Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 59(8): 1197-209, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20309546

RESUMO

Melanoma chondroitin sulfate proteoglycan (MCSP; also called CSPG4, NG2, HMW-MAA, MSK16, MCSPG, MEL-CSPG, or gp240) is a surface antigen frequently expressed on human melanoma cells, which is involved in cell adhesion, invasion and spreading, angiogenesis, complement inhibition, and signaling. MCSP has therefore been frequently selected as target antigen for development of antibody- and vaccine-based therapeutic approaches. We have here used a large panel of monoclonal antibodies against human MCSP for generation of single-chain MCSP/CD3-bispecific antibodies of the BiTE (for bispecific T cell engager) class. Despite similar binding affinity to MCSP, respective BiTE antibodies greatly differed in their potency of redirected lysis of CHO cells stably transfected with full-length human MCSP, or with various MCSP deletion mutants and fusion proteins. BiTE antibodies binding to the membrane proximal domain D3 of MCSP were more potent than those binding to more distal domains. This epitope distance effect was corroborated with EpCAM/CD3-bispecific BiTE antibody MT110 by testing various fusion proteins between MCSP and EpCAM as surface antigens. CHO cells expressing small surface target antigens were generally better lysed than those expressing larger target antigens, indicating that antigen size was also an important determinant for the potency of BiTE antibody. The present study for the first time relates the positioning of binding domains and size of surface antigens to the potency of target cell lysis by BiTE-redirected cytotoxic T cells. In case of the MCSP antigen, this provides the basis for selection of a maximally potent BiTE antibody candidate for development of a novel melanoma therapy.


Assuntos
Anticorpos Biespecíficos/metabolismo , Vacinas Anticâncer , Melanoma/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/metabolismo , Animais , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Complexo CD3/imunologia , Células CHO , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/imunologia , Cricetinae , Cricetulus , Citotoxicidade Imunológica , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Humanos , Melanoma/patologia , Melanoma/terapia , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
2.
Protein Eng Des Sel ; 19(10): 461-70, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16868004

RESUMO

GM-CSF (granulocyte-macrophage colony stimulating factor) plays a central role in inflammatory processes. Treatment with antibodies neutralizing murine GM-CSF showed significant therapeutic effects in mouse models of inflammatory diseases. We constructed by phage display technology a human scFv, which could potently neutralize human GM-CSF. At first, a human V(L) repertoire was combined with the V(H) domain of a parental GM-CSF-neutralizing rat antibody. One dominant rat/human scFv clone was selected, neutralizing human GM-CSF with an IC50 of 7.3 nM. The human V(L) of this clone was then combined with a human V(H) repertoire. The latter preserved the CDR 3 of the parental rat V(H) domain to retain binding specificity. Several human scFvs were selected, which neutralized human GM-CSF at low nanomolar concentrations (IC50 > or = 2.6 nM). To increase serum half-life, a branched 40 kDa PEG-polymer was coupled to the most potent GM-CSF-neutralizing scFv (3077) via an additional C-terminal cysteine. PEG conjugation had a negligible effect on the in vitro neutralizing potential of the scFv, although it caused a significant drop in binding affinity owing to a reduced on-rate. It also significantly increased the stability of the scFv at elevated temperatures. In mouse experiments, the PEGylated scFv 3077 showed a significantly prolonged elimination half-life of 59 h as compared with 2 h for the unconjugated scFv version. PEGylated scFv 3077 is a potential candidate for development of a novel antibody therapy to treat pro-inflammatory human diseases.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Fragmentos de Imunoglobulinas/química , Região Variável de Imunoglobulina/química , Polietilenoglicóis/química , Animais , Relação Dose-Resposta a Droga , Temperatura Alta , Humanos , Cinética , Camundongos , Biblioteca de Peptídeos , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína , Ratos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA