RESUMO
Despite extensive research into executive function (EF), the precise relationship between brain dynamics and flexible cognition remains unknown. Using a large, publicly available dataset (189 participants), we find that functional connections measured throughout 56min of resting state fMRI data comprise five distinct connectivity states. Elevated EF performance as measured outside of the scanner was associated with greater episodes of more frequently occurring connectivity states, and fewer episodes of less frequently occurring connectivity states. Frequently occurring states displayed metastable properties, where cognitive flexibility may be facilitated by attenuated correlations and greater functional connection variability. Less frequently occurring states displayed properties consistent with low arousal and low vigilance. These findings suggest that elevated EF performance may be associated with the propensity to occupy more frequently occurring brain configurations that enable cognitive flexibility, while avoiding less frequently occurring brain configurations related to low arousal/vigilance states. The current findings offer a novel framework for identifying neural processes related to individual differences in executive function.
Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Função Executiva/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto JovemRESUMO
Our brain continuously evaluates different perceptual interpretations of the available sensory data in order to enable flexible updates of conscious experience. Individuals' perceptual flexibility can be assessed using ambiguous stimuli that cause our perception to continuously switch between two mutually exclusive interpretations. Neural processes underlying perceptual switching are thought to involve the visual cortex, but also non-sensory brain circuits that have been implicated in cognitive processes, such as frontal and parietal regions. Perceptual flexibility varies strongly between individuals and has been related to dopaminergic neurotransmission. Likewise, there is also considerable individual variability in tasks that require flexibility in cognition, and dopamine-dependent striato-frontal signals have been associated with processes promoting cognitive flexibility. Given the anatomical and neurochemical similarities with regard to perceptual and cognitive flexibility, we here probed whether individual differences in perceptual flexibility during bistable perception are related to individual cognitive flexibility associated neural correlates. 126 healthy individuals performed rule-based task switching during functional magnetic resonance imaging (fMRI) and reported perceptual switching during the viewing of a modified version of the Necker cube. Mean phase duration as measure of perceptual flexibility correlated with task-switching associated activity in the right putamen as part of the basal ganglia. In addition, we found a tentative correlation between perceptual and cognitive flexibility. These results indicate that individual differences in cognitive flexibility and associated fronto-striatal processing contribute to differences in perceptual flexibility. Our findings thus provide empirical support for the general notion of shared mechanisms between perception and cognition.
Assuntos
Adaptação Fisiológica/fisiologia , Mapeamento Encefálico/métodos , Cognição/fisiologia , Corpo Estriado/fisiologia , Rede Nervosa/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Análise e Desempenho de TarefasRESUMO
Attentional control in demanding cognitive tasks can be improved by manipulating the motivational state. Motivation to obtain gains and motivation to avoid losses both usually result in faster reaction times and stronger activation in relevant brain areas such as the prefrontal cortex, but little is known about differences in the underlying neurocognitive mechanisms of these types of motivation in an attentional control context. In the present functional magnetic resonance imaging (fMRI) study, we tested whether potential gain and loss as motivating incentives lead to overlapping or distinct neural effects in the attentional network, and whether one of these conditions is more effective than the other. A Flanker task with word stimuli as targets and distracters was performed by 115 healthy participants. Using a mixed blocked and event-related design allowed us to investigate transient and sustained motivation-related effects. Participants could either gain money (potential gain) or avoid losing money (potential loss) in different task blocks. Participants showed a congruency effect with increased reaction times for incongruent compared to congruent trials. Potential gain led to generally faster responses compared to the neutral condition and to stronger improvements than potential loss. Potential loss also led to shorter response times compared to the neutral condition, but participants improved mainly during incongruent and not during congruent trials. The event-related fMRI data revealed a main effect of congruency with increased activity in the left inferior frontal gyrus (IFG) and inferior frontal junction area (IFJ), the pre-supplementary motor area (pre-SMA), bilateral insula, intraparietal sulcus (IPS) and visual word form area (VWFA). While potential gain led to increased activity in a cluster of the IFJ and the VWFA only during incongruent trials, potential loss was linked to activity increases in these regions during incongruent and congruent trials. The block analysis revealed greater activity in gain and loss blocks compared to the neutral condition in most of these regions but no differences in the direct comparison of gain and loss blocks. These findings show that potential monetary gain and loss rely on different mechanisms: Gain was more effective in reducing the reaction time compared to potential loss. Brain data indicate that in the gain context attentional control is executed specifically in incongruent trials, whereas the loss context induces an unspecific increase of attentional control. These findings extend previous studies by providing evidence for diverging neural mechanisms for the effects of different types of motivation on attentional control, specifying the underlying activity patterns in task- and stimulus-related regions.
Assuntos
Atenção/fisiologia , Função Executiva/fisiologia , Lobo Frontal/fisiologia , Imageamento por Ressonância Magnética/métodos , Motivação/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto JovemRESUMO
Atypical scan paths on emotional faces and reduced eye contact represent a prominent feature of autism symptomatology, yet the reason for these abnormalities remains a puzzle. Do individuals with autism spectrum disorders (ASDs) fail to orient toward the eyes or do they actively avoid direct eye contact? Here, we used a new task to investigate reflexive eye movements on fearful, happy, and neutral faces. Participants (ASDs: 12; controls: 11) initially fixated either on the eyes or on the mouth. By analyzing the frequency of participants' eye movements away from the eyes and toward the eyes, respectively, we explored both avoidance and orientation reactions. The ASD group showed a reduced preference for the eyes relative to the control group, primarily characterized by more frequent eye movements away from the eyes. Eye-tracking data revealed a pronounced influence of active avoidance of direct eye contact on atypical gaze in ASDs. The combination of avoidance and reduced orientation into an individual index predicted emotional recognition performance. Crucially, this result provides evidence for a direct link between individual gaze patterns and associated social symptomatology. These findings thereby give important insights into the social pathology of ASD, with implications for future research and interventions.
Assuntos
Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Movimentos Oculares/fisiologia , Fácies , Fixação Ocular/fisiologia , Transtornos da Motilidade Ocular/fisiopatologia , Adulto , Criança , Transtornos Globais do Desenvolvimento Infantil/diagnóstico , Transtornos Globais do Desenvolvimento Infantil/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Transtornos da Motilidade Ocular/diagnóstico , Transtornos da Motilidade Ocular/psicologia , Transtornos do Comportamento Social/diagnóstico , Transtornos do Comportamento Social/fisiopatologia , Transtornos do Comportamento Social/psicologia , Adulto JovemRESUMO
Self-control and the ability to resist temptation are critical for successful completion of long-term goals. Contemporary models in cognitive neuroscience emphasize the primary role of prefrontal cognitive control networks in aligning behavior with such goals. Here, we use gaze pattern analysis and dynamic functional connectivity fMRI data to explore how individual differences in the ability to resist temptation are related to intrinsic brain dynamics of the cognitive control and salience networks. Behaviorally, individuals exhibit greater gaze distance from target location (e.g. higher distractibility) during presentation of tempting erotic images compared with neutral images. Individuals whose intrinsic dynamic functional connectivity patterns gravitate toward configurations in which salience detection systems are less strongly coupled with visual systems resist tempting distractors more effectively. The ability to resist tempting distractors was not significantly related to intrinsic dynamics of the cognitive control network. These results suggest that susceptibility to temptation is governed in part by individual differences in salience network dynamics and provide novel evidence for involvement of brain systems outside canonical cognitive control networks in contributing to individual differences in self-control.
Assuntos
Comportamento Impulsivo , Rede Nervosa/fisiologia , Adulto , Atenção/fisiologia , Mapeamento Encefálico , Cognição/fisiologia , Sinais (Psicologia) , Ego , Feminino , Humanos , Individualidade , Imageamento por Ressonância Magnética , Masculino , Motivação , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor , Tempo de Reação/fisiologia , Substância Negra/fisiologia , Adulto JovemRESUMO
Self-control can be defined as the ability to exert control over ones impulses. Currently, most research in the area relies on self-report. Focusing on attentional control processes involved in self-control, we modified a spatial selective attentional cueing task to test three domains of self-control experimentally in one task using aversive, tempting, and neutral picture-distractors. The aims of the study were (1) to investigate individual differences in the susceptibility to aversive, tempting, and neutral distraction within one paradigm and (2) to test the association of these three self-control domains to conventional measures of self-control including self-report. The final sample consisted of 116 participants. The task required participants to identify target letters "E" or "F" presented at a cued target location while the distractors were presented. Behavioral and eyetracking data were obtained during the performance of the task. High task performance was encouraged via monetary incentives. In addition to the attentional self-control task, self-reported self-control was assessed and participants performed a color Stroop task, an unsolvable anagram task and a delay of gratification task using chocolate sweets. We found that aversion, temptation, and neutral distraction were associated with significantly increased error rates, reaction times and gaze pattern deviations. Overall task performance on our task correlated with self-reported self-control ability. Measures of aversion, temptation, and distraction showed moderate split-half reliability, but did not correlate with each other across participants. Additionally, participants who made a self-controlled decision in the delay of gratification task were less distracted by temptations in our task than participants who made an impulsive choice. Our individual differences analyses suggest that (1) the ability to endure aversion, resist temptations and ignore neutral distractions are independent of each other and (2) these three domains are related to other measures of self-control.
RESUMO
Both self-control and emotion regulation enable individuals to adapt to external circumstances and social contexts, and both are assumed to rely on the overlapping neural resources. Here, we tested whether high self-reported self-control is related to successful emotion regulation on the behavioral and neural level. One hundred eight participants completed three self-control questionnaires and regulated their negative emotions during functional magnetic resonance imaging using reappraisal (distancing). Trait self-control correlated positively with successful emotion regulation both subjectively and neurally, as indicated by online ratings of negative emotions and functional connectivity strength between the amygdala and prefrontal areas, respectively. This stronger overall connectivity of the left amygdala was related to more successful subjective emotion regulation. Comparing amygdala activity over time showed that high self-controllers successfully maintained down-regulation of the left amygdala over time, while low self-controllers failed to down-regulate towards the end of the experiment. This indicates that high self-controllers are better at maintaining a motivated state supporting emotion regulation over time. Our results support assumptions concerning a close relation of self-control and emotion regulation as two domains of behavioral control. They further indicate that individual differences in functional connectivity between task-related brain areas directly relate to differences in trait self-control.
Assuntos
Tonsila do Cerebelo/fisiologia , Mapeamento Encefálico/métodos , Emoções/fisiologia , Individualidade , Autocontrole/psicologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Autorrelato , Adulto JovemRESUMO
Hypnosis can affect perception, motor function and memory. However, so far no study using neuroimaging has investigated whether hypnosis can influence reward processing and decision-making. Here, we assessed whether posthypnotic suggestions can diminish the attractiveness of unhealthy food and whether this is more effective than diminishing attractiveness by one's own effort via autosuggestion. In total, 16 participants were hypnotized and 16 others were instructed to associate a color cue (blue or green) with disgust regarding specific snacks (sweet or salty). Afterwards, participants bid for snack items shown on an either blue or green background during functional magnetic resonance imaging measurement. Both hypnosis and autosuggestion successfully devalued snacks. This was indicated by participants' decision-making, their self-report and by decreased blood oxygen level-dependent signal in the ventromedial prefrontal cortex (vmPFC), a region known to represent value. Different vmPFC subregions coded for cue and snack type. The cue had significantly stronger effects on vmPFC after hypnosis than after autosuggestion, indicating that hypnosis was more effective in genuinely reducing value. Supporting previous findings, the precuneus was involved in the hypnotic effects by encoding whether a snack was sweet or salty during hypnotic cue presentation. Our results demonstrate that posthypnotic suggestions can influence valuation and decision-making.
Assuntos
Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Hipnose , Recompensa , Sugestão , Reação Acrossômica , Adulto , Análise de Variância , Encéfalo/irrigação sanguínea , Sinais (Psicologia) , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Oxigênio/sangue , Inquéritos e Questionários , Adulto JovemRESUMO
STUDY OBJECTIVES: Vigilance is affected by induced and spontaneous skin temperature fluctuations. Whereas sleep deprivation strongly affects vigilance, no previous study examined in detail its effect on human skin temperature fluctuations and their association with vigilance. DESIGN: In a repeated-measures constant routine design, skin temperatures were assessed continuously from 14 locations while performance was assessed using a reaction time task, including eyes-open video monitoring, performed five times a day for 2 days, after a normal sleep or sleep deprivation night. SETTING: Participants were seated in a dimly lit, temperature-controlled laboratory. PATIENTS OR PARTICIPANTS: Eight healthy young adults (five males, age 22.0 ± 1.8 yr (mean ± standard deviation)). INTERVENTION: One night of sleep deprivation. MEASUREMENTS AND RESULTS: Mixed-effect regression models were used to evaluate the effect of sleep deprivation on skin temperature gradients of the upper (ear-mastoid), middle (hand-arm), and lower (foot-leg) body, and on the association between fluctuations in performance and in temperature gradients. Sleep deprivation induced a marked dissociation of thermoregulatory skin temperature gradients, indicative of attenuated heat loss from the hands co-occurring with enhanced heat loss from the feet. Sleep deprivation moreover attenuated the association between fluctuations in performance and temperature gradients; the association was best preserved for the upper body gradient. CONCLUSIONS: Sleep deprivation disrupts coordination of fluctuations in thermoregulatory skin temperature gradients. The dissociation of middle and lower body temperature gradients may therefore be evaluated as a marker for sleep debt, and the upper body gradient as a possible aid in vigilance assessment when sleep debt is unknown. Importantly, our findings suggest that sleep deprivation affects the coordination between skin blood flow fluctuations and the baroreceptor-mediated cardiovascular regulation that prevents venous pooling of blood in the lower limbs when there is the orthostatic challenge of an upright posture.