RESUMO
We characterized and analyzed the effect of intracavity spectral filtering in the Er:fiber laser mode-locked with a semiconductor saturable absorber mirror (SESAM). We studied the dispersive properties of bandpass filters and their influence on the characteristics of generated soliton pulses. Our analysis showed that various sideband structures were induced by the filter dispersion profiles and shaped through the interaction of the soliton with the dispersive wave. In addition, intracavity filtering improved the intensity and phase noise of the laser significantly, and we showed optimal filtering conditions for both types of noise. By adding a 10â nm bandpass filter to the laser resonator, the intensity and phase noise were improved 2- and 2.6 times, respectively.
RESUMO
In this paper, we present a system for sequential detection of multiple gases using laser-based wavelength modulation spectroscopy (WMS) method combined with a Herriot-type multi-pass cell. Concentration of hydrogen sulfide (H2S), methane (CH4), carbon dioxide (CO2), and ammonia (NH3) are retrieved using three distributed feedback laser diodes operating at 1574.5 nm (H2S and CO2), 1651 nm (CH4), and 1531 nm (NH3). Careful adjustment of system parameters allows for H2S sensing at single parts-per-million by volume (ppmv) level with strongly reduced interference from adjacent CO2 transitions even at atmospheric pressure. System characterization in laboratory conditions is presented and the results from initial tests in real-world application are demonstrated.
RESUMO
We report the development of a widely-tunable femtosecond fiber laser system and its application for two-photon vision studies. The source is based on an Er-doped fiber laser with spectral shift up to 2150 nm, followed by a second harmonic generation module to generate a frequency-doubled beam tunable from 872 to 1075 nm. The source delivers sub-230 fs pulses with nearly-constant duration over the entire tuning range, with output powers between 0.68-1.24 mW, which corresponds to a pulse energy of 13.2-24.1 pJ. Such pulse energy is sufficient for employing a system for measurements of two-photon scotopic spectral sensitivity of two-photon vision in humans. The laser parameters allow for very efficient and safe two-photon stimulation of the human visual system, as proved by a good separation between one- and two-photon thresholds for wavelengths below 950 nm, which we have confirmed for 3 healthy subjects.
RESUMO
BackgroundNoninvasive assessment of metabolic processes that sustain regeneration of human retinal visual pigments (visual cycle) is essential to improve ophthalmic diagnostics and to accelerate development of new treatments to counter retinal diseases. Fluorescent vitamin A derivatives, which are the chemical intermediates of these processes, are highly sensitive to UV light; thus, safe analyses of these processes in humans are currently beyond the reach of even the most modern ocular imaging modalities.MethodsWe present a compact, 2-photon-excited fluorescence scanning laser ophthalmoscope and spectrally resolved images of the human retina based on 2-photon excitation (TPE) with near-infrared light. A custom Er:fiber laser with integrated pulse selection, along with intelligent postprocessing of data, enables excitation with low laser power and precise measurement of weak signals.ResultsWe demonstrate spectrally resolved TPE fundus images of human subjects. Comparison of TPE data between human and mouse models of retinal diseases revealed similarity with mouse models that rapidly accumulate bisretinoid condensation products. Thus, visual cycle intermediates and toxic byproducts of this metabolic pathway can be measured and quantified by TPE imaging.ConclusionOur work establishes a TPE instrument and measurement method for noninvasive metabolic assessment of the human retina. This approach opens the possibility for monitoring eye diseases in the earliest stages before structural damage to the retina occurs.FundingNIH, Research to Prevent Blindness, Foundation for Polish Science, European Regional Development Fund, Polish National Agency for Academic Exchange, and Polish Ministry of Science and Higher Education.
Assuntos
Oftalmoscópios , Imagem Óptica , Retina , Doenças Retinianas , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Retina/diagnóstico por imagem , Retina/metabolismo , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/genética , Doenças Retinianas/metabolismoRESUMO
A femtosecond frequency-doubled erbium-doped fiber laser with an adjustable pulse repetition rate is developed and applied in two-photon excited fluorescence microscopy. The all-fiber laser system provides the fundamental pulse at 1560â nm wavelength with 22 fs duration for the second harmonic generation, resulting in 1.35 nJ, 60 fs pulses at 780â nm. The repetition rate is adjusted by a pulse picker unit built-in within the amplifier chain, directly providing transform-limited pulses for any chosen repetition rate between 1 and 12â MHz. We employed the laser source to drive a scanning two-photon excited fluorescence microscope for ex vivo rat skin and other samples' imaging at various pulse repetition rates. Due to compactness, ease of operation, and suitable pulse characteristics, the laser source can be considered as an attractive alternative for Ti:Sapphire laser in biomedical imaging.