Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 212(11): 1680-1692, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38607278

RESUMO

Plasmacytoid dendritic cells (pDCs) are strongly implicated as a major source of IFN-I in systemic lupus erythematosus (SLE), triggered through TLR-mediated recognition of nucleic acids released from dying cells. However, relatively little is known about how TLR signaling and IFN-I production are regulated in pDCs. In this article, we describe a role for integrin αvß3 in regulating TLR responses and IFN-I production by pDCs in mouse models. We show that αv and ß3-knockout pDCs produce more IFN-I and inflammatory cytokines than controls when stimulated through TLR7 and TLR9 in vitro and in vivo. Increased cytokine production was associated with delayed acidification of endosomes containing TLR ligands, reduced LC3 conjugation, and increased TLR signaling. This dysregulated TLR signaling results in activation of B cells and promotes germinal center (GC) B cell and plasma cell expansion. Furthermore, in a mouse model of TLR7-driven lupus-like disease, deletion of αvß3 from pDCs causes accelerated autoantibody production and pathology. We therefore identify a pDC-intrinsic role for αvß3 in regulating TLR signaling and preventing activation of autoreactive B cells. Because αvß3 serves as a receptor for apoptotic cells and cell debris, we hypothesize that this regulatory mechanism provides important contextual cues to pDCs and functions to limit responses to self-derived nucleic acids.


Assuntos
Autoimunidade , Células Dendríticas , Integrina alfaVbeta3 , Lúpus Eritematoso Sistêmico , Camundongos Knockout , Transdução de Sinais , Receptor 7 Toll-Like , Animais , Camundongos , Células Dendríticas/imunologia , Integrina alfaVbeta3/imunologia , Integrina alfaVbeta3/metabolismo , Autoimunidade/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Lúpus Eritematoso Sistêmico/imunologia , Transdução de Sinais/imunologia , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Citocinas/imunologia , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo , Linfócitos B/imunologia , Autoanticorpos/imunologia , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Ativação Linfocitária/imunologia , Modelos Animais de Doenças
2.
J Oral Maxillofac Surg ; 80(7): 1238-1253, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35439437

RESUMO

PURPOSE: Platelet concentrate generation protocols have undergone several modifications in recent years; in light of these new developments, this study review aims to evaluate the effects of platelet-rich fibrin (PRF) and the new centrifugation protocols, advanced platelet-rich fibrin (A-PRF), and leukocyte platelet-rich fibrin (L-PRF), after extraction of impacted mandibular third molar. Specifically, we assessed pain control, edema, trismus, and soft tissue healing, and also measured the degree of periodontal regeneration adjacent to the second molar. METHODS: PubMed, MEDLINE, EMBASE, Web of Science, Virtual health library (BVS), and Cochrane Library were searched up to Julye 2021; randomized controlled studies were included. This report followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and PICO (population, intervention, comparison, outcome) questions. This review has been registered at the International Prospective Register of Ongoing Systematic Reviews (PROSPERO) under the number CRD42019136701. The risk of bias screening and data extraction was performed according to the guidelines recommended by Cochrane. The quantitative analysis was performed using RevMan version 5.4. RESULTS: Of 17 studies included in the systematic review, 11 were eligible for the meta-analysis. The use of L-PRF was not associated with better soft tissue healing at day 7. (standard mean difference = -0.70; 95% confidence interval, -3.50 to 2.10; Z = 0.49; P = .62; heterogeneity = 0.00001; I2 = 97%). With L-PRF, qualitative analysis revealed better pocket depth and insertion level, and also better pain control at 1 and 3 days. With A-PRF, a lower consumption of analgesics was observed than with L-PRF. With both A-PRF and L-PRF, better control of edema (but not trismus) was observed. CONCLUSIONS: The use of L-PRF and A-PRF allows better control of pain and edema compared with the use of standard PRF protocols, but neither has an effect on trismus. The PRF and L-PRF protocols improve soft tissue healing, although not to a statistically significant degree; however, they could improve probing depth at the third month after third molar surgery.


Assuntos
Fibrina Rica em Plaquetas , Dente Impactado , Centrifugação , Protocolos Clínicos , Edema/prevenção & controle , Humanos , Dente Serotino/cirurgia , Dor , Complicações Pós-Operatórias/prevenção & controle , Extração Dentária/efeitos adversos , Dente Impactado/complicações , Dente Impactado/cirurgia , Trismo/prevenção & controle
4.
J Cell Sci ; 125(Pt 18): 4241-52, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22641690

RESUMO

In culture, cell confluence generates signals that commit actively growing keratinocytes to exit the cell cycle and differentiate to form a stratified epithelium. Using a comparative proteomic approach, we studied this 'confluence switch' and identified a new pathway triggered by cell confluence that regulates basement membrane (BM) protein composition by suppressing the uPA-uPAR-plasmin pathway. Indeed, confluence triggers adherens junction maturation and enhances TGF-ß and activin A activity, resulting in increased deposition of PAI-1 and perlecan in the BM. Extracellular matrix (ECM)-accumulated PAI-1 suppresses the uPA-uPAR-plasmin pathway and further enhances perlecan deposition by inhibiting its plasmin-dependent proteolysis. We show that perlecan deposition in the ECM strengthens cell adhesion, inhibits keratinocyte motility and promotes additional accumulation of PAI-1 in the ECM at confluence. In agreement, during wound-healing, perlecan concentrates at the wound-margin, where BM matures to stabilize keratinocyte adhesion. Our results demonstrate that confluence-dependent signaling orchestrates not only growth inhibition and differentiation, but also controls ECM proteolysis and BM formation. These data suggest that uncontrolled integration of confluence-dependent signaling, might favor skin disorders, including tumorigenesis, not only by promoting cell hyperproliferation, but also by altering protease activity and deposition of ECM components.


Assuntos
Matriz Extracelular/metabolismo , Fibrinolisina/metabolismo , Queratinócitos/metabolismo , Proteólise , Transdução de Sinais , Ativinas/metabolismo , Junções Aderentes/metabolismo , Animais , Membrana Basal/metabolismo , Adesão Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células , Regulação para Baixo , Retroalimentação Fisiológica , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Queratinócitos/patologia , Camundongos , Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ligação Proteica , Proteômica , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Cicatrização
5.
Nat Commun ; 15(1): 2990, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582801

RESUMO

The formation of extracellular DNA traps (ETosis) is a first response mechanism by specific immune cells following exposure to microbes. Initially characterized in vertebrate neutrophils, cells capable of ETosis have been discovered recently in diverse non-vertebrate taxa. To assess the conservation of ETosis between evolutionarily distant non-vertebrate phyla, we observed and quantified ETosis using the model ctenophore Mnemiopsis leidyi and the oyster Crassostrea gigas. Here we report that ctenophores - thought to have diverged very early from the metazoan stem lineage - possess immune-like cells capable of phagocytosis and ETosis. We demonstrate that both Mnemiopsis and Crassostrea immune cells undergo ETosis after exposure to diverse microbes and chemical agents that stimulate ion flux. We thus propose that ETosis is an evolutionarily conserved metazoan defense against pathogens.


Assuntos
Ctenóforos , Armadilhas Extracelulares , Animais , Ctenóforos/genética , Neutrófilos
6.
Sci Immunol ; 9(91): eabq6541, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181093

RESUMO

Pore-forming toxins (PFTs) are the largest class of bacterial toxins and contribute to virulence by triggering host cell death. Vertebrates also express endogenous pore-forming proteins that induce cell death as part of host defense. To mitigate damage and promote survival, cells mobilize membrane repair mechanisms to neutralize and counteract pores, but how these pathways are activated is poorly understood. Here, we use a transposon-based gene activation screen to discover pathways that counteract the cytotoxicity of the archetypal PFT Staphylococcus aureus α-toxin. We identify the endolysosomal protein LITAF as a mediator of cellular resistance to PFT-induced cell death that is active against both bacterial toxins and the endogenous pore, gasdermin D, a terminal effector of pyroptosis. Activation of the ubiquitin ligase NEDD4 by potassium efflux mobilizes LITAF to recruit the endosomal sorting complexes required for transport (ESCRT) machinery to repair damaged membrane. Cells lacking LITAF, or carrying naturally occurring disease-associated mutations of LITAF, are highly susceptible to pore-induced death. Notably, LITAF-mediated repair occurs at endosomal membranes, resulting in expulsion of damaged membranes as exosomes, rather than through direct excision of pores from the surface plasma membrane. These results identify LITAF as a key effector that links sensing of cellular damage to repair.


Assuntos
Toxinas Bacterianas , Piroptose , Animais , Morte Celular , Membrana Celular , Endossomos
7.
Elife ; 122024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517935

RESUMO

Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point toward membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of transendothelial cell macroaperture (TEM) tunnels induced by bacterial RhoA-targeting mART exotoxins. We report that cellular depletion of caveolin-1, the membrane-embedded building block of caveolae, and depletion of cavin-1, the master regulator of caveolae invaginations, increase the number of TEMs per cell. The enhanced occurrence of TEM nucleation events correlates with a reduction in cell height due to the increase in cell spreading and decrease in cell volume, which, together with the disruption of RhoA-driven F-actin meshwork, favor membrane apposition for TEM nucleation. Strikingly, caveolin-1 specifically controls the opening speed of TEMs, leading to their dramatic 5.4-fold larger widening. Consistent with the increase in TEM density and width in siCAV1 cells, we record a higher lethality in CAV1 KO mice subjected to a catalytically active mART exotoxin targeting RhoA during staphylococcal bloodstream infection. Combined theoretical modeling with independent biophysical measurements of plasma membrane bending rigidity points toward a specific contribution of caveolin-1 to membrane stiffening in addition to the role of cavin-1/caveolin-1-dependent caveolae in the control of membrane tension homeostasis.


Assuntos
Caveolina 1 , Células Endoteliais , Animais , Camundongos , Cavéolas/metabolismo , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Exotoxinas/metabolismo
8.
Circ Res ; 109(2): 172-82, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21474814

RESUMO

RATIONALE: Integrins play a crucial role in controlling endothelial cell proliferation and migration during angiogenesis. The Delta-like 4 (Dll4)/Notch pathway establishes an adequate ratio between stalk and tip cell populations by restricting tip cell formation through "lateral inhibition" in response to a vascular endothelial growth factor gradient. Because angiogenesis requires a tight coordination of these cellular processes, we hypothesized that adhesion, vascular endothelial growth factor, and Notch signaling pathways are interconnected. OBJECTIVE: This study was aimed at characterizing the cross-talk between integrin and Notch signaling in endothelial cells. METHODS AND RESULTS: Adhesion of primary human endothelial cells to laminin-111 triggers Dll4 expression, leading to subsequent Notch pathway activation. SiRNA-mediated knockdown of α2ß1 and α6ß1 integrins abolishes Dll4 induction, which discloses a selective integrin signaling acting upstream of Notch pathway. The increase in Foxc2 transcription, triggered by α2ß1 binding to laminin, is required but not sufficient per se for Dll4 expression. Furthermore, vascular endothelial growth factor stimulates laminin γ1 deposition, which leads to integrin signaling and Dll4 induction. Interestingly, loss of integrins α2 or α6 mimics the effects of Dll4 silencing and induces excessive network branching in an in vitro sprouting angiogenesis assay on three-dimensional matrigel. CONCLUSIONS: We show that, in endothelial cells, ligation of α2ß1 and α6ß1 integrins induces the Notch pathway, and we disclose a novel role of basement membrane proteins in the processes controlling tip vs stalk cell selection.


Assuntos
Células Endoteliais/metabolismo , Integrina alfa2beta1/metabolismo , Integrina alfa6beta1/metabolismo , Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Membrana Basal , Proteínas de Ligação ao Cálcio , Adesão Celular , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Laminina/metabolismo , Proteínas de Membrana/fisiologia , Neovascularização Fisiológica , Receptor Cross-Talk
9.
Res Sq ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945526

RESUMO

Super-resolution optical imaging tools are crucial in microbiology to understand the complex structures and behavior of microorganisms such as bacteria, fungi, and viruses. However, the capabilities of these tools, particularly when it comes to imaging pathogens and infected tissues, remain limited. We developed µMagnify, a nanoscale multiplexed imaging method for pathogens and infected tissues that are derived from an expansion microscopy technique with a universal biomolecular anchor. We formulated an enzyme cocktail specifically designed for robust cell wall digestion and expansion of microbial cells without distortion while efficiently retaining biomolecules suitable for high-plex fluorescence imaging with nanoscale precision. Additionally, we developed an associated virtual reality tool to facilitate the visualization and navigation of complex three-dimensional images generated by this method in an immersive environment allowing collaborative exploration among researchers around the world. µMagnify is a valuable imaging platform for studying how microbes interact with their host systems and enables development of new diagnosis strategies against infectious diseases.

10.
Adv Sci (Weinh) ; 10(30): e2302249, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37658522

RESUMO

Super-resolution optical imaging tools are crucial in microbiology to understand the complex structures and behavior of microorganisms such as bacteria, fungi, and viruses. However, the capabilities of these tools, particularly when it comes to imaging pathogens and infected tissues, remain limited. MicroMagnify (µMagnify) is developed, a nanoscale multiplexed imaging method for pathogens and infected tissues that are derived from an expansion microscopy technique with a universal biomolecular anchor. The combination of heat denaturation and enzyme cocktails essential is found for robust cell wall digestion and expansion of microbial cells and infected tissues without distortion. µMagnify efficiently retains biomolecules suitable for high-plex fluorescence imaging with nanoscale precision. It demonstrates up to eightfold expansion with µMagnify on a broad range of pathogen-containing specimens, including bacterial and fungal biofilms, infected culture cells, fungus-infected mouse tone, and formalin-fixed paraffin-embedded human cornea infected by various pathogens. Additionally, an associated virtual reality tool is developed to facilitate the visualization and navigation of complex 3D images generated by this method in an immersive environment allowing collaborative exploration among researchers worldwide. µMagnify is a valuable imaging platform for studying how microbes interact with their host systems and enables the development of new diagnosis strategies against infectious diseases.


Assuntos
Bactérias , Microscopia , Humanos , Animais , Camundongos , Microscopia/métodos , Imagem Óptica
11.
Phys Rev Lett ; 108(21): 218105, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003307

RESUMO

Pathogenic bacteria can cross from blood vessels to host tissues by opening transendothelial cell macroapertures (TEMs). To induce TEM opening, bacteria intoxicate endothelial cells with proteins that disrupt the contractile cytoskeletal network. Cell membrane tension is no longer resisted by contractile fibers, leading to the opening of TEMs. Here we model the opening of TEMs as a new form of dewetting. While liquid dewetting is irreversible, we show that cellular dewetting is transient. Our model predicts the minimum radius for hole nucleation, the maximum TEM size, and the dynamics of TEM opening, in good agreement with experimental data. The physical model is then coupled with biological experimental data to reveal that the protein missing in metastasis (MIM) controls the line tension at the rim of the TEM and opposes its opening.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Modelos Biológicos , Proteínas de Bactérias/farmacologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/química , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , Microscopia de Fluorescência/métodos , Proteínas Recombinantes/farmacologia , Molhabilidade
12.
Cells ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36497137

RESUMO

The engagement of B cells with surface-tethered antigens triggers the formation of an immune synapse (IS), where the local secretion of lysosomes can facilitate antigen uptake. Lysosomes intersect with other intracellular processes, such as Toll-like Receptor (TLR) signaling and autophagy coordinating immune responses. However, the crosstalk between these processes and antigen presentation remains unclear. Here, we show that TLR stimulation induces autophagy in B cells and decreases their capacity to extract and present immobilized antigens. We reveal that TLR stimulation restricts lysosome repositioning to the IS by triggering autophagy-dependent degradation of GEF-H1, a Rho GTP exchange factor required for stable lysosome recruitment at the synaptic membrane. GEF-H1 degradation is not observed in B cells that lack αV integrins and are deficient in TLR-induced autophagy. Accordingly, these cells show efficient antigen extraction in the presence of TLR stimulation, confirming the role of TLR-induced autophagy in limiting antigen extraction. Overall, our results suggest that resources associated with autophagy regulate TLR and BCR-dependent functions, which can finetune antigen uptake by B cells. This work helps to understand the mechanisms by which B cells are activated by surface-tethered antigens in contexts of subjacent inflammation before antigen recognition, such as sepsis.


Assuntos
Linfócitos B , Receptores de Antígenos de Linfócitos B , Receptores de Antígenos de Linfócitos B/metabolismo , Antígenos/metabolismo , Receptores Toll-Like/metabolismo , Autofagia , Antígenos de Superfície/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
13.
Cell Microbiol ; 12(7): 891-905, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20088950

RESUMO

We have investigated how Bacillus anthracis lethal toxin (LT) triggers caspase-3 activation and the formation of thick actin cables in human endothelial cells. By DNA array analysis we show that LT has a major impact on the cell transcriptome and we identify key host genes involved in LT cytotoxic effects. Indeed, upregulation of TRAIL and downregulation of XIAP both participate in LT-induced caspase-3 activation. LT induces a downregulation of the immediate early gene and master regulator of transcription egr1. Importantly, its re-expression in LT-intoxicated cells blocks caspase-3 activation. In parallel, we found that the formation of actin cables induced by LT occurs in the absence of direct activation of RhoA/ROCK signalling. We show that knock-down of cortactin and rhophilin-2 under conditions of calponin-1 expression defines the minimal set of genes regulated by LT for actin cable formation. Together our data establish that the modulation of the cell transcriptome by LT plays a key role in triggering human endothelial cell toxicity.


Assuntos
Antígenos de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Caspase 3/genética , Linhagem Celular , Células Endoteliais/citologia , Regulação da Expressão Gênica/genética , Humanos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ligante Indutor de Apoptose Relacionado a TNF/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
14.
Infect Immun ; 78(8): 3404-11, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20479081

RESUMO

Inactivation of the host GTPase RhoA by staphylococcal epidermal cell differentiation inhibitor (EDIN) exotoxins triggers the formation of large transcellular tunnels, named macroapertures, in endothelial cells. We used bioluminescent strains of Staphylococcus aureus to monitor the formation of infection foci during the first 24 h of hematogenous bacterial dissemination. Clinically derived EDIN-expressing S. aureus strains S25 and Xen36 produced many disseminated foci. EDIN had no detectable impact on infection foci in terms of histopathology or the intensity of emitted light. Moreover, EDIN did not modify the course of bacterial clearance from the bloodstream. In contrast, we show that EDIN expression promotes a 5-fold increase in the number of infection foci produced by Xen36. This virulence activity of EDIN requires RhoA ADP-ribosyltranferase activity. These results suggest that EDIN is a risk factor for S. aureus dissemination through the vasculature by virtue of its ability to promote the formation of infection foci in deep-seated tissues.


Assuntos
Bacteriemia/microbiologia , Bacteriemia/patologia , Proteínas de Bactérias/toxicidade , Staphylococcus aureus/patogenicidade , Fatores de Virulência/toxicidade , Animais , Feminino , Genes Reporter , Histocitoquímica , Humanos , Medições Luminescentes , Camundongos , Camundongos Endogâmicos BALB C , Microscopia , Staphylococcus aureus/isolamento & purificação , Imagem Corporal Total , Proteína rhoA de Ligação ao GTP/metabolismo
15.
Science ; 370(6513): 241-247, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32855215

RESUMO

Recent outbreaks of Ebola virus (EBOV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have exposed our limited therapeutic options for such diseases and our poor understanding of the cellular mechanisms that block viral infections. Using a transposon-mediated gene-activation screen in human cells, we identify that the major histocompatibility complex (MHC) class II transactivator (CIITA) has antiviral activity against EBOV. CIITA induces resistance by activating expression of the p41 isoform of invariant chain CD74, which inhibits viral entry by blocking cathepsin-mediated processing of the Ebola glycoprotein. We further show that CD74 p41 can block the endosomal entry pathway of coronaviruses, including SARS-CoV-2. These data therefore implicate CIITA and CD74 in host defense against a range of viruses, and they identify an additional function of these proteins beyond their canonical roles in antigen presentation.


Assuntos
Antígenos de Diferenciação de Linfócitos B/fisiologia , Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/imunologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas Nucleares/fisiologia , Pneumonia Viral/imunologia , Transativadores/fisiologia , Internalização do Vírus , Antígenos de Diferenciação de Linfócitos B/genética , COVID-19 , Linhagem Celular Tumoral , Infecções por Coronavirus/virologia , Elementos de DNA Transponíveis , Endossomos/virologia , Testes Genéticos , Doença pelo Vírus Ebola/virologia , Antígenos de Histocompatibilidade Classe II/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas Nucleares/genética , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Transativadores/genética , Transcrição Gênica
16.
Infect Immun ; 77(9): 3596-601, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19546197

RESUMO

Systemic injection of Bacillus anthracis lethal toxin (LT) produces vascular leakage and animal death. Recent studies suggest that LT triggers direct endothelial cell cytotoxicity that is responsible for the vascular leakage. LT is composed of heptamers of protective antigen (PA), which drives the endocytosis and translocation into host cells of the lethal factor (LF), a mitogen-activated protein kinase kinase protease. Here we investigated the consequences of injection of an endothelium-permeabilizing factor using LT as a "molecular syringe." To this end, we generated the chimeric factor LE, corresponding to the PA-binding domain of LF (LF(1-254)) fused to EDIN exoenzyme. EDIN ADP ribosylates RhoA, leading to actin cable disruption and formation of transcellular tunnels in endothelial cells. We report that systemic injection of LET (LE plus PA) triggers a PA-dependent increase in the pulmonary endothelium permeability. We also report that native LT induces a progressive loss of endothelium barrier function. We established that there is a direct correlation between the extent of endothelium permeability induced by LT and the cytotoxic activity of LT. This suggests new ways to design therapeutic drugs against anthrax directed toward vascular permeability.


Assuntos
Antígenos de Bactérias/administração & dosagem , Proteínas de Bactérias/administração & dosagem , Toxinas Bacterianas/administração & dosagem , Permeabilidade Capilar , Animais , Antígenos de Bactérias/toxicidade , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/toxicidade , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
17.
J Mol Biol ; 430(21): 4028-4035, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29949752

RESUMO

ConfocalVR is a virtual reality (VR) application created to improve the ability of researchers to study the complexity of cell architecture. Confocal microscopes take pictures of fluorescently labeled proteins or molecules at different focal planes to create a stack of two-dimensional images throughout the specimen. Current software applications reconstruct the three-dimensional (3D) image and render it as a two-dimensional projection onto a computer screen where users need to rotate the image to expose the full 3D structure. This process is mentally taxing, breaks down if you stop the rotation, and does not take advantage of the eye's full field of view. ConfocalVR exploits consumer-grade VR systems to fully immerse the user in the 3D cellular image. In this virtual environment, the user can (1) adjust image viewing parameters without leaving the virtual space, (2) reach out and grab the image to quickly rotate and scale the image to focus on key features, and (3) interact with other users in a shared virtual space enabling real-time collaborative exploration and discussion. We found that immersive VR technology allows the user to rapidly understand cellular architecture and protein or molecule distribution. We note that it is impossible to understand the value of immersive visualization without experiencing it first hand, so we encourage readers to get access to a VR system, download this software, and evaluate it for yourself. The ConfocalVR software is available for download at http://www.confocalvr.com, and is free for nonprofits.


Assuntos
Microscopia Confocal , Software , Realidade Virtual , Bases de Dados Factuais , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Microscopia Confocal/métodos
18.
Mol Biol Cell ; 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794268

RESUMO

The endothelium serves as a protective semipermeable barrier in blood vessels and lymphatic vessels. Leukocytes and pathogens can pass directly through the endothelium by opening holes in endothelial cells, known as transcellular tunnels, which are formed by contact and self-fusion of the apical and basal plasma membranes. Here we test the hypothesis that the actin cytoskeleton is the primary barrier to transcellular tunnel formation using a combination of atomic force microscopy and fluorescence microscopy of live cells. We find that localized mechanical forces are sufficient to induce the formation of transcellular tunnels in HUVECs. When HUVECs are exposed to the bacterial toxin EDIN, which can induce spontaneous transcellular tunnels, less mechanical work is required to form tunnels due to the reduced cytoskeletal stiffness and thickness of these cells, similar to the effects of a ROCK inhibitor. We also observe actin enrichment in response to mechanical indentation that is reduced in cells exposed to the bacterial toxin. Our study shows that the actin cytoskeleton of endothelial cells provides both passive and active resistance against transcellular tunnel formation, serving as a mechanical barrier that can be overcome by mechanical force as well as disruption of the cytoskeleton.

19.
Nat Commun ; 8: 15839, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28643776

RESUMO

Transendothelial cell macroaperture (TEM) tunnels control endothelium barrier function and are triggered by several toxins from pathogenic bacteria that provoke vascular leakage. Cellular dewetting theory predicted that a line tension of uncharacterized origin works at TEM boundaries to limit their widening. Here, by conducting high-resolution microscopy approaches we unveil the presence of an actomyosin cable encircling TEMs. We develop a theoretical cellular dewetting framework to interpret TEM physical parameters that are quantitatively determined by laser ablation experiments. This establishes the critical role of ezrin and non-muscle myosin II (NMII) in the progressive implementation of line tension. Mechanistically, fluorescence-recovery-after-photobleaching experiments point for the upstream role of ezrin in stabilizing actin filaments at the edges of TEMs, thereby favouring their crosslinking by NMIIa. Collectively, our findings ascribe to ezrin and NMIIa a critical function of enhancing line tension at the cell boundary surrounding the TEMs by promoting the formation of an actomyosin ring.


Assuntos
Actomiosina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Actomiosina/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Células Endoteliais da Veia Umbilical Humana/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/genética , Tensão Superficial
20.
Ann Chim ; 96(9-10): 613-22, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17172213

RESUMO

Paper lamination is a widely used method to consolidate fragile documents. Previous studies have presented a new method of lamination that allows the consolidation of documents before undertaking aqueous treatments. In this method a thin Japanese paper coated with an acrylic resin is applied on the fragile document by means of a heated press. In this work we optimised the preparation of the lamination sheets as well as the working procedures, and we were able to establish that our laboratory-made specimens are chemically stable, easily reversible and permeable to aqueous solutions. The latest property is of particular importance, since it allows a subsequent aqueous deacidification even for fragile documents. The laminated paper documents were further analysed by means of colorimetry and FTIR spectroscopy before and after accelerated ageing as well as by determination of the alkali reserve left on the coated paper, in order to compare our lamination method with other commercially available lamination sheets.


Assuntos
Resinas Acrílicas , Papel , Colorimetria , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA