Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arthritis Rheumatol ; 72(5): 791-801, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31705627

RESUMO

OBJECTIVE: Systemic sclerosis (SSc) is a clinically heterogeneous disease characterized by increased collagen accumulation and skin stiffness. Our previous work has demonstrated that transforming growth factor ß (TGFß) induces extracellular matrix (ECM) modifications through lysyl oxidase-like 4 (LOXL-4), a collagen crosslinking enzyme, in bioengineered human skin equivalents (HSEs) and self-assembled stromal tissues (SAS). We undertook this study to investigate cutaneous fibrosis and the role of LOXL-4 in SSc pathogenesis using HSEs and SAS. METHODS: SSc-derived dermal fibroblasts (SScDFs; n = 8) and normal dermal fibroblasts (NDFs; n = 6) were incorporated into HSEs and SAS. These 3-dimensional skin-like microenvironments were used to study the effects of dysregulated LOXL-4 on ECM remodeling, fibroblast activation, and response to TGFß stimulation. RESULTS: SScDF-containing SAS showed increased stromal thickness, collagen deposition, and interleukin-6 secretion compared to NDF-containing SAS (P < 0.05). In HSE, SScDFs altered collagen as seen by a more mature and aligned fibrillar structure (P < 0.05). With SScDFs, enhanced stromal rigidity with increased collagen crosslinking (P < 0.05), up-regulation of LOXL4 expression (P < 0.01), and innate immune signaling genes were observed in both tissue models. Conversely, knockdown of LOXL4 suppressed rigidity, contraction, and α-smooth muscle actin expression in SScDFs in HSE, and TGFß-induced ECM aggregation and collagen crosslinking in SAS. CONCLUSION: A limitation to the development of effective therapeutics in SSc is the lack of in vitro human model systems that replicate human skin. Our findings demonstrate that SAS and HSE can serve as complementary in vitro skin-like models for investigation of the mechanisms and mediators that drive fibrosis in SSc and implicate a pivotal role for LOXL-4 in SSc pathogenesis.


Assuntos
Fibroblastos/fisiologia , Proteína-Lisina 6-Oxidase/fisiologia , Escleroderma Sistêmico/etiologia , Escleroderma Sistêmico/patologia , Pele/patologia , Adulto , Bioengenharia , Feminino , Fibrose/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Tecidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA