7.
Polymers (Basel) ; 15(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37376366

RESUMO

Polyetheretherketone (PEEK) is an emerging thermoplastic polymer with good mechanical properties and an elastic modulus similar to that of alveolar bone. PEEK dental prostheses for computer-aided design/computer-aided manufacturing (CAD/CAM) systems on the market often have additives of titanium dioxide (TiO2) to strengthen their mechanical properties. However, the effects of combining aging, simulating a long-term intraoral environment, and TiO2 content on the fracture characteristics of PEEK dental prostheses have rarely been investigated. In this study, two types of commercially available PEEK blocks, containing 20% and 30% TiO2, were used to fabricate dental crowns by CAD/CAM systems and were aged for 5 and 10 h based on the ISO 13356 specifications. The compressive fracture load values of PEEK dental crowns were measured using a universal test machine. The morphology and crystallinity of the fracture surface were analyzed by scanning electron microscopy and an X-ray diffractometer, respectively. Statistical analysis was performed using the paired t-test (α = 0.05). Results showed no significant difference in the fracture load value of the test PEEK crowns with 20% and 30% TiO2 after 5 or 10 h of aging treatment; all test PEEK crowns have satisfactory fracture properties for clinical applications. Fracture surface analysis revealed that all test crowns fractured from the lingual side of the occlusal surface, with the fracture extending along the lingual sulcus to the lingual edge, showing a feather shape at the middle part of the fracture extension path and a coral shape at the end of the fracture. Crystalline analysis showed that PEEK crowns, regardless of aging time and TiO2 content, remained predominantly PEEK matrix and rutile phase TiO2. We would conclude that adding 20% or 30% TiO2 to PEEK crowns may have been sufficient to improve the fracture properties of PEEK crowns after 5 or 10 h of aging. Aging times below 10 h may still be safe for reducing the fracture properties of TiO2-containing PEEK crowns.

8.
J Funct Biomater ; 13(1)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35225978

RESUMO

Periodontal health plays an important role in the longevity of prosthodontic restorations. The issues of comparative assessment of prosthetic constructions are complicated and not fully understood. The aim of this article is to review and present the current knowledge regarding the various technical, clinical, and molecular aspects of different prosthetic biomaterials and highlight the interactions between periodontal health and prosthetic restorations. Articles on periodontal health and fixed dental prostheses were searched using the keywords "zirconium", "CAD/CAM", "dental ceramics", "metal-ceramics", "margin fit", "crown", "fixed dental prostheses", "periodontium", and "margin gap" in PubMed/Medline, Scopus, Google Scholar, and Science Direct. Further search criteria included being published in English, and between January 1981 and September 2021. Then, relevant articles were selected, included, and critically analyzed in this review. The margin of discrepancy results in the enhanced accumulation of dental biofilm, microleakage, hypersensitivity, margin discoloration, increased gingival crevicular fluid flow (GCF), recurrent caries, pulp infection and, lastly, periodontal lesion and bone loss, which can lead to the failure of prosthetic treatment. Before starting prosthetic treatment, the condition of the periodontal tissues should be assessed for their oral hygiene status, and gingival and periodontal conditions. Zirconium-based restorations made from computer-aided design and computer-aided manufacturing (CAD/CAM) technology provide better results, in terms of marginal fit, inflammation reduction, maintenance, and the restoration of periodontal health and oral hygiene, compared to constructions made by conventional methods, and from other alloys. Compared to subgingival margins, supragingival margins offer better oral hygiene, which can be maintained and does not lead to secondary caries or periodontal disease.

9.
Polymers (Basel) ; 14(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36236071

RESUMO

Although polyetheretherketone (PEEK) is becoming more widely used in dentistry applications, little is known about how aging will affect this material. Therefore, this study aimed to investigate the influence of an aging treatment on fracture characteristics of PEEK dental crowns. Additionally, the impact of the addition of titanium dioxide (TiO2) into PEEK was examined. Two types of commercial PEEK discs were used in this study, including TiO2-free and 20% TiO2-containing PEEK. The PEEK dental crowns were fabricated and aging-treated at 134 °C and 0.2 MPa for 5 h in accordance with the ISO 13356 specification before being cemented on artificial tooth abutments. The fracture loads of all crown samples were measured under compression tests. Results demonstrated that adding TiO2 enhanced the fracture load of PEEK crowns compared to TiO2-free PEEK crowns before the aging treatment. However, the aging treatment decreased the fracture load of TiO2-containing PEEK crowns while increasing the fracture load of TiO2-free PEEK crowns. The fracture morphology of TiO2-containing PEEK crowns revealed finer feather shapes than that of the TiO2-free PEEK crowns. We concluded that adding TiO2 increased the fracture load of PEEK crowns without aging treatment. Still, the aging treatment influenced the fracture load and microscopic fracture morphology of PEEK crowns, depending on the addition of TiO2.

10.
Aust Dent J ; 66(3): 262-269, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33486770

RESUMO

BACKGROUND: Candida biofilm is a major cause of denture stomatitis. We aimed to compare the efficacy of low-molecular-weight chitosan solutions against Candida albicans biofilm on polymethyl methacrylate (PMMA) resin. METHODS: Various types of chitosan were tested for anti-Candida activity by broth dilution. Two types were selected for further testing on 24-hour C.albicans biofilm formed on PMMA specimens. Specimens were randomly distributed among experimental groups, including 0.1% and 0.2% acetic acid, 3 and 6 mg/mL of oligomer chitosan and 30 kDa chitosan solutions, effervescent tablet (Polident), and 0.2% chlorhexidine, and immersed for 5 min to 12 h. The viability of C. albicans after cleansing were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Remaining viability was calculated into percentage relative to respective controls and analyzed using ANOVA with Tukey post-hoc tests. Live/dead fluorescence microscopy was also performed. RESULTS: Chitosan solutions had high efficacy against C. albicans biofilm on PMMA. The mean relative viability compared to control after 12-h immersion was 6.60 ± 4.75% and 12.72 ± 6.96% for 3 and 6 mg/mL oligomer, respectively, and 11.68 ± 4.81% and 18.08 ± 6.20% for 3 and 6 mg/mL 30 kDa chitosan, respectively. CONCLUSIONS: Low-molecular-weight chitosan solution is an effective antifungal denture cleanser that can significantly reduce C. albicans viability in biofilm on PMMA.


Assuntos
Candida albicans , Quitosana , Biofilmes , Quitosana/farmacologia , Bases de Dentadura , Humanos , Peso Molecular , Polimetil Metacrilato , Propriedades de Superfície
11.
Sci Rep ; 11(1): 14008, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234158

RESUMO

Biofilm formation on medical devices can induce complications. Graphene oxide/silver nanoparticles (GO/AgNPs) coated nickel-titanium (NiTi) alloy has been successfully produced. Therefore, the aim of this study was to determine the anti-bacterial and anti-biofilm effects of a GO/AgNPs coated NiTi alloy prepared by Electrophoretic deposition (EPD). GO/AgNPs were coated on NiTi alloy using various coating times. The surface characteristics of the coated NiTi alloy substrates were investigated and its anti-biofilm and anti-bacterial effect on Streptococcus mutans biofilm were determined by measuring the biofilm mass and the number of viable cells using a crystal violet assay and colony counting assay, respectively. The results showed that although the surface roughness increased in a coating time-dependent manner, there was no positive correlation between the surface roughness and the total biofilm mass. However, increased GO/AgNPs deposition produced by the increased coating time significantly reduced the number of viable bacteria in the biofilm (p < 0.05). Therefore, the GO/AgNPs on NiTi alloy have an antibacterial effect on the S. mutans biofilm. However, the increased surface roughness does not influence total biofilm mass formation (p = 0.993). Modifying the NiTi alloy surface using GO/AgNPs can be a promising coating to reduce the consequences of biofilm formation.

12.
Polymers (Basel) ; 13(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34771318

RESUMO

Recently, polyetheretherketone (PEEK) has been introduced to the dental market as a high-performance and chemically inert biomaterial. This study aimed to compare the wear resistance, abrasiveness, color stability, and displacement resistance of zirconia and PEEK milled crowns. An ideal tooth preparation of a first maxillary molar was done and scanned by an intraoral scanner to make a digital model. Then, the prosthetic crown was digitally designed on the CAD software, and the STL file was milled in zirconia (CaroZiir S, Carol Zircolite Pvt. Ltd., Gujarat, India) and PEEK (BioHpp, Bredent GmbH, Senden, Germany) crowns using five-axis CNC milling machines. The wear resistance, color stability, and displacement resistance of the milled monolithic zirconia with unfilled PEEK crowns using a chewing simulator with thermocyclic aging (120,000 cycles) were compared. The antagonist wear, material wear, color stability, and displacement were evaluated and compared among the groups using the Wilcoxon-Mann-Whitney U-test. Zirconia was shown to be three times more abrasive than PEEK (p value < 0.05). Zirconia had twice the wear resistance of PEEK (p value < 0.05). Zirconia was more color stable than PEEK (p value < 0.05). PEEK had more displacement resistance than zirconia (p value < 0.05). PEEK offers minimal abrasion, better stress modulation through plastic deformation, and good color stability, which make it a promising alternative to zirconia crown.

13.
Sci Rep ; 10(1): 3247, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094428

RESUMO

Graphene based materials (GBMs) have potentials for dental and medical applications. GBMs may cause changes in the levels of cytokine released in the body. This study aimed to study the corrosion resistance of graphene oxide (GO) and GO/silver (GO/Ag) nanocomposite coated nickel-titanium (NiTi) alloy by electrophoretic deposition and to access the viability of human pulp fibroblasts, and the interleukin (IL)-6 and IL-8 expression level. The bare and coated NiTi samples were characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, surface profilometry, and X-ray diffraction (XRD). The corrosion resistance of the bare NiTi and coated NiTi samples were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy in 3.5% NaCl solution. The cell viability of human pulp fibroblasts was accessed by the treated culture medium of the bare NiTi and coated NiTi alloys containing 1% fetal bovine serum. IL-6 and IL-8 expression levels were studied by human enzyme-linked immunosorbent assay (ELISA). Data were analyzed using One-way ANOVA (α  =  0.05). Both the GO-coated NiTi and GO/Ag-coated NiTi alloys showed better corrosion resistance, a lower rate of corrosion, and higher protection efficiency than the bare NiTi alloy. The coated NiTi alloys were biocompatible to human pulp fibroblasts and showed upregulation of IL-6 and IL-8 levels.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Fibroblastos/metabolismo , Grafite/farmacologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Boca/citologia , Níquel/farmacologia , Prata/farmacologia , Titânio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Corrosão , Polpa Dentária/citologia , Espectroscopia Dielétrica , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Humanos , Padrões de Referência , Espectrometria por Raios X , Difração de Raios X
14.
Eur J Dent ; 14(4): 672-682, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32882741

RESUMO

Despite the success rates of dental implants, peri-implantitis presents as the most common complication in implant dentistry. This review discusses various factors associated with peri-implantitis and various available treatments, highlighting their advantages and disadvantages. Relevant articles on peri-implantitis published in English were reviewed from August 2010 to April 2020 in MEDLINE/PubMed, Scopus, and ScienceDirect. The identified risk indicators of peri-implant diseases are plaque, smoking, history of periodontitis, surface roughness, residual cement, emergence angle >30 degrees, radiation therapy, keratinized tissue width, and function time of the implant, sex, and diabetes. Peri-implantitis treatments can be divided into nonsurgical (mechanical, antiseptic, and antibiotics), surface decontamination (chemical and laser), and surgical (air powder abrasive, resective, and regenerative). However, mechanical debridement alone may fail to eliminate the causative bacteria, and this treatment should be combined with other treatments (antiseptics and surgical treatment). Surface decontamination using chemical agents may be used as an adjuvant treatment; however, the definitive clinical benefit is yet not proven. Laser treatment may result in a short-term decrease in periodontal pocket depth, while air powder abrasive is effective in cleaning a previously contaminated implant surface. Surgical elimination of a pocket, bone recontouring and plaque control are also effective for treating peri-implantitis. The current evidence indicates that regenerative approaches to treat peri-implant defects are unpredictable.

15.
Dent Mater ; 24(6): 839-45, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18054380

RESUMO

OBJECTIVES: The purpose of this study was to compare torsional strength, ductility and fracture behaviors of Ti-6Al-7Nb, CP Ti and Co-Cr alloy castings after laser welding. METHODS: Dumbbell-shaped castings of three metal alloys (Ti-6Al-7Nb alloy, CP Ti, Co-Cr alloy) were cut in half and laser welded with a Nd:YAG pulse laser-welding machine at either 220V or 260V of laser voltage. After being laser welded, all cast specimens were tested with a multi-axial hydraulic testing machine (MTS 858 Mini Bionix) using a torsional test. The fracture surfaces were investigated with a scanning electron microscope. RESULTS: None of the laser-welded Ti-6Al-7Nb alloy and CP Ti castings was broken within the welded joint, showing torsional strength as high as the unwelded castings. Unlike the other groups, the laser-welded Co-Cr alloy castings exhibited brittle fracture appearance and provided substantially less torsional strength. SIGNIFICANCE: The torsional strength of the laser-welded Ti-6Al-7Nb alloy and CP Ti castings was as high as that of the unwelded castings while this finding could not apply to the Co-Cr alloy castings. This indicates that the mechanical strength of the laser-welded Ti-6Al-7Nb alloy dental casting is sufficient for clinical applications.


Assuntos
Ligas de Cromo/química , Ligas Dentárias/química , Revestimento para Fundição Odontológica/química , Soldagem em Odontologia/métodos , Lasers de Estado Sólido , Titânio/química , Materiais Dentários/química , Soldagem em Odontologia/instrumentação , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Maleabilidade , Estresse Mecânico , Propriedades de Superfície , Torção Mecânica
16.
J Adv Res ; 14: 25-34, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30364755

RESUMO

The use of polymeric materials (PMs) and polymeric films (PMFs) has increased in medicine and dentistry. This increasing interest is attributed to not only the excellent surfaces of PMs and PMFs but also their desired mechanical and biological properties, low production cost, and ease in processing, allowing them to be tailored for a wide range of applications. Specifically, PMs and PMFs are used in dentistry for their antimicrobial, drug delivery properties; in preventive, restorative and regenerative therapies; and for corrosion and friction reduction. PMFs such as acrylic acid copolymers are used as a dental adhesive; polylactic acids are used for dental pulp and dentin regeneration, and bioactive polymers are used as advanced drug delivery systems. The objective of this article was to review the literatures on the latest advancements in the use of PMs and PMFs in medicine and dentistry. Published literature (1990-2017) on PMs and PMFs for use in medicine and dentistry was reviewed using MEDLINE/PubMed and ScienceDirect resources. Furthermore, this review also explores the diversity of latest PMs and PMFs that have been utilized in dental applications, and analyzes the benefits and limitations of PMs and PMFs. Most of the PMs and PMFs have shown to improve the biomechanical properties of dental materials, but in future, more clinical studies are needed to create better treatment guidelines for patients.

17.
Dent Mater J ; 24(4): 541-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16445016

RESUMO

Mechanical properties of laser-welded castings of Ti-6Al-7Nb alloy, CP Ti, and Co-Cr alloy were investigated and compared to the unwelded castings using a tensile test. Dumbbell-shaped specimens were cut at the center, and two halves of the specimens were welded with an Nd:YAG laser welding machine at 220 or 260 V of laser voltage. The mechanical strength of 260 V groups was higher than that of 220 V groups for Ti-6Al-7Nb and Co-Cr alloys except for CP Ti. All 260 V laser-welded castings of Ti-6Al-7Nb alloy and CP Ti, which fractured outside the welded joints, exhibited ductile characteristics, while all laser-welded Co-Cr alloy castings, which fractured within the welded joints, showed brittle characteristics. This study proved that the mechanical strength of laser-welded Ti-6Al-7Nb alloy and CP Ti castings was as high as that of unwelded castings, while the mechanical properties of laser-welded alloy joints were influenced by microstructural changes.


Assuntos
Ligas Dentárias , Titânio , Soldagem/métodos , Ligas de Cromo , Técnica de Fundição Odontológica , Soldagem em Odontologia , Análise do Estresse Dentário , Elasticidade , Dureza , Lasers , Teste de Materiais , Microscopia Eletrônica de Varredura , Porosidade , Resistência à Tração
18.
Dent Mater J ; 34(3): 302-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25904165

RESUMO

This study investigated the shear bond strength (SBS) between veneering porcelain and zirconia substructure using lithium disilicate glass-ceramic as a liner. The mineral phases and microstructures of lithium disilicate glass-ceramic at temperature range of 800-900°C were preliminarily investigated. SBSs of porcelain-veneered zirconia specimens with and without lithium disilicate glassceramic liner fired at the same temperature were determined. Results showed that SBSs of veneering porcelain and zirconia with lithium disilicate glass-ceramic liner was notably increased (p<0.05). Specimens from the group with the highest SBS (59.7 MPa) were subject to thermocycling up to 10,000 cycles and their post-thermocycling SBSs investigated. Though weakened by thermocycling, SBSs were above the clinically acceptable limit (25 MPa) of ISO 9693. Fractographic analysis revealed mixed cohesive and adhesive failures. It was concluded that lithium disilicate glass-ceramic is a potential liner which generated high SBS between veneering porcelain and zirconia.


Assuntos
Cerâmica/química , Colagem Dentária , Porcelana Dentária/química , Zircônio/química , Forramento da Cavidade Dentária , Análise do Estresse Dentário , Facetas Dentárias , Temperatura Alta , Teste de Materiais , Microscopia Eletrônica de Varredura , Resistência ao Cisalhamento , Propriedades de Superfície , Difração de Raios X
19.
Dent Mater J ; 23(4): 497-503, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15688710

RESUMO

Ti-6Al-7Nb alloy was cast into three differently designed, removable partial denture frameworks: Palatal strap (PS), Anterior-posterior bar (AP), and Horseshoe-shaped bar (HS). The vertical displacement and local strain of Ti-6Al-7Nb alloy frameworks were investigated to compare against those of Co-Cr alloy frameworks. Vertical loading force of 19.6 N was applied at two locations, 10 and 20 mm, from the distal end of the framework. Although higher vertical displacement and local strain were observed for Ti-6Al-7Nb alloy frameworks than those for Co-Cr alloy frameworks, the PS framework appeared to show the least deformation. In addition, the strain at 10-mm location was higher than that at 20-mm location for AP and HS frameworks. This study thus proved that design had a significant influence on the deformation properties of denture frameworks. The PS design was evaluated to be a suitable design for the removable denture framework with Ti-6Al-7Nb alloy.


Assuntos
Ligas Dentárias , Planejamento de Dentadura , Prótese Parcial Removível , Titânio , Ligas de Cromo , Técnica de Fundição Odontológica , Análise do Estresse Dentário , Humanos , Teste de Materiais , Maxila , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA