Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 20(1): 11, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996447

RESUMO

BACKGROUND: Women facing increased energetic demands in childhood commonly have altered adult ovarian activity and shorter reproductive lifespan, possibly comprising a strategy to optimize reproductive success. Here, we sought to understand the mechanisms of early-life programming of reproductive function, by integrating analysis of reproductive tissues in an appropriate mouse model with methylation analysis of proxy tissue DNA in a well-characterized population of Bangladeshi migrants in the UK. Bangladeshi women whose childhood was in Bangladesh were found to have later pubertal onset and lower age-matched ovarian reserve than Bangladeshi women who grew-up in England. Subsequently, we aimed to explore the potential relevance to the altered reproductive phenotype of one of the genes that emerged from the screens. RESULTS: Of the genes associated with differential methylation in the Bangladeshi women whose childhood was in Bangladesh as compared to Bangladeshi women who grew up in the UK, 13 correlated with altered expression of the orthologous gene in the mouse model ovaries. These mice had delayed pubertal onset and a smaller ovarian reserve compared to controls. The most relevant of these genes for reproductive function appeared to be SRD5A1, which encodes the steroidogenic enzyme 5α reductase-1. SRD5A1 was more methylated at the same transcriptional enhancer in mice ovaries as in the women's buccal DNA, and its expression was lower in the hypothalamus of the mice as well, suggesting a possible role in the central control of reproduction. The expression of Kiss1 and Gnrh was also lower in these mice compared to controls, and inhibition of 5α reductase-1 reduced Kiss1 and Gnrh mRNA levels and blocked GnRH release in GnRH neuronal cell cultures. Crucially, we show that inhibition of this enzyme in female mice in vivo delayed pubertal onset. CONCLUSIONS: SRD5A1/5α reductase-1 responds epigenetically to the environment and its downregulation appears to alter the reproductive phenotype. These findings help to explain diversity in reproductive characteristics and how they are shaped by early-life environment and reveal novel pathways that might be targeted to mitigate health issues caused by life-history trade-offs.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Colestenona 5 alfa-Redutase , Kisspeptinas , Proteínas de Membrana/metabolismo , Adaptação Fisiológica , Animais , Colestenona 5 alfa-Redutase/genética , Colestenona 5 alfa-Redutase/metabolismo , Epigênese Genética , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos
2.
PLoS Genet ; 13(11): e1007060, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29107996

RESUMO

In storing and transmitting epigenetic information, organisms must balance the need to maintain information about past conditions with the capacity to respond to information in their current and future environments. Some of this information is encoded by DNA methylation, which can be transmitted with variable fidelity from parent to daughter strand. High fidelity confers strong pattern matching between the strands of individual DNA molecules and thus pattern stability over rounds of DNA replication; lower fidelity confers reduced pattern matching, and thus greater flexibility. Here, we present a new conceptual framework, Ratio of Concordance Preference (RCP), that uses double-stranded methylation data to quantify the flexibility and stability of the system that gave rise to a given set of patterns. We find that differentiated mammalian cells operate with high DNA methylation stability, consistent with earlier reports. Stem cells in culture and in embryos, in contrast, operate with reduced, albeit significant, methylation stability. We conclude that preference for concordant DNA methylation is a consistent mode of information transfer, and thus provides epigenetic stability across cell divisions, even in stem cells and those undergoing developmental transitions. Broader application of our RCP framework will permit comparison of epigenetic-information systems across cells, developmental stages, and organisms whose methylation machineries differ substantially or are not yet well understood.


Assuntos
Diferenciação Celular , Metilação de DNA , Epigênese Genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Replicação do DNA , Células-Tronco Embrionárias/citologia , Feminino , Fibroblastos/citologia , Loci Gênicos , Humanos , Masculino , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases
3.
Arch Toxicol ; 91(7): 2629-2641, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27913844

RESUMO

Manganese (Mn) is an essential trace element required for optimal functioning of cellular biochemical pathways in the central nervous system. Elevated exposure to Mn through environmental and occupational exposure can cause neurotoxic effects resulting in manganism, a condition with clinical symptoms identical to idiopathic Parkinson's disease. Epigenetics is now recognized as a biological mechanism involved in the etiology of various diseases. Here, we investigated the role of DNA methylation alterations induced by chronic Mn (100 µM) exposure in human neuroblastoma (SH-SY5Y) cells in relevance to Parkinson's disease. A combined analysis of DNA methylation and gene expression data for Parkinson's disease-associated genes was carried out. Whole-genome bisulfite conversion and sequencing indicate epigenetic perturbation of key genes involved in biological processes associated with neuronal cell health. Integration of DNA methylation data with gene expression reveals epigenetic alterations to PINK1, PARK2 and TH genes that play critical roles in the onset of Parkinsonism. The present study suggests that Mn-induced alteration of DNA methylation of PINK1-PARK2 may influence mitochondrial function and promote Parkinsonism. Our findings provide a basis to further explore and validate the epigenetic basis of Mn-induced neurotoxicity .


Assuntos
Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Manganês/toxicidade , Doença de Parkinson/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
5.
Front Insect Sci ; 4: 1415939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711462

RESUMO

[This corrects the article DOI: 10.3389/finsc.2021.765179.].

6.
Epigenetics ; 18(1): 2153511, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36495138

RESUMO

Migration from one location to another often comes with a change in environmental conditions. Here, we analysed features of DNA methylation in young, adult British-Bangladeshi women who experienced different environments during their childhoods: a) migrants, who grew up in Bangladesh with exposure to comparatively higher pathogen loads and poorer health care, and b) second-generation British-Bangladeshis, born to Bangladeshi parents, who grew up in the UK. We used buccal DNA to estimate DNA methylation-based age (DNAm age) from 14 migrants and 11 second-generation migrants, aged 18-35 years. 'AgeAccel,' a measure of DNAm age, independent of chronological age, showed that the group of women who spent their childhood in Bangladesh had higher AgeAccel (P = 0.028), compared to their UK peers. Since epigenetic clocks have been proposed to be associated with maintenance processes of epigenetic systems, we evaluated the preference for concordant DNA methylation at the luteinizing hormone/choriogonadotropin receptor (LHCGR/LHR) locus, which harbours one of the CpGs contributing to Horvath's epigenetic clock. Measurements on both strands of individual, double-stranded DNA molecules indicate higher stability of DNA methylation states at this LHCGR/LHR locus in samples of women who grew up in Bangladesh. Together, our two independent analytical approaches imply that childhood environments may induce subtle changes that are detectable long after exposure occurred, which might reflect altered activity of the epigenetic maintenance system or a difference in the proportion of cell types in buccal tissue. This exploratory work supports our earlier findings that adverse childhood environments lead to phenotypic life history trade-offs.


Assuntos
Envelhecimento , Metilação de DNA , Epigênese Genética , Migrantes , Adulto , Criança , Feminino , Humanos , Envelhecimento/genética , Povo Asiático , Bangladesh , Reino Unido , Ilhas de CpG , Meio Ambiente
8.
J Virol ; 84(18): 9505-15, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20631145

RESUMO

Expression of the E6 and E7 oncogenes of high-risk human papillomaviruses (HPV) is controlled by cellular transcription factors and by viral E2 and E8--E2C proteins, which are both derived from the HPV E2 gene. Both proteins bind to and repress the HPV E6/E7 promoter. Promoter inhibition has been suggested to be due to binding site competition with cellular transcription factors and to interactions of different cellular transcription modulators with the different amino termini of E2 and E8--E2C. We have now identified the cellular chromodomain helicase DNA binding domain 6 protein (CHD6) as a novel interactor with HPV31 E8--E2C by using yeast two-hybrid screening. Pull-down and coimmunoprecipitation assays indicate that CHD6 interacts with the HPV31 E8--E2C protein via the E2C domain. This interaction is conserved, as it occurs also with the E8--E2C proteins expressed by HPV16 and -18 and with the HPV31 E2 protein. Both RNA knockdown experiments and mutational analyses of the E2C domain suggest that binding of CHD6 to E8--E2C contributes to the transcriptional repression of the HPV E6/E7 oncogene promoter. We provide evidence that CHD6 is also involved in transcriptional repression but not activation by E2. Taken together our results indicate that the E2C domain not only mediates specific DNA binding but also has an additional role in transcriptional repression by recruitment of the CHD6 protein. This suggests that repression of the E6/E7 promoter by E2 and E8--E2C involves multiple interactions with host cell proteins through different protein domains.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/patogenicidade , Proteínas do Tecido Nervoso/metabolismo , Proteínas Oncogênicas Virais/biossíntese , Transcrição Gênica , Proteínas Virais/metabolismo , Humanos , Imunoprecipitação , Proteínas Oncogênicas Virais/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
9.
Methods Mol Biol ; 2198: 287-299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822039

RESUMO

Ligation of a hairpin oligonucleotide to genomic DNA prior to bisulfite conversion and PCR amplification physically links the two complementary DNA strands. This additional step in the conversion procedure overcomes the limitations of conventional bisulfite sequencing where information of the cytosine methylation status is only obtained from one of the two strands of an individual DNA molecule. Sequences derived from hairpin bisulfite PCR products reveal the dynamics of this epigenetic memory system on both strands of individual DNA molecules. The chapter describes a reliable step-by-step procedure to generate hairpin-linked DNA. It also provides a guide for efficient bisulfite conversion that is suitable for both conventional and hairpin bisulfite sequencing approaches.


Assuntos
Sequências Repetidas Invertidas/genética , Reação em Cadeia da Polimerase/métodos , Sulfitos/química , Citosina , DNA/genética , Metilação de DNA , DNA Complementar/química , DNA Complementar/genética , Humanos , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/genética , Análise de Sequência de DNA/métodos
10.
Sci Rep ; 11(1): 1489, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452318

RESUMO

Maximizing crop yields relies on the use of agrochemicals to control insect pests. One of the most widely used classes of insecticides are neonicotinoids that interfere with signalling of the neurotransmitter acetylcholine, but these can also disrupt crop-pollination services provided by bees. Here, we analysed whether chronic low dose long-term exposure to the neonicotinoid thiamethoxam alters gene expression and alternative splicing in brains of Africanized honey bees, Apis mellifera, as adaptation to altered neuronal signalling. We find differentially regulated genes that show concentration-dependent responses to thiamethoxam, but no changes in alternative splicing. Most differentially expressed genes have no annotated function but encode short Open Reading Frames, a characteristic feature of anti-microbial peptides. As this suggested that immune responses may be compromised by thiamethoxam exposure, we tested the impact of thiamethoxam on bee immunity by injecting bacteria. We show that intrinsically sub-lethal thiamethoxam exposure makes bees more vulnerable to normally non-pathogenic bacteria. Our findings imply a synergistic mechanism for the observed bee population declines that concern agriculturists, conservation ecologists and the public.


Assuntos
Abelhas/metabolismo , Expressão Gênica/efeitos dos fármacos , Tiametoxam/efeitos adversos , Animais , Infecções Bacterianas/genética , Abelhas/efeitos dos fármacos , Abelhas/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade/imunologia , Inseticidas/efeitos adversos , Neonicotinoides/efeitos adversos , Fases de Leitura Aberta/genética , Polinização , Tiazóis/efeitos adversos
11.
Front Insect Sci ; 1: 765179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38468884

RESUMO

Mitochondria are intracellular organelles responsible for cellular respiration with one of their major roles in the production of energy in the form of ATP. Activities with increased energetic demand are especially dependent on efficient ATP production, hence sufficient mitochondrial function is fundamental. In bees, flight muscle and the brain have particularly high densities of mitochondria to facilitate the substantial ATP production required for flight activity and neuronal signalling. Neonicotinoids are systemic synthetic insecticides that are widely utilised against crop herbivores but have been reported to cause, by unknown mechanisms, mitochondrial dysfunction, decreasing cognitive function and flight activity among pollinating bees. Here we explore, using high-resolution respirometry, how the neonicotinoid imidacloprid may affect oxidative phosphorylation in the brain and flight muscle of the buff-tailed bumblebee, Bombus terrestris. We find that acute exposure increases routine oxygen consumption in the flight muscle of worker bees. This provides a candidate explanation for prior reports of early declines in flight activity following acute exposure. We further find that imidacloprid increases the maximum electron transport capacity in the brain, with a trend towards increased overall oxygen consumption. However, intra-individual variability is high, limiting the extent to which apparent effects of imidacloprid on brain mitochondria are shown conclusively. Overall, our results highlight the necessity to examine tissue-specific effects of imidacloprid on respiration and energy production.

12.
Commun Biol ; 4(1): 598, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011964

RESUMO

Culture expansion of primary cells evokes highly reproducible DNA methylation (DNAm) changes. We have identified CG dinucleotides (CpGs) that become continuously hyper- or hypomethylated during long-term culture of mesenchymal stem cells (MSCs) and other cell types. Bisulfite barcoded amplicon sequencing (BBA-seq) demonstrated that DNAm patterns of neighboring CpGs become more complex without evidence of continuous pattern development and without association to oligoclonal subpopulations. Circularized chromatin conformation capture (4C) revealed reproducible changes in nuclear organization between early and late passages, while there was no enriched interaction with other genomic regions that also harbor culture-associated DNAm changes. Chromatin immunoprecipitation of CTCF did not show significant differences during long-term culture of MSCs, however culture-associated hypermethylation was enriched at CTCF binding sites and hypomethylated CpGs were devoid of CTCF. Taken together, our results support the notion that DNAm changes during culture-expansion are not directly regulated by a targeted mechanism but rather resemble epigenetic drift.


Assuntos
Fator de Ligação a CCCTC/genética , Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Deriva Genética , Células-Tronco Mesenquimais/metabolismo , Envelhecimento , Células Cultivadas , Cromatina/genética , Ilhas de CpG , Humanos , Técnicas In Vitro , Células-Tronco Mesenquimais/citologia
13.
Hum Mutat ; 31(6): 685-91, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20340137

RESUMO

Genetic alterations in the alpha-synuclein (SNCA) gene have been implicated in Parkinson Disease (PD), including point mutations, gene multiplications, and sequence variations within the promoter. Such alterations may be involved in pathology through structural changes or overexpression of the protein leading to protein aggregation, as well as through impaired gene expression. It is, therefore, of importance to specify the parameters that regulate SNCA expression in its normal and mutated state. We studied the expression of SNCA alleles in a lymphoblastoid cell line and in the blood cells of a patient heterozygous for p.Ala53Thr, the first mutation to be implicated in PD pathogenesis. Here, we provide evidence that: (1) SNCA shows monoallelic expression in this patient, (2) epigenetic silencing of the mutated allele involves histone modifications but not DNA methylation, and (3) steady-state mRNA levels deriving from the normal SNCA allele in this patient exceed those of the two normal SNCA alleles combined, in matching, control individuals. An imbalanced SNCA expression in this patient is thus documented, with silencing of the p.Ala53Thr allele and upregulation of the wild-type-allele. This phenomenon is demonstrated for a first time in the SNCA gene, and may have important implications for PD pathogenesis.


Assuntos
Desequilíbrio Alélico , Mutação , Doença de Parkinson/genética , alfa-Sinucleína/genética , Alelos , Substituição de Aminoácidos , Linhagem Celular Transformada , Epigênese Genética , Feminino , Dosagem de Genes , Expressão Gênica , Histonas/metabolismo , Humanos , Doença de Parkinson/metabolismo , Polimorfismo de Nucleotídeo Único , Processamento de Proteína Pós-Traducional , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Mamm Genome ; 21(3-4): 130-42, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20111866

RESUMO

Members of the CHD protein family play key roles in gene regulation through ATP-dependent chromatin remodeling. This is facilitated by chromodomains that bind histone tails, and by the SWI2/SNF2-like ATPase/helicase domain that remodels chromatin by moving histones. Chd6 is ubiquitously expressed in both mouse and human, with the highest levels of expression in the brain. The Chd6 gene contains 37 exons, of which exons 12-19 encode the highly conserved ATPase domain. To determine the biological role of Chd6, we generated mouse lines with a deletion of exon 12. Chd6 without exon 12 is expressed at normal levels in mice, and Chd6 Exon 12 -/- mice are viable, fertile, and exhibit no obvious morphological or pathological phenotype. Chd6 Exon 12 -/- mice lack coordination as revealed by sensorimotor analysis. Further behavioral testing revealed that the coordination impairment was not due to muscle weakness or bradykinesia. Histological analysis of brain morphology revealed no differences between Chd6 Exon 12 -/- mice and wild-type (WT) controls. The location of CHD6 on human chromosome 20q12 is overlapped by the linkage map regions of several human ataxias, including autosomal recessive infantile cerebellar ataxia (SCAR6), a nonprogressive cerebrospinal ataxia. The genomic location, expression pattern, and ataxic phenotype of Chd6 Exon 12 -/- mice indicate that mutations within CHD6 may be responsible for one of these ataxias.


Assuntos
DNA Helicases/metabolismo , Éxons/genética , Atividade Motora/genética , Deleção de Sequência/genética , Animais , Comportamento Animal/fisiologia , Regulação da Expressão Gênica , Humanos , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fenótipo , Filogenia , Equilíbrio Postural/genética , Transdução de Sinais/genética
15.
Nucleic Acids Res ; 36(22): e150, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18984622

RESUMO

Bisulfite treatment can be used to ascertain the methylation states of individual cytosines in DNA. Ideally, bisulfite treatment deaminates unmethylated cytosines to uracils, and leaves 5-methylcytosines unchanged. Two types of bisulfite-conversion error occur: inappropriate conversion of 5-methylcytosine to thymine, and failure to convert unmethylated cytosine to uracil. Conventional bisulfite treatment requires hours of exposure to low-molarity, low-temperature bisulfite ('LowMT') and, sometimes, thermal denaturation. An alternate, high-molarity, high-temperature ('HighMT') protocol has been reported to accelerate conversion and to reduce inappropriate conversion. We used molecular encoding to obtain validated, individual-molecule data on failed- and inappropriate-conversion frequencies for LowMT and HighMT treatments of both single-stranded and hairpin-linked oligonucleotides. After accounting for bisulfite-independent error, we found that: (i) inappropriate-conversion events accrue predominantly on molecules exposed to bisulfite after they have attained complete or near-complete conversion; (ii) the HighMT treatment is preferable because it yields greater homogeneity among sites and among molecules in conversion rates, and thus yields more reliable data; (iii) different durations of bisulfite treatment will yield data appropriate to address different experimental questions; and (iv) conversion errors can be used to assess the validity of methylation data collected without the benefit of molecular encoding.


Assuntos
5-Metilcitosina/química , Metilação de DNA , DNA/química , Análise de Sequência de DNA , Sulfitos/química , Citosina/química , DNA de Cadeia Simples/química , Conformação de Ácido Nucleico , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Reação em Cadeia da Polimerase , Temperatura
16.
Nat Rev Endocrinol ; 16(9): 519-533, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32620937

RESUMO

Reproductive function adjusts in response to environmental conditions in order to optimize success. In humans, this plasticity includes age of pubertal onset, hormone levels and age at menopause. These reproductive characteristics vary across populations with distinct lifestyles and following specific childhood events, and point to a role for the early-life environment in shaping adult reproductive trajectories. Epigenetic mechanisms respond to external signals, exert long-term effects on gene expression and have been shown in animal and cellular studies to regulate normal reproductive function, strongly implicating their role in these adaptations. Moreover, human cohort data have revealed differential DNA methylation signatures in proxy tissues that are associated with reproductive phenotypic variation, although the cause-effect relationships are difficult to discern, calling for additional complementary approaches to establish functionality. In this Review, we summarize how adult reproductive function can be shaped by childhood events. We discuss why the influence of the childhood environment on adult reproductive function is an important consideration in understanding how reproduction is regulated and necessitates consideration by clinicians treating women with diverse life histories. The resolution of the molecular mechanisms responsible for human reproductive plasticity could also lead to new approaches for intervention by targeting these epigenetic modifications.


Assuntos
Adaptação Fisiológica/genética , Meio Ambiente , Epigênese Genética/fisiologia , Reprodução/genética , Envelhecimento , Animais , Metilação de DNA , Feminino , Fertilidade , Desenvolvimento Fetal , Humanos , Estilo de Vida , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Fenótipo , Gravidez , Progesterona/sangue , Puberdade/genética , Reprodução/fisiologia , Testosterona/sangue , Migrantes
17.
Sci Rep ; 9(1): 19196, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844097

RESUMO

Securing food supply for a growing population is a major challenge and heavily relies on the use of agrochemicals to maximize crop yield. It is increasingly recognized, that some neonicotinoid insecticides have a negative impact on non-target organisms, including important pollinators such as the European honeybee Apis mellifera. Toxicity of neonicotinoids may be enhanced through simultaneous exposure with additional pesticides, which could help explain, in part, the global decline of honeybee colonies. Here we examined whether exposure effects of the neonicotinoid thiamethoxam on bee viability are enhanced by the commonly used fungicide carbendazim and the herbicide glyphosate. We also analysed alternative splicing changes upon pesticide exposure in the honeybee. In particular, we examined transcripts of three genes: (i) the stress sensor gene X box binding protein-1 (Xbp1), (ii) the Down Syndrome Cell Adhesion Molecule (Dscam) gene and iii) the embryonic lethal/abnormal visual system (elav) gene, which are important for neuronal function. Our results showed that acute thiamethoxam exposure is not enhanced by carbendazim, nor glyphosate. Toxicity of the compounds did not trigger stress-induced, alternative splicing in the analysed mRNAs, thereby leaving dormant a cellular response pathway to these man-made environmental perturbations.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Abelhas/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Herbicidas/toxicidade , RNA Mensageiro/genética , Tiametoxam/toxicidade , Animais , Abelhas/genética , Benzimidazóis/toxicidade , Carbamatos/toxicidade , Glicina/análogos & derivados , Glicina/toxicidade , Glifosato
18.
Front Cell Dev Biol ; 6: 24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29637072

RESUMO

5-methylcytosine (5mC) on CpG dinucleotides has been viewed as the major epigenetic modification in eukaryotes for a long time. Apart from 5mC, additional DNA modifications have been discovered in eukaryotic genomes. Many of these modifications are thought to be solely associated with DNA damage. However, growing evidence indicates that some base modifications, namely 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-carboxylcytosine (5caC), and N6-methadenine (6mA), may be of biological relevance, particularly during early stages of embryo development. Although abundance of these DNA modifications in eukaryotic genomes can be low, there are suggestions that they cooperate with other epigenetic markers to affect DNA-protein interactions, gene expression, defense of genome stability and epigenetic inheritance. Little is still known about their distribution in different tissues and their functions during key stages of the animal lifecycle. This review discusses current knowledge and future perspectives of these novel DNA modifications in the mammalian genome with a focus on their dynamic distribution during early embryonic development and their potential function in epigenetic inheritance through the germ line.

19.
Toxicol In Vitro ; 46: 94-101, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28986288

RESUMO

Manganese is an essential trace element however elevated environmental and occupational exposure to this element has been correlated with neurotoxicity symptoms clinically identical to idiopathic Parkinson's disease. In the present study we chronically exposed human neuroblastoma SH-SY5Y cells to manganese (100µM) and carried out expression profiling of miRNAs known to modulate neuronal differentiation and neurodegeneration. The miRNA PCR array results reveal alterations in expression levels of miRNAs, which have previously been associated with the regulation of synaptic transmission and apoptosis. The expressions of miR-7 and miR-433 significantly reduced upon manganese exposure. By in silico homology analysis we identified SNCA and FGF-20as targets of miR-7 and miR-433. We demonstrate an inverse correlation in expression levels where reduction in these two miRNAs causes increases in SNCA and FGF-20. Transient transfection of SH-SY5Y cells with miR-7 and miR-433 mimics resulted in down regulation of SNCA and FGF-20 mRNA levels. Our study is the first to uncover the potential link between manganese exposure, altered miRNA expression and parkinsonism: manganese exposure causes overexpression of SNCA and FGF-20 by diminishing miR-7 and miR-433 levels. These miRNAs may be considered critical for protection from manganese induced neurotoxic mechanism and hence as potential therapeutic targets.


Assuntos
Manganês/toxicidade , MicroRNAs/metabolismo , Doença de Parkinson/etiologia , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , Modelos Biológicos , Neurônios/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Doença de Parkinson/metabolismo , Reação em Cadeia da Polimerase/métodos , Regulação para Cima , alfa-Sinucleína/genética
20.
NPJ Parkinsons Dis ; 3: 6, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649606

RESUMO

5-methylcytosine and the oxidation product 5-hydroxymethylcytosine are two prominent epigenetic variants of the cytosine base in nuclear DNA of mammalian brains. We measured levels of 5-methylcytosine and 5-hydroxymethylcytosine by enzyme-linked immunosorbent assay in DNA from post-mortem cerebella of individuals with Parkinson's disease and age-matched controls. 5-methylcytosine levels showed no significant differences between Parkinson's disease and control DNA sample sets. In contrast, median 5-hydroxymethylcytosine levels were almost twice as high (p < 0.001) in both male and female Parkinson's disease individuals compared with controls. The distinct epigenetic profile identified in cerebellar DNA of Parkinson's disease patients raises the question whether elevated 5-hydroxymethylcytosine levels are a driver or a consequence of Parkinson's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA