Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nanomedicine ; 18: 414-425, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30471480

RESUMO

The recent outbreaks of Ebolavirus (EBOV) in West Africa underscore the urgent need to develop an effective EBOV vaccine. Here, we report the development of synthetic nanoparticles as a safe and highly immunogenic platform for vaccination against EBOV. We show that a large recombinant EBOV antigen (rGP) can be incorporated in a configurational manner into lipid-based nanoparticles, termed interbilayer-crosslinked multilamellar vesicles (ICMVs). The epitopes and quaternary structure of rGP were properly maintained on the surfaces of ICMVs formed either with or without nickel nitrilotriacetic acid (NTA)-functionalized lipids. When administered in mice, rGP-ICMVs without NTA-lipids efficiently generated germinal center B cells and polyfunctional T cells while eliciting robust neutralizing antibody responses. This study suggests the potential of vaccine nanoparticles as a delivery platform for configurational, multivalent display of large subunit antigens and induction of neutralizing antibody and T cell responses.


Assuntos
Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Nanopartículas/química , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia , Vacinas Virais/imunologia , Imunidade Adaptativa , Animais , Anticorpos Neutralizantes/imunologia , Antígenos Virais/química , Linfócitos B/imunologia , Feminino , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Soros Imunes , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Baço/imunologia , Vacinação
2.
J Transl Med ; 13: 228, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26174690

RESUMO

BACKGROUND: Filovirus virus-like particles (VLP) are strong immunogens with the potential for development into a safe, non-infectious vaccine. However, the large size and filamentous structure of this virus has heretofore made production of such a vaccine difficult. Herein, we present new assays and a purification procedure to yield a better characterized and more stable product. METHODS: Sonication of VLP was used to produce smaller "nano-VLP", which were purified by membrane chromatography. The sizes and lengths of VLP particles were analyzed using electron microscopy and an assay based on transient occlusion of a nanopore. Using conformationally-sensitive antibodies, we developed an in vitro assay for measuring GP conformational integrity in the context of VLP, and used it to profile thermal stability. RESULTS: We developed a new procedure for rapid isolation of Ebola VLP using membrane chromatography that yields a filterable and immunogenic product. Disruption of VLP filaments by sonication followed by filtration produced smaller particles of more uniform size, having a mean diameter close to 230 nm. These reduced-size VLP retained GP conformation and were protective against mouse-adapted Ebola challenge in mice. The "nano-VLP" consists of GP-coated particles in a mixture of morphologies including circular, branched, "6"-shaped, and filamentous ones up to ~1,500 nm in length. Lyophilization conferred a high level of thermostability on the nano-VLP. Unlike Ebola VLP in solution, which underwent denaturation of GP upon moderate heating, the lyophilized nano-VLP can withstand at least 1 h at 75°C, while retaining conformational integrity of GP and the ability to confer protective immunity in a mouse model. CONCLUSIONS: We showed that Ebola virus-like particles can be reduced in size to a more amenable range for manipulation, and that these smaller particles retained their temperature stability, the structure of the GP antigen, and the ability to stimulate a protective immune response in mice. We developed a new purification scheme for "nano-VLP" that is more easily scaled up and filterable. The product could also be made thermostable by lyophilization, which is highly significant for vaccines used in tropical countries without a reliable "cold-chain" of refrigeration.


Assuntos
Cromatografia/métodos , Ebolavirus/imunologia , Nanopartículas/química , Temperatura , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Feminino , Filtração , Glicoproteínas/imunologia , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Nanoporos , Tamanho da Partícula , Sonicação , Resultado do Tratamento , Vacinação , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura , Vírion/ultraestrutura
3.
Viruses ; 15(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140576

RESUMO

Marburg virus (MARV) causes severe disease and high mortality in humans. The objective of this study was to characterize disease manifestations and pathogenesis in cynomolgus macaques exposed to MARV. The results of this natural history study may be used to identify features of MARV disease useful in defining the ideal treatment initiation time for subsequent evaluations of investigational therapeutics using this model. Twelve cynomolgus macaques were exposed to a target dose of 1000 plaque-forming units MARV by the intramuscular route, and six control animals were mock-exposed. The primary endpoint of this study was survival to Day 28 post-inoculation (PI). Anesthesia events were minimized with the use of central venous catheters for periodic blood collection, and temperature and activity were continuously monitored by telemetry. All mock-exposed animals remained healthy for the duration of the study. All 12 MARV-exposed animals (100%) became infected, developed illness, and succumbed on Days 8-10 PI. On Day 4 PI, 11 of the 12 MARV-exposed animals had statistically significant temperature elevations over baseline. Clinically observable signs of MARV disease first appeared on Day 5 PI, when 6 of the 12 animals exhibited reduced responsiveness. Ultimately, systemic inflammation, coagulopathy, and direct cytopathic effects of MARV all contributed to multiorgan dysfunction, organ failure, and death or euthanasia of all MARV-exposed animals. Manifestations of MARV disease, including fever, systemic viremia, lymphocytolysis, coagulopathy, and hepatocellular damage, could be used as triggers for initiation of treatment in future therapeutic efficacy studies.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Humanos , Animais , Macaca fascicularis , Viremia , Fígado
4.
ACS Nano ; 13(10): 11087-11096, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31497947

RESUMO

Recent outbreaks of emerging infectious diseases, such as Ebola virus disease (EVD), highlight the urgent need to develop effective countermeasures, including prophylactic vaccines. Subunit proteins derived from pathogens provide a safe source of antigens for vaccination, but they are often limited by their low immunogenicity. We have developed a multilamellar vaccine particle (MVP) system composed of lipid-hyaluronic acid multi-cross-linked hybrid nanoparticles for vaccination with protein antigens and demonstrate their efficacy against Ebola virus (EBOV) exposure. MVPs efficiently accumulated in dendritic cells and promote antigen processing. Mice immunized with MVPs elicited robust and long-lasting antigen-specific CD8+ and CD4+ T cell immune responses as well as humoral immunity. A single-dose vaccination with MVPs delivering EBOV glycoprotein achieved an 80% protection rate against lethal EBOV infection. These results suggest that MVPs offer a promising platform for improving recombinant protein-based vaccine approaches.


Assuntos
Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/prevenção & controle , Nanopartículas/química , Vacinas Virais/farmacologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Apresentação de Antígeno/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Lipídeos/química , Lipídeos/farmacologia , Camundongos , Nanopartículas/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vacinas Virais/química , Vacinas Virais/imunologia
5.
Vaccine ; 37(29): 3902-3910, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31174937

RESUMO

The identification of adjuvants that promote lasting antigen-specific immunity and augment vaccine efficacy are integral to the development of new protein-based vaccines. The Ebola virus-like particle (VLP) vaccine expressing Ebola virus glycoprotein (GP) and matrix protein (VP40) was used in this study to evaluate the ability of TLR4 agonist glucopyranosyl lipid adjuvant (GLA) formulated in a stable emulsion (SE) to enhance immunogenicity and promote durable protection against mouse-adapted Ebola virus (ma-EBOV). Antibody responses and Ebola-specific T cell responses were evaluated post vaccination. Survival analysis after lethal ma-EBOV challenge was performed 4 weeks and 22 weeks following final vaccination. GLA-SE enhanced EBOV-specific immunity and resulted in long-term protection against challenge with ma-EBOV infection in a mouse model. Specifically, GLA-SE elicited Th1-skewed antibodies and promoted the generation of EBOV GP-specific polyfunctional T cells. These results provide further support for the utility of TLR4 activating GLA-SE-adjuvanted vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas contra Ebola/imunologia , Glicosídeos/imunologia , Lipídeos/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Adjuvantes Imunológicos/química , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Ebola/administração & dosagem , Ebolavirus , Feminino , Glicosídeos/administração & dosagem , Glicosídeos/química , Doença pelo Vírus Ebola/prevenção & controle , Lipídeos/administração & dosagem , Camundongos , Vacinas de Partículas Semelhantes a Vírus/imunologia
6.
PLoS One ; 13(10): e0199339, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30339670

RESUMO

Laboratory animals are commonly anesthetized to prevent pain and distress and to provide safe handling. Anesthesia procedures are well-developed for common laboratory mammals, but not as well established in reptiles. We assessed the performance of intramuscularly injected tiletamine (dissociative anesthetic) and zolazepam (benzodiazepine sedative) in fixed combination (2 mg/kg and 3 mg/kg) in comparison to 2 mg/kg of midazolam (benzodiazepine sedative) in ball pythons (Python regius). We measured heart and respiratory rates and quantified induction parameters (i.e., time to loss of righting reflex, time to loss of withdrawal reflex) and recovery parameters (i.e., time to regain righting reflex, withdrawal reflex, normal behavior). Mild decreases in heart and respiratory rates (median decrease of <10 beats per minute and <5 breaths per minute) were observed for most time points among all three anesthetic dose groups. No statistically significant difference between the median time to loss of righting reflex was observed among animals of any group (p = 0.783). However, the withdrawal reflex was lost in all snakes receiving 3mg/kg of tiletamine+zolazepam but not in all animals of the other two groups (p = 0.0004). In addition, the time for animals to regain the righting reflex and resume normal behavior was longer in the drug combination dose groups compared to the midazolam group (p = 0.0055). Our results indicate that midazolam is an adequate sedative for ball pythons but does not suffice to achieve reliable immobilization or anesthesia, whereas tiletamine+zolazepam achieves short-term anesthesia in a dose-dependent manner.


Assuntos
Boidae , Imobilização/veterinária , Midazolam/farmacologia , Tiletamina/farmacologia , Zolazepam/farmacologia , Anestésicos Dissociativos/administração & dosagem , Anestésicos Dissociativos/farmacologia , Animais , Esquema de Medicação , Combinação de Medicamentos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Imobilização/métodos , Injeções Intramusculares , Masculino , Midazolam/administração & dosagem , Respiração/efeitos dos fármacos , Tiletamina/administração & dosagem , Zolazepam/administração & dosagem
7.
EBioMedicine ; 3: 67-78, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26870818

RESUMO

Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.


Assuntos
Adjuvantes Imunológicos , Linfócitos T CD4-Positivos/imunologia , Imunidade , Vacinas/imunologia , Transferência Adotiva , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Ebolavirus/imunologia , Feminino , Doença pelo Vírus Ebola/mortalidade , Doença pelo Vírus Ebola/prevenção & controle , Imunização , Imunoglobulina G/imunologia , Contagem de Linfócitos , Modelos Animais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinas/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia
8.
Viral Immunol ; 28(1): 62-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25514232

RESUMO

Filoviruses are causative agents of hemorrhagic fever, and to date no effective vaccine or therapeutic has been approved to combat infection. Filovirus glycoprotein (GP) is the critical immunogenic component of filovirus vaccines, eliciting high levels of antibody after successful vaccination. Previous work has shown that protection against both Ebola virus (EBOV) and Marburg virus (MARV) can be achieved by vaccinating with a mixture of virus-like particles (VLPs) expressing either EBOV GP or MARV GP. In this study, the potential for eliciting effective immune responses against EBOV, Sudan virus, and MARV with a single GP construct was tested. Trimeric hybrid GPs were produced that expressed the sequence of Marburg GP2 in conjunction with a hybrid GP1 composed EBOV and Sudan virus GP sequences. VLPs expressing these constructs, along with EBOV VP40, provided comparable protection against MARV challenge, resulting in 75 or 100% protection. Protection from EBOV challenge differed depending upon the hybrid used, however, with one conferring 75% protection and one conferring no protection. By comparing the overall antibody titers and the neutralizing antibody titers specific for each virus, it is shown that higher antibody responses were elicited by the C terminal region of GP1 than by the N terminal region, and this correlated with protection. These data collectively suggest that GP2 and the C terminal region of GP1 are highly immunogenic, and they advance progress toward the development of a pan-filovirus vaccine.


Assuntos
Proteção Cruzada , Ebolavirus/imunologia , Marburgvirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Ebolavirus/genética , Feminino , Cobaias , Doença pelo Vírus Ebola/prevenção & controle , Doença do Vírus de Marburg/prevenção & controle , Marburgvirus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Análise de Sobrevida , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Virossomos/genética , Virossomos/imunologia
9.
PLoS One ; 9(2): e89735, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586996

RESUMO

Identifying safe and effective adjuvants is critical for the advanced development of protein-based vaccines. Pattern recognition receptor (PRR) agonists are increasingly being explored as potential adjuvants, but there is concern that the efficacy of these molecules may be dependent on potentially dangerous levels of non-specific immune activation. The filovirus virus-like particle (VLP) vaccine protects mice, guinea pigs, and nonhuman primates from viral challenge. In this study, we explored the impact of a stabilized dsRNA mimic, polyICLC, on VLP vaccination of C57BL/6 mice and Hartley guinea pigs. We show that at dose levels as low as 100 ng, the adjuvant increased the efficacy of the vaccine in mice. Antigen-specific, polyfunctional CD4 and CD8 T cell responses and antibody responses increased significantly upon inclusion of adjuvant. To determine whether the efficacy of polyICLC correlated with systemic immune activation, we examined serum cytokine levels and cellular activation in the draining lymph node. PolyICLC administration was associated with increases in TNFα, IL6, MCP1, MIP1α, KC, and MIP1ß levels in the periphery and with the activation of dendritic cells (DCs), NK cells, and B cells. However, this activation resolved within 24 to 72 hours at efficacious adjuvant dose levels. These studies are the first to examine the polyICLC-induced enhancement of antigen-specific immune responses in the context of non-specific immune activation, and they provide a framework from which to consider adjuvant dose levels.


Assuntos
Adjuvantes Imunológicos/farmacologia , Carboximetilcelulose Sódica/análogos & derivados , Poli I-C/farmacologia , Polilisina/análogos & derivados , Receptores Toll-Like/agonistas , Vacinas de Partículas Semelhantes a Vírus/farmacologia , Animais , Carboximetilcelulose Sódica/farmacologia , Citocinas/sangue , Ebolavirus/efeitos dos fármacos , Ebolavirus/imunologia , Cobaias , Doença pelo Vírus Ebola/prevenção & controle , Camundongos Endogâmicos C57BL , Polilisina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA