Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
MMWR Morb Mortal Wkly Rep ; 72(5253): 1385-1389, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38175804

RESUMO

During July 7-11, 2023, CDC received reports of two patients in different states with a tuberculosis (TB) diagnosis following spinal surgical procedures that used bone allografts containing live cells from the same deceased donor. An outbreak associated with a similar product manufactured by the same tissue establishment (i.e., manufacturer) occurred in 2021. Because of concern that these cases represented a second outbreak, CDC and the Food and Drug Administration worked with the tissue establishment to determine that this product was obtained from a donor different from the one implicated in the 2021 outbreak and learned that the bone allograft product was distributed to 13 health care facilities in seven states. Notifications to all seven states occurred on July 12. As of December 20, 2023, five of 36 surgical bone allograft recipients received laboratory-confirmed TB disease diagnoses; two patients died of TB. Whole-genome sequencing demonstrated close genetic relatedness between positive Mycobacterium tuberculosis cultures from surgical recipients and unused product. Although the bone product had tested negative by nucleic acid amplification testing before distribution, M. tuberculosis culture of unused product was not performed until after the outbreak was recognized. The public health response prevented up to 53 additional surgical procedures using allografts from that donor; additional measures to protect patients from tissue-transmitted M. tuberculosis are urgently needed.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Estados Unidos/epidemiologia , Tuberculose/epidemiologia , Tuberculose/diagnóstico , Mycobacterium tuberculosis/genética , Doadores de Tecidos , Surtos de Doenças , Aloenxertos
2.
MMWR Morb Mortal Wkly Rep ; 71(8): 285-289, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35202353

RESUMO

On May 5, 2021, CDC's Tuberculosis Trials Consortium and the National Institutes of Health (NIH)-sponsored AIDS Clinical Trials Group (ACTG) published results from a randomized controlled trial indicating that a 4-month regimen containing rifapentine (RPT), moxifloxacin (MOX), isoniazid (INH), and pyrazinamide (PZA) was as effective as the standard 6-month regimen for tuberculosis (TB) treatment (1). On the basis of these findings, CDC recommends the 4-month regimen as a treatment option for U.S. patients aged ≥12 years with drug-susceptible pulmonary TB and provides implementation considerations for this treatment regimen.


Assuntos
Antituberculosos/uso terapêutico , Isoniazida/uso terapêutico , Moxifloxacina/uso terapêutico , Pirazinamida/uso terapêutico , Rifampina/análogos & derivados , Tuberculose Pulmonar/tratamento farmacológico , Antituberculosos/administração & dosagem , Centers for Disease Control and Prevention, U.S. , Esquema de Medicação , Quimioterapia Combinada , Humanos , Isoniazida/administração & dosagem , Moxifloxacina/administração & dosagem , Pirazinamida/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto , Rifampina/administração & dosagem , Rifampina/uso terapêutico , Estados Unidos
3.
Am J Public Health ; 111(5): 907-916, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33734845

RESUMO

Objectives. To assess SARS-CoV-2 transmission within a correctional facility and recommend mitigation strategies.Methods. From April 29 to May 15, 2020, we established the point prevalence of COVID-19 among incarcerated persons and staff within a correctional facility in Arkansas. Participants provided respiratory specimens for SARS-CoV-2 testing and completed questionnaires on symptoms and factors associated with transmission.Results. Of 1647 incarcerated persons and 128 staff tested, 30.5% of incarcerated persons (range by housing unit = 0.0%-58.2%) and 2.3% of staff tested positive for SARS-CoV-2. Among those who tested positive and responded to symptom questions (431 incarcerated persons, 3 staff), 81.2% and 33.3% were asymptomatic, respectively. Most incarcerated persons (58.0%) reported wearing cloth face coverings 8 hours or less per day, and 63.3% reported close contact with someone other than their bunkmate.Conclusions. If testing remained limited to symptomatic individuals, fewer cases would have been detected or detection would have been delayed, allowing transmission to continue. Rapid implementation of mass testing and strict enforcement of infection prevention and control measures may be needed to mitigate spread of SARS-CoV-2 in this setting.


Assuntos
Teste para COVID-19 , COVID-19 , Estabelecimentos Correcionais/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Arkansas/epidemiologia , COVID-19/epidemiologia , COVID-19/transmissão , Habitação/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Prisioneiros/estatística & dados numéricos , Inquéritos e Questionários
4.
Clin Infect Dis ; 69(9): 1631-1633, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30883637

RESUMO

Tuberculosis is the primary infectious disease killer worldwide, with a growing threat from multidrug-resistant cases. Unfortunately, classic growth-based phenotypic drug susceptibility testing (DST) remains difficult, costly, and time consuming, while current rapid molecular testing options are limited by the diversity of antimicrobial-resistant genotypes that can be detected at once. Next-generation sequencing (NGS) offers the opportunity for rapid, comprehensive DST without the time or cost burden of phenotypic tests and can provide useful information for global surveillance. As access to NGS expands, it will be important to ensure that results are communicated clearly, consistent, comparable between laboratories, and associated with clear guidance on clinical interpretation of results. In this viewpoint article, we summarize 2 expert workshops regarding a standardized report format, focusing on relevant variables, terminology, and required minimal elements for clinical and laboratory reports with a proposed standardized template for clinical reporting NGS results for Mycobacterium tuberculosis.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Mutação/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Análise de Sequência de DNA , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética
5.
MMWR Morb Mortal Wkly Rep ; 67(11): 333-336, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29565842

RESUMO

Hurricane Maria made landfall in Puerto Rico on September 20, 2017, causing major damage to infrastructure and severely limiting access to potable water, electric power, transportation, and communications. Public services that were affected included operations of the Puerto Rico Department of Health (PRDOH), which provides critical laboratory testing and surveillance for diseases and other health hazards. PRDOH requested assistance from CDC for the restoration of laboratory infrastructure, surveillance capacity, and diagnostic testing for selected priority diseases, including influenza, rabies, leptospirosis, salmonellosis, and tuberculosis. PRDOH, CDC, and the Association of Public Health Laboratories (APHL) collaborated to conduct rapid needs assessments and, with assistance from the CDC Foundation, implement a temporary transport system for shipping samples from Puerto Rico to the continental United States for surveillance and diagnostic and confirmatory testing. This report describes the initial laboratory emergency response and engagement efforts among federal, state, and nongovernmental partners to reestablish public health laboratory services severely affected by Hurricane Maria. The implementation of a sample transport system allowed Puerto Rico to reinitiate priority infectious disease surveillance and laboratory testing for patient and public health interventions, while awaiting the rebuilding and reinstatement of PRDOH laboratory services.


Assuntos
Tempestades Ciclônicas , Desastres , Laboratórios/organização & administração , Prática de Saúde Pública , Centers for Disease Control and Prevention, U.S. , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/epidemiologia , Testes Diagnósticos de Rotina , Humanos , Vigilância da População , Porto Rico/epidemiologia , Estados Unidos
6.
Eur Respir J ; 50(6)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29284687

RESUMO

A clear understanding of the genetic basis of antibiotic resistance in Mycobacterium tuberculosis is required to accelerate the development of rapid drug susceptibility testing methods based on genetic sequence.Raw genotype-phenotype correlation data were extracted as part of a comprehensive systematic review to develop a standardised analytical approach for interpreting resistance associated mutations for rifampicin, isoniazid, ofloxacin/levofloxacin, moxifloxacin, amikacin, kanamycin, capreomycin, streptomycin, ethionamide/prothionamide and pyrazinamide. Mutation frequencies in resistant and susceptible isolates were calculated, together with novel statistical measures to classify mutations as high, moderate, minimal or indeterminate confidence for predicting resistance.We identified 286 confidence-graded mutations associated with resistance. Compared to phenotypic methods, sensitivity (95% CI) for rifampicin was 90.3% (89.6-90.9%), while for isoniazid it was 78.2% (77.4-79.0%) and their specificities were 96.3% (95.7-96.8%) and 94.4% (93.1-95.5%), respectively. For second-line drugs, sensitivity varied from 67.4% (64.1-70.6%) for capreomycin to 88.2% (85.1-90.9%) for moxifloxacin, with specificity ranging from 90.0% (87.1-92.5%) for moxifloxacin to 99.5% (99.0-99.8%) for amikacin.This study provides a standardised and comprehensive approach for the interpretation of mutations as predictors of M. tuberculosis drug-resistant phenotypes. These data have implications for the clinical interpretation of molecular diagnostics and next-generation sequencing as well as efficient individualised therapy for patients with drug-resistant tuberculosis.


Assuntos
Antituberculosos/farmacologia , Interpretação Estatística de Dados , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Fenótipo , Análise de Sequência de DNA , Revisões Sistemáticas como Assunto , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
7.
J Infect Dis ; 211 Suppl 2: S50-7, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25765106

RESUMO

Tuberculosis remains a major global public health challenge. Although incidence is decreasing, the proportion of drug-resistant cases is increasing. Technical and operational complexities prevent Mycobacterium tuberculosis drug susceptibility phenotyping in the vast majority of new and retreatment cases. The advent of molecular technologies provides an opportunity to obtain results rapidly as compared to phenotypic culture. However, correlations between genetic mutations and resistance to multiple drugs have not been systematically evaluated. Molecular testing of M. tuberculosis sampled from a typical patient continues to provide a partial picture of drug resistance. A database of phenotypic and genotypic testing results, especially where prospectively collected, could document statistically significant associations and may reveal new, predictive molecular patterns. We examine the feasibility of integrating existing molecular and phenotypic drug susceptibility data to identify associations observed across multiple studies and demonstrate potential for well-integrated M. tuberculosis mutation data to reveal actionable findings.


Assuntos
Antituberculosos/farmacologia , Bases de Dados Genéticas , Farmacorresistência Bacteriana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Antituberculosos/uso terapêutico , Genótipo , Humanos , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
8.
Clin Infect Dis ; 61Suppl 3: S141-6, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26409275

RESUMO

Continued progress in addressing challenges associated with detection and management of tuberculosis requires new diagnostic tools. These tools must be able to provide rapid and accurate information for detecting resistance to guide selection of the treatment regimen for each patient. To achieve this goal, globally representative genotypic, phenotypic, and clinical data are needed in a standardized and curated data platform. A global partnership of academic institutions, public health agencies, and nongovernmental organizations has been established to develop a tuberculosis relational sequencing data platform (ReSeqTB) that seeks to increase understanding of the genetic basis of resistance by correlating molecular data with results from drug susceptibility testing and, optimally, associated patient outcomes. These data will inform development of new diagnostics, facilitate clinical decision making, and improve surveillance for drug resistance. ReSeqTB offers an opportunity for collaboration to achieve improved patient outcomes and to advance efforts to prevent and control this devastating disease.


Assuntos
DNA Bacteriano/genética , Bases de Dados de Ácidos Nucleicos , Cooperação Internacional , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA , Antituberculosos , Farmacorresistência Bacteriana/genética , Genótipo , Humanos , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/diagnóstico
9.
J Clin Microbiol ; 52(6): 1932-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24648563

RESUMO

Multidrug-resistant (MDR) isolates of Mycobacterium tuberculosis complex (MTBC) are defined by resistance to at least rifampin (RMP) and isoniazid (INH). Rapid and accurate detection of multidrug resistance is essential for effective treatment and interruption of disease transmission of tuberculosis (TB). Overdiagnosis of MDR TB may result in treatment with second-line drugs that are more costly, less effective, and more poorly tolerated than first-line drugs. CDC offers rapid confirmation of MDR TB by the molecular detection of drug resistance (MDDR) for mutations associated with resistance to RMP and INH along with analysis for resistance to other first-line and second-line drugs. Simultaneously, CDC does growth-based phenotypic drug susceptibility testing (DST) by the indirect agar proportion method for a panel of first-line and second-line antituberculosis drugs. We reviewed discordance between molecular and phenotypic DST for INH and RMP for 285 isolates submitted as MTBC to CDC from September 2009 to February 2011. We compared CDC's results with those from the submitting public health laboratories (PHL). Concordances between molecular and phenotypic testing at CDC were 97.4% for RMP and 92.5% for INH resistance. Concordances between CDC's molecular testing and PHL DST results were 93.9% for RMP and 90.0% for INH. Overall concordance between CDC molecular and PHL DST results was 91.7% for RMP and INH collectively. Discordance was primarily attributable to the absence of known INH resistance mutations in isolates found to be INH resistant by DST and detection of mutations associated with low-level RMP resistance in isolates that were RMP susceptible by phenotypic DST. Both molecular and phenotypic test results should be considered for the diagnosis of MDR TB.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Técnicas de Genotipagem/métodos , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Tuberculose/microbiologia , Estados Unidos
10.
J Clin Microbiol ; 50(10): 3275-82, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22837326

RESUMO

We conducted a multicenter study to determine whether Mycobacterium tuberculosis complex (MTBC) cultures in automated broth-based systems could reliably be considered negative sooner than 6 weeks. Laboratory sites used Bactec MGIT or BacT/Alert and tracked results of time to detection of all mycobacteria (TTD-all, n = 1547) and of MTBC (TTD-MTBC, n = 466) over 6-month periods from primarily (93%) respiratory specimens. Cumulative percentages by day detected and median TTD of initial and follow-up specimens were analyzed. The median TTD-MTBC for MGIT (n = 6 sites) was 14 days. For laboratories using standard processing procedures, 100% of MTBC were detected from initial and follow-up specimens in 28 and 35 days, respectively, and no yield of MTBC on solid or MGIT liquid media was observed after 5 weeks. The median TTD-MTBC for BacT/Alert (n = 3 sites) was 18 days, with 95% and 100% detected within 37 and 42 days, respectively. Analysis of TTD of positive MTBC cultures in broth can predict the probability of culture negativity at defined time points. Receipt of interim negative reports earlier than 6 weeks could assist clinicians in considering alternative diagnoses and could alter the timing and prioritization of public health interventions. Laboratories should analyze their own TTD data to inform protocol decisions. Laboratories using MGIT could issue reports of no growth of MTBC on initial specimens as early as 4 weeks and for patients undergoing treatment as early as 5 weeks postinoculation.


Assuntos
Técnicas Bacteriológicas/métodos , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/diagnóstico , Tuberculose/microbiologia , Automação/métodos , Humanos , Fatores de Tempo
11.
Lancet Infect Dis ; 22(11): 1617-1625, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35934016

RESUMO

BACKGROUND: Mycobacterium tuberculosis transmission through solid organ transplantation has been well described, but transmission through transplanted tissues is rare. We investigated a tuberculosis outbreak in the USA linked to a bone graft product containing live cells derived from a single deceased donor. METHODS: In this outbreak report, we describe the management and severity of the outbreak and identify opportunities to improve tissue transplant safety in the USA. During early June, 2021, the US Centers for Disease Control and Prevention (CDC) worked with state and local health departments and health-care facilities to locate and sequester unused units from the recalled lot and notify, evaluate, and treat all identified product recipients. Investigators from CDC and the US Food and Drug Administration (FDA) reviewed donor screening and tissue processing. Unused product units from the recalled and other donor lots were tested for the presence of M tuberculosis using real-time PCR (rt PCR) assays and culture. M tuberculosis isolates from unused product and recipients were compared using phylogenetic analysis. FINDINGS: The tissue donor (a man aged 80 years) had unrecognised risk factors, symptoms, and signs consistent with tuberculosis. Bone was procured from the deceased donor and processed into 154 units of bone allograft product containing live cells, which were distributed to 37 hospitals and ambulatory surgical centres in 20 US states between March 1 and April 2, 2021. From March 3 to June 1, 2021, 136 (88%) units were implanted into 113 recipients aged 24-87 years in 18 states (some individuals received multiple units). The remaining 18 units (12%) were located and sequestered. 87 (77%) of 113 identified product recipients had microbiological or imaging evidence of tuberculosis disease. Eight product recipients died 8-99 days after product implantation (three deaths were attributed to tuberculosis after recognition of the outbreak). All 105 living recipients started treatment for tuberculosis disease at a median of 69 days (IQR 56-81) after product implantation. M tuberculosis was detected in all eight sequestered unused units tested from the recalled donor lot, but not in lots from other donors. M tuberculosis isolates from unused product and recipients were more than 99·99% genetically identical. INTERPRETATION: Donor-derived transmission of M tuberculosis via bone allograft resulted in substantial morbidity and mortality. All prospective tissue and organ donors should be routinely assessed for tuberculosis risk factors and clinical findings. When these are present, laboratory testing for M tuberculosis should be strongly considered. FUNDING: None.


Assuntos
Mycobacterium tuberculosis , Transplante de Órgãos , Tuberculose , Masculino , Humanos , Estados Unidos/epidemiologia , Filogenia , Tuberculose/epidemiologia , Doadores de Tecidos , Transplante de Órgãos/efeitos adversos , Mycobacterium tuberculosis/genética , Surtos de Doenças
12.
Antimicrob Agents Chemother ; 55(5): 2032-41, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21300839

RESUMO

The emergence of multi- and extensively drug-resistant tuberculosis is a significant impediment to the control of this disease because treatment becomes more complex and costly. Reliable and timely drug susceptibility testing is critical to ensure that patients receive effective treatment and become noninfectious. Molecular methods can provide accurate and rapid drug susceptibility results. We used DNA sequencing to detect resistance to the first-line antituberculosis drugs isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB) and the second-line drugs amikacin (AMK), capreomycin (CAP), kanamycin (KAN), ciprofloxacin (CIP), and ofloxacin (OFX). Nine loci were sequenced: rpoB (for resistance to RIF), katG and inhA (INH), pncA (PZA), embB (EMB), gyrA (CIP and OFX), and rrs, eis, and tlyA (KAN, AMK, and CAP). A total of 314 clinical Mycobacterium tuberculosis complex isolates representing a variety of antibiotic resistance patterns, genotypes, and geographical origins were analyzed. The molecular data were compared to the phenotypic data and the accuracy values were calculated. Sensitivity and specificity values for the first-line drug loci were 97.1% and 93.6% for rpoB, 85.4% and 100% for katG, 16.5% and 100% for inhA, 90.6% and 100% for katG and inhA together, 84.6% and 85.8% for pncA, and 78.6% and 93.1% for embB. The values for the second-line drugs were also calculated. The size and scope of this study, in numbers of loci and isolates examined, and the phenotypic diversity of those isolates support the use of DNA sequencing to detect drug resistance in the M. tuberculosis complex. Further, the results can be used to design diagnostic tests utilizing other mutation detection technologies.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Amicacina/farmacologia , Capreomicina/farmacologia , Ciprofloxacina/farmacologia , Etambutol/farmacologia , Isoniazida/farmacologia , Canamicina/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Ofloxacino/farmacologia , Pirazinamida/farmacologia , Rifampina/farmacologia
13.
BMC Public Health ; 11: 846, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22059421

RESUMO

BACKGROUND: Since 1953, through the cooperation of state and local health departments, the U.S. Centers for Disease Control and Prevention (CDC) has collected information on incident cases of tuberculosis (TB) disease in the United States. In 2009, TB case rates declined -11.4%, compared to an average annual -3.8% decline since 2000. The unexpectedly large decline raised concerns that TB cases may have gone unreported. To address the unexpected decline, we examined trends from multiple sources on TB treatment initiation, medication sales, and laboratory and genotyping data on culture-positive TB. METHODS: We analyzed 142,174 incident TB cases reported to the U. S. National Tuberculosis Surveillance System (NTSS) during January 1, 2000-December 31, 2009; TB control program data from 59 public health reporting areas; self-reported data from 50 CDC-funded public health laboratories; monthly electronic prescription claims for new TB therapy prescriptions; and complete genotyping results available for NTSS cases. Accounting for prior trends using regression and time-series analyses, we calculated the deviation between observed and expected TB cases in 2009 according to patient and clinical characteristics, and assessed at what point in time the deviation occurred. RESULTS: The overall deviation in TB cases in 2009 was -7.9%, with -994 fewer cases reported than expected (P < .001). We ruled out evidence of surveillance underreporting since declines were seen in states that used new software for case reporting in 2009 as well as states that did not, and we found no cases unreported to CDC in our examination of over 5400 individual line-listed reports in 11 areas. TB cases decreased substantially among both foreign-born and U.S.-born persons. The unexpected decline began in late 2008 or early 2009, and may have begun to reverse in late 2009. The decline was greater in terms of case counts among foreign-born than U.S.-born persons; among the foreign-born, the declines were greatest in terms of percentage deviation from expected among persons who had been in the United States less than 2 years. Among U.S.-born persons, the declines in percentage deviation from expected were greatest among homeless persons and substance users. Independent information systems (NTSS, TB prescription claims, and public health laboratories) reported similar patterns of declines. Genotyping data did not suggest sudden decreases in recent transmission. CONCLUSIONS: Our assessments show that the decline in reported TB was not an artifact of changes in surveillance methods; rather, similar declines were found through multiple data sources. While the steady decline of TB cases before 2009 suggests ongoing improvement in TB control, we were not able to identify any substantial change in TB control activities or TB transmission that would account for the abrupt decline in 2009. It is possible that other multiple causes coincident with economic recession in the United States, including decreased immigration and delayed access to medical care, could be related to TB declines. Our findings underscore important needs in addressing health disparities as we move towards TB elimination in the United States.


Assuntos
Recessão Econômica/estatística & dados numéricos , Vigilância da População , Tuberculose/epidemiologia , Emigrantes e Imigrantes/estatística & dados numéricos , Humanos , Incidência , Estados Unidos/epidemiologia
14.
Open Forum Infect Dis ; 8(11): ofab528, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35559127

RESUMO

Background: Nucleic acid amplification (NAA) tests rapidly detect Mycobacterium tuberculosis complex directly from clinical specimens, providing valuable results for those evaluated for tuberculosis. Methods: We analyzed characteristics of cases with NAA testing performed, compared cases with positive and negative NAA test results, and calculated turnaround time and time to treatment for all verified cases reported to the National Tuberculosis Surveillance System in the United States during 2011-2017. Results: Among 67082 verified tuberculosis cases with NAA testing information, 30820 (45.9%) were reported as not having an NAA test performed; the proportion without NAA testing declined annually, from 60.5% in 2011 to 33.6% in 2017. Of 67082 verified cases, 27912 (41.6%) had positive, 8215 (12.2%) had negative, and 135 (0.2%) had indeterminate NAA test results. Among the 33937 cases with an acid-fast bacilli (AFB) smear-positive result, 24093 (70.9%) had an NAA test performed; 11490 of the 30244 (38.0%) with an AFB smear-negative result had an NAA test performed. Although sputum was the most common specimen type tested, 79.8% (7023/8804) of nonsputum specimen types had a positive NAA test result. Overall, 63.7% of cases with laboratory testing had NAA test results reported <6 days following specimen collection; for 13891 cases not yet on treatment, median time to treatment after the laboratory report date was 2 days. Conclusions: Our analyses demonstrate increased NAA test utilization between 2011 and 2017. However, a large proportion of cases did not have an NAA test performed, reflecting challenges in broader uptake, suggesting an opportunity to expand use of this diagnostic methodology.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33381280

RESUMO

BACKGROUND: With the rapid development of new advanced molecular detection methods, identification of new genetic mutations conferring pathogen resistance to an ever-growing variety of antimicrobial substances will generate massive genomic datasets for public health and clinical laboratories. Keeping up with specialized standard coding for these immense datasets will be extremely challenging. This challenge prompted our effort to create a common molecular resistance Logical Observation Identifiers Names and Codes (LOINC) panel that can be used to report any identified antimicrobial resistance pattern. OBJECTIVE: To develop and utilize a common molecular resistance LOINC panel for molecular drug susceptibility testing (DST) data exchange in the U.S. National Tuberculosis Surveillance System using California Department of Public Health (CDPH) and New York State Department of Health as pilot sites. METHODS: We developed an interface and mapped incoming molecular DST data to the common molecular resistance LOINC panel using Health Level Seven (HL7) v2.5.1 Electronic Laboratory Reporting (ELR) message specifications through the Orion Health™ Rhapsody Integration Engine v6.3.1. RESULTS: Both pilot sites were able to process and upload/import the standardized HL7 v2.5.1 ELR messages into their respective systems; albeit CDPH identified areas for system improvements and has focused efforts to streamline the message importation process. Specifically, CDPH is enhancing their system to better capture parent-child elements and ensure that the data collected can be accessed seamlessly by the U.S. Centers for Disease Control and Prevention. DISCUSSION: The common molecular resistance LOINC panel is designed to be generalizable across other resistance genes and ideally also applicable to other disease domains. CONCLUSION: The study demonstrates that it is possible to exchange molecular DST data across the continuum of disparate healthcare information systems in integrated public health environments using the common molecular resistance LOINC panel.

17.
Antimicrob Agents Chemother ; 53(3): 1061-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19104018

RESUMO

Ethambutol resistance in clinical Mycobacterium tuberculosis isolates is associated primarily with missense mutations in the embB gene. However, recent reports have described the presence of embB mutations, especially those at embB codon 306, in isolates susceptible to ethambutol. To clarify the role of embB mutations in ethambutol resistance, we sequenced the ethambutol resistance-determining region in spontaneous ethambutol-resistant mutants. In our study, 66% of spontaneous mutants contained a single point mutation in embB, with 55% of these occurring at embB 306. The MIC of ethambutol for spontaneous mutants was increased two- to eightfold relative to the pansusceptible M. tuberculosis strains from which the mutants were generated. To further characterize the role of embB 306 mutations, we directly introduced mutant alleles, embB(M306V) or embB(M306I), into pansusceptible M. tuberculosis strains and conversely reverted mutant alleles in spontaneous ethambutol-resistant mutants back to those of the wild type via allelic exchange using specialized linkage transduction. We determined that the MIC of ethambutol was reduced fourfold for three of the four spontaneous ethambutol-resistant embB 306 mutants when the mutant allele was replaced with the wild-type embB allele. The MIC for one of the spontaneous mutants genetically reverted to wild-type embB was reduced by only twofold. When the wild-type embB allele was converted to the mutant allele embB(M306V), the ethambutol MIC was increased fourfold, and when the allele was changed to M306I, the ethambutol MIC increased twofold. Our data indicate that embB 306 mutations are sufficient to confer ethambutol resistance, and detection of these mutations should be considered in the development of rapid molecular tests.


Assuntos
Antituberculosos/farmacologia , Códon , Etambutol/farmacologia , Mycobacterium tuberculosis/genética , Pentosiltransferases/genética , Mutação Puntual , Sequência de Aminoácidos , Análise Mutacional de DNA , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação
18.
Trop Med Int Health ; 14(7): 748-53, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19392738

RESUMO

OBJECTIVES: Broth-based culture (BBC) systems are increasingly being used to detect Mycobacterium tuberculosis complex (MTBC) in resource-limited. We evaluated the performance, time to detection and cost of the Capilia TB identification test from broth cultures positive for acid-fast bacilli (AFB) in Thailand. METHODS: From October-December 2007, broth cultures that grew AFB from specimens submitted by district TB clinics to the Bangkok city laboratory were tested for MTBC using Capilia TB and standard biochemical tests. Isolates that were identified as MTBC by biochemical tests but not by Capilia TB underwent repeat testing using Capilia TB, Accuprobe (Gen-Probe, San Diego, CA, USA) and sequencing. Costs of time, labour, infrastructure and consumables for all procedures were measured. RESULTS: Of 247 isolates evaluated, the sensitivity of Capilia TB was 97% and its true specificity 100% compared with biochemical testing. The median time from specimen receipt to confirmed MTBC identification was 20 days (range 7-53 days) for Capilia TB and 45 days (range 35-79 days) for biochemical testing (P < 0.01). Six isolates that were Capilia TB negative but positive by biochemical testing were confirmed as MTBC and mutations in the mpb64 gene were detected in all. The unit cost of using Capilia TB was 2.67 USD that of biochemical testing was 8.78 USD. CONCLUSIONS: In Thailand, Capilia TB had acceptable sensitivity and specificity, was lower in cost and had shorter turn-around times. Laboratories investing in BBC should consider Capilia TB for identification of MTBC, after validation of performance in their setting.


Assuntos
Mycobacterium tuberculosis/isolamento & purificação , Kit de Reagentes para Diagnóstico/economia , Escarro/microbiologia , Tuberculose/diagnóstico , Meios de Cultura/economia , Humanos , Técnicas Microbiológicas/economia , Sensibilidade e Especificidade , Tailândia , Tuberculose/economia , Tuberculose/microbiologia
19.
Public Health Rep ; 133(1): 93-99, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29258383

RESUMO

OBJECTIVES: Public health laboratories (PHLs) provide essential services in the diagnosis and surveillance of diseases of public health concern, such as tuberculosis. Maintaining access to high-quality laboratory testing is critical to continued disease detection and decline of tuberculosis cases in the United States. We investigated the practical experience of sharing tuberculosis testing services between PHLs through the Shared Services Project. METHODS: The Shared Services Project was a 9-month-long project funded through the Association of Public Health Laboratories and the Centers for Disease Control and Prevention during 2012-2013 as a one-time funding opportunity to consortiums of PHLs that proposed collaborative approaches to sharing tuberculosis laboratory services. Submitting PHLs maintained testing while simultaneously sending specimens to reference laboratories to compare turnaround times. RESULTS: During the 9-month project period, 107 Mycobacterium tuberculosis complex submissions for growth-based drug susceptibility testing and molecular detection of drug resistance testing occurred among the 3 consortiums. The median transit time for all submissions was 1.0 day. Overall, median drug susceptibility testing turnaround time (date of receipt in submitting laboratory to result) for parallel testing performed in house by submitting laboratories was 31.0 days; it was 43.0 days for reference laboratories. The median turnaround time for molecular detection of drug resistance results was 1.0 day (mean = 2.8; range, 0-14) from specimen receipt at the reference laboratories. CONCLUSIONS: The shared services model holds promise for specialized tuberculosis testing. Sharing of services requires a balance among quality, timeliness, efficiency, communication, and fiscal costs.


Assuntos
Centers for Disease Control and Prevention, U.S./organização & administração , Laboratórios/organização & administração , Prática de Saúde Pública , Tuberculose/diagnóstico , Técnicas Bacteriológicas , Centers for Disease Control and Prevention, U.S./economia , Comportamento Cooperativo , Humanos , Laboratórios/economia , Vigilância em Saúde Pública/métodos , Estados Unidos
20.
Sci Rep ; 8(1): 15382, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337678

RESUMO

Drug-resistant tuberculosis poses a persistent public health threat. The ReSeqTB platform is a collaborative, curated knowledgebase, designed to standardize and aggregate global Mycobacterium tuberculosis complex (MTBC) variant data from whole genome sequencing (WGS) with phenotypic drug susceptibility testing (DST) and clinical data. We developed a unified analysis variant pipeline (UVP) ( https://github.com/CPTR-ReSeqTB/UVP ) to identify variants and assign lineage from MTBC sequence data. Stringent thresholds and quality control measures were incorporated in this open source tool. The pipeline was validated using a well-characterized dataset of 90 diverse MTBC isolates with conventional DST and DNA Sanger sequencing data. The UVP exhibited 98.9% agreement with the variants identified using Sanger sequencing and was 100% concordant with conventional methods of assigning lineage. We analyzed 4636 publicly available MTBC isolates in the ReSeqTB platform representing all seven major MTBC lineages. The variants detected have an above 94% accuracy of predicting drug based on the accompanying DST results in the platform. The aggregation of variants over time in the platform will establish confidence-graded mutations statistically associated with phenotypic drug resistance. These tools serve as critical reference standards for future molecular diagnostic assay developers, researchers, public health agencies and clinicians working towards the control of drug-resistant tuberculosis.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/genética , Sequenciamento Completo do Genoma/métodos , Antituberculosos/farmacologia , Genoma Bacteriano , Genótipo , Humanos , Bases de Conhecimento , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA