Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279239

RESUMO

The extracellular matrix (ECM) of the central nervous system (CNS) is an interconnected network of proteins and sugars with critical roles in both homeostasis and disease. In neurological diseases, excessive ECM deposition and remodeling impact both injury and repair. CNS lesions of multiple sclerosis (MS), a chronic inflammatory and degenerative disease, cause prominent alterations of the ECM. However, there are a lack of data investigating how the multitude of ECM members change in relation to each other and how this affects the MS disease course. Here, we evaluated ECM changes in MS lesions compared to a control brain using databases generated in-house through spatial mRNA-sequencing and through a public resource of single-nucleus RNA sequencing previously published by Absinta and colleagues. These results underline the importance of publicly available datasets to find new targets of interest, such as the ECM. Both spatial and public datasets demonstrated widespread changes in ECM molecules and their interacting proteins, including alterations to proteoglycans and glycoproteins within MS lesions. Some of the altered ECM members have been described in MS, but other highly upregulated members, including the SPARC family of proteins, have not previously been highlighted. SPARC family members are upregulated in other conditions by reactive astrocytes and may influence immune cell activation and MS disease course. The profound changes to the ECM in MS lesions deserve more scrutiny as they impact neuroinflammation, injury, and repair.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/metabolismo , Transcriptoma , Matriz Extracelular/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas da Matriz Extracelular/metabolismo
2.
FASEB J ; 35(10): e21881, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478587

RESUMO

Group IIA secreted phospholipase A2 (PLA2G2A) hydrolyzes glycerophospholipids at the sn-2 position resulting in the release of fatty acids and lysophospholipids. C57BL/6 mice do not express Pla2g2a due to a frameshift mutation (wild-type [WT] mice). We previously reported that transgenic expression of human PLA2G2A in C57BL/6 mice (IIA+ mice) protects against weight gain and insulin resistance, in part by increasing total energy expenditure. Additionally, we found that brown and white adipocytes from IIA+ mice have increased expression of mitochondrial uncoupling markers, such as uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor-gamma coactivator, and PR domain containing 16, suggesting that the energy expenditure phenotype might be due to an increased thermogenic capacity in adipose tissue. Here, we further characterize the impact of PLA2G2A on thermogenic mechanisms in adipose tissue. Metabolic analysis of WT and IIA+ mice revealed that even when housed within their thermoneutral zone, IIA+ mice have elevated energy expenditure compared to WT littermates. Increased energy expenditure in IIA+ mice is associated with increased citrate synthase activity in brown adipose tissue (BAT) and increased mitochondrial respiration in both brown and white adipocytes. We also observed that direct addition of recombinant PLA2G2A enzyme to in vitro cultured adipocytes results in the marked induction of UCP1 protein expression. Finally, we report that PLA2G2A induces the expression of numerous transcripts related to energy substrate transport and metabolism in BAT, suggestive of an increase in substrate flux to fuel BAT activity. These data demonstrate that PLA2G2A enhances adipose tissue thermogenesis, in part, through elevated substrate delivery and increased mitochondrial content in BAT.


Assuntos
Tecido Adiposo Marrom/fisiopatologia , Metabolismo Energético , Fosfolipases A2 do Grupo II/fisiologia , Mitocôndrias/patologia , Termogênese , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Branco/fisiopatologia , Animais , Transporte Biológico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 318(2): G322-G335, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905022

RESUMO

Bile acid receptors regulate the metabolic and immune functions of circulating enterohepatic bile acids. This process is disrupted by administration of parenteral nutrition (PN), which may induce progressive hepatic injury for unclear reasons, especially in the newborn, leading to PN-associated liver disease. To explore the role of bile acid signaling on neonatal hepatic function, we initially observed that Takeda G protein receptor 5 (TGR5)-specific bile acids were negatively correlated with worsening clinical disease markers in the plasma of human newborns with prolonged PN exposure. To test our resulting hypothesis that TGR5 regulates critical liver functions to PN exposure, we used TGR5 receptor deficient mice (TGR5-/-). We observed PN significantly increased liver weight, cholestasis, and serum hepatic stress enzymes in TGR5-/- mice compared with controls. Mechanistically, PN reduced bile acid synthesis genes in TGR5-/-. Serum bile acid composition revealed that PN increased unconjugated primary bile acids and secondary bile acids in TGR5-/- mice, while increasing conjugated primary bile acid levels in TGR5-competent mice. Simultaneously, PN elevated hepatic IL-6 expression and infiltrating macrophages in TGR5-/- mice. However, the gut microbiota of TGR5-/- mice compared with WT mice following PN administration displayed highly elevated levels of Bacteroides and Parabacteroides, and possibly responsible for the elevated levels of secondary bile acids in TGR5-/- animals. Intestinal bile acid transporters expression was unchanged. Collectively, this suggests TGR5 signaling specifically regulates fundamental aspects of liver bile acid homeostasis during exposure to PN. Loss of TGR5 is associated with biochemical evidence of cholestasis in both humans and mice on PN.NEW & NOTEWORTHY Parenteral nutrition is associated with deleterious metabolic outcomes in patients with prolonged exposure. Here, we demonstrate that accelerated cholestasis and parental nutrition-associated liver disease (PNALD) may be associated with deficiency of Takeda G protein receptor 5 (TGR5) signaling. The microbiome is responsible for production of secondary bile acids that signal through TGR5. Therefore, collectively, these data support the hypothesis that a lack of established microbiome in early life or under prolonged parenteral nutrition may underpin disease development and PNALD.


Assuntos
Hepatopatias/etiologia , Hepatopatias/fisiopatologia , Nutrição Parenteral/efeitos adversos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Animais , Ácidos e Sais Biliares/metabolismo , Colestase , Feminino , Microbioma Gastrointestinal , Regulação da Expressão Gênica/fisiologia , Humanos , Recém-Nascido , Interleucina-6/metabolismo , Testes de Função Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Transdução de Sinais/genética
4.
J Neuroinflammation ; 17(1): 220, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703234

RESUMO

BACKGROUND: Chondroitin sulfate proteoglycans (CSPGs) are potent inhibitors of axonal regrowth and remyelination. More recently, they have also been highlighted as a modulator of macrophage infiltration into the central nervous system in experimental autoimmune encephalomyelitis, an inflammatory model of multiple sclerosis. METHODS: We interrogated results from single nucleotide polymorphisms (SNPs) lying in or close to genes regulating CSPG metabolism in the summary results from two publicly available systematic studies of multiple sclerosis (MS) genetics. A demyelinating injury model in the spinal cord of exostosin-like 2 deficient  (EXTL2-/-) mice was used to investigate the effects of dysregulation of EXTL2 on remyelination. Cell cultures of bone marrow-derived macrophages and primary oligodendrocyte precursor cells and neurons were supplemented with purified CSPGs or conditioned media to assess potential mechanisms of action. RESULTS: The strongest evidence for genetic association was seen for SNPs mapping to the region containing the glycosyltransferase exostosin-like 2 (EXTL2), an enzyme that normally suppresses CSPG biosynthesis. Six of these SNPs showed genome-wide significant evidence for association in one of the studies with concordant and nominally significant effects in the second study. We then went on to show that a demyelinating injury to the spinal cord of EXTL2-/- mice resulted in excessive deposition of CSPGs in the lesion area. EXTL2-/- mice had exacerbated axonal damage and myelin disruption relative to wild-type mice, and increased representation of microglia/macrophages within lesions. In tissue culture, activated bone marrow-derived macrophages from EXTL2-/- mice overproduce tumor necrosis factor α (TNFα) and matrix metalloproteinases (MMPs). CONCLUSIONS: These results emphasize CSPGs as a prominent modulator of neuroinflammation and they highlight CSPGs accumulating in lesions in promoting axonal injury.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Doenças Desmielinizantes/patologia , Proteínas de Membrana/metabolismo , Esclerose Múltipla/patologia , N-Acetilglucosaminiltransferases/metabolismo , Animais , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Feminino , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , N-Acetilglucosaminiltransferases/genética , Polimorfismo de Nucleotídeo Único
5.
FASEB J ; 33(1): 738-749, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30020829

RESUMO

Secretory phospholipase A2 group IIA (PLA2G2A) is a phospholipase which has a role in inflammation, atherogenesis, and host defense. Previously, we found that PLA2G2A protects mice on high-fat diets from weight gain and insulin resistance. Here, we examined the regulation of PLA2G2A and the metabolic changes that occur in response to variations in thyroid status. In particular, the impact of PLA2G2A on the brown adipose tissue (BAT) thermogenic gene expression was explored. We induced hypothyroidism in C57BL/6 and PLA2G2A-overexpressing (IIA+) mice over a 10 wk period or treated them with thyroid hormone (T3) for 5 wk. There were no significant changes in PLA2G2A abundance in response to thyroid status. The energy expenditure of hypothyroid IIA+ mice did not increase; however, the energy expenditure, substrate utilization, insulin sensitivity, and glucose tolerance were all elevated in the IIA+ mice given T3. Moreover, white adipocytes from IIA+ mice were much more prone to "beiging," including increased expression of brown adipose thermogenic markers such as uncoupling protein 1 (UCP1), PR domain containing 16, and early B cell factor 2. Finally, the BAT of IIA+ mice had increased UCP1 and other proteins indicative of mitochondrial uncoupling and nonshivering adaptive thermogenesis. These data reveal a novel role for PLA2G2A on adipose tissue thermogenesis depending on thyroid status.-Kuefner, M. S., Deng, X., Stephenson, E. J., Pham, K., Park, E. A. Secretory phospholipase A2 group IIA enhances the metabolic rate and increases glucose utilization in response to thyroid hormone.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Fosfolipases A2 do Grupo II/metabolismo , Hipotireoidismo/tratamento farmacológico , Tri-Iodotironina/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Fosfolipases A2 do Grupo II/genética , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Insulina/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Termogênese
6.
Hum Mol Genet ; 26(13): 2526-2540, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453658

RESUMO

Duchenne muscular dystrophy (DMD) is a neuromuscular disease that predominantly affects boys as a result of mutation(s) in the dystrophin gene. DMD is characterized by musculoskeletal and cardiopulmonary complications, resulting in shorter life-span. Boys afflicted by DMD typically exhibit symptoms within 3-5 years of age and declining physical functions before attaining puberty. We hypothesized that rapidly deteriorating health of pre-pubertal boys with DMD could be due to diminished anabolic actions of androgens in muscle, and that intervention with an androgen receptor (AR) agonist will reverse musculoskeletal complications and extend survival. While castration of dystrophin and utrophin double mutant (mdx-dm) mice to mimic pre-pubertal nadir androgen condition resulted in premature death, maintenance of androgen levels extended the survival. Non-steroidal selective-AR modulator, GTx-026, which selectively builds muscle and bone was tested in X-linked muscular dystrophy mice (mdx). GTx-026 significantly increased body weight, lean mass and grip strength by 60-80% over vehicle-treated mdx mice. While vehicle-treated castrated mdx mice exhibited cardiopulmonary impairment and fibrosis of heart and lungs, GTx-026 returned cardiopulmonary function and intensity of fibrosis to healthy control levels. GTx-026 elicits its musculoskeletal effects through pathways that are distinct from dystrophin-regulated pathways, making AR agonists ideal candidates for combination approaches. While castration of mdx-dm mice resulted in weaker muscle and shorter survival, GTx-026 treatment increased the muscle mass, function and survival, indicating that androgens are important for extended survival. These preclinical results support the importance of androgens and the need for intervention with AR agonists to treat DMD-affected boys.


Assuntos
Androgênios/metabolismo , Distrofia Muscular de Duchenne/genética , Androgênios/genética , Animais , Modelos Animais de Doenças , Distrofina/genética , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos mdx , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/metabolismo , Receptores Androgênicos/metabolismo , Maturidade Sexual , Utrofina/genética
7.
Brain ; 141(4): 1094-1110, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29506186

RESUMO

Multiple sclerosis presents with profound changes in the network of molecules involved in maintaining central nervous system architecture, the extracellular matrix. The extracellular matrix components, particularly the chondroitin sulfate proteoglycans, have functions beyond structural support including their potential interaction with, and regulation of, inflammatory molecules. To investigate the roles of chondroitin sulfate proteoglycans in multiple sclerosis, we used the experimental autoimmune encephalomyelitis model in a time course study. We found that the 4-sulfated glycosaminoglycan side chains of chondroitin sulfate proteoglycans, and the core protein of a particular family member, versican V1, were upregulated in the spinal cord of mice at peak clinical severity, correspondent with areas of inflammation. Versican V1 expression in the spinal cord rose progressively over the course of experimental autoimmune encephalomyelitis. A particular structure in the spinal cord and cerebellum that presented with intense upregulation of chondroitin sulfate proteoglycans is the leucocyte-containing perivascular cuff, an important portal of entry of immune cells into the central nervous system parenchyma. In these inflammatory perivascular cuffs, versican V1 and the glycosaminoglycan side chains of chondroitin sulfate proteoglycans were observed by immunohistochemistry within and in proximity to lymphocytes and macrophages as they migrated across the basement membrane into the central nervous system. Expression of versican V1 transcript was also documented in infiltrating CD45+ leucocytes and F4/80+ macrophages by in situ hybridization. To test the hypothesis that the chondroitin sulfate proteoglycans regulate leucocyte mobility, we used macrophages in tissue culture studies. Chondroitin sulfate proteoglycans significantly upregulated pro-inflammatory cytokines and chemokines in macrophages. Strikingly, and more potently than the toll-like receptor-4 ligand lipopolysaccharide, chondroitin sulfate proteoglycans increased the levels of several members of the matrix metalloproteinase family, which are implicated in the capacity of leucocytes to cross barriers. In support, the migratory capacity of macrophages in vitro in a Boyden chamber transwell assay was enhanced by chondroitin sulfate proteoglycans. Finally, using brain specimens from four subjects with multiple sclerosis with active lesions, we found chondroitin sulfate proteoglycans to be associated with leucocytes in inflammatory perivascular cuffs in all four patients. We conclude that the accumulation of chondroitin sulfate proteoglycans in the perivascular cuff in multiple sclerosis and experimental autoimmune encephalomyelitis boosts the activity and migration of leucocytes across the glia limitans into the central nervous system parenchyma. Thus, chondroitin sulfate proteoglycans represent a new class of molecules to overcome in order to reduce the inflammatory cascades and clinical severity of multiple sclerosis.


Assuntos
Encéfalo/patologia , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Encefalomielite Autoimune Experimental/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Medula Espinal/patologia , Animais , Encéfalo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Feminino , Adjuvante de Freund/toxicidade , Laminina/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/patologia , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fragmentos de Peptídeos/toxicidade , RNA Mensageiro/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Versicanas/genética , Versicanas/metabolismo
8.
Glia ; 66(9): 1809-1825, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29603376

RESUMO

The repair of myelin, termed remyelination, is a regenerative process that occurs within the central nervous system in conditions such as multiple sclerosis. Remyelination is enabled by oligodendrocytes that mature from oligodendrocyte precursor cells. Many factors influence the biology of oligodendrocytes and their capacity to reform myelin, and considerable evidence now implicates the extracellular matrix within the injured central nervous system as a major modifier of remyelination. Herein, we review current knowledge of components of the brain extracellular matrix that are beneficial or inhibitory for oligodendrocyte recruitment and maturation, and for their capacity to remyelinate where evidence exists. We highlight the detrimental roles of the chondroitin sulfate proteoglycans in remyelination and discuss approaches to alter the brain extracellular matrix for the wellbeing of oligodendrocytes and their capacity for myelin regeneration.


Assuntos
Encéfalo/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Matriz Extracelular/metabolismo , Oligodendroglia/metabolismo , Remielinização/fisiologia , Animais , Humanos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/terapia
9.
Am J Physiol Endocrinol Metab ; 315(6): E1168-E1184, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30253111

RESUMO

Brain-derived neurotrophic factor (BDNF) is a key neuropeptide in the central regulation of energy balance. The Bdnf gene contains nine promoters, each producing specific mRNA transcripts that encode a common protein. We sought to assess the phenotypic outcomes of disrupting BDNF production from individual Bdnf promoters. Mice with an intact coding region but selective disruption of BDNF production from Bdnf promoters I, II, IV, or VI (Bdnf-e1-/-, -e2-/-, -e4-/-, and -e6-/-) were created by inserting an enhanced green fluorescent protein-STOP cassette upstream of the targeted promoter splice donor site. Body composition was measured by MRI weekly from age 4 to 22 wk. Energy expenditure was measured by indirect calorimetry at 18 wk. Food intake was measured in Bdnf-e1-/- and Bdnf-e2-/- mice, and pair feeding was conducted. Weight gain, lean mass, fat mass, and percent fat of Bdnf-e1-/- and Bdnf-e2-/- mice (both sexes) were significantly increased compared with wild-type littermates. For Bdnf-e4-/- and Bdnf-e6-/- mice, obesity was not observed with either chow or high-fat diet. Food intake was increased in Bdnf-e1-/- and Bdnf-e2-/- mice, and pair feeding prevented obesity. Mutant and wild-type littermates for each strain (both sexes) had similar total energy expenditure after adjustment for body composition. These findings suggest that the obesity phenotype observed in Bdnf-e1-/- and Bdnf-e2-/- mice is attributable to hyperphagia and not altered energy expenditure. Our findings show that disruption of BDNF from specific promoters leads to distinct body composition effects, with disruption from promoters I or II, but not IV or VI, inducing obesity.


Assuntos
Composição Corporal/genética , Peso Corporal/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Obesidade/genética , Regiões Promotoras Genéticas , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Calorimetria Indireta , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Camundongos , Camundongos Transgênicos , Obesidade/metabolismo , Fenótipo
10.
J Lipid Res ; 58(9): 1822-1833, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28663239

RESUMO

Secretory phospholipase A2 group IIA (PLA2G2A) is a member of a family of secretory phospholipases that have been implicated in inflammation, atherogenesis, and antibacterial actions. Here, we evaluated the role of PLA2G2A in the metabolic response to a high fat diet. C57BL/6 (BL/6) mice do not express PLA2g2a due to a frameshift mutation. We fed BL/6 mice expressing the human PLA2G2A gene (IIA+ mice) a fat diet and assessed the physiologic response. After 10 weeks on the high fat diet, the BL/6 mice were obese, but the IIA+ mice did not gain weight or accumulate lipid. The lean mass in chow- and high fat-fed IIA+ mice was constant and similar to the BL/6 mice on a chow diet. Surprisingly, the IIA+ mice had an elevated metabolic rate, which was not due to differences in physical activity. The IIA+ mice were more insulin sensitive and glucose tolerant than the BL/6 mice, even when the IIA+ mice were provided the high fat diet. The IIA+ mice had increased expression of uncoupling protein 1 (UCP1), sirtuin 1 (SIRT1), and PPARγ coactivator 1α (PGC-1α) in brown adipose tissue (BAT), suggesting that PLA2G2A activates mitochondrial uncoupling in BAT. Our data indicate that PLA2G2A has a previously undiscovered impact on insulin sensitivity and metabolism.


Assuntos
Fosfolipases A2 do Grupo II/metabolismo , Resistência à Insulina , Insulina/metabolismo , Animais , Peso Corporal , Metabolismo Energético , Feminino , Fosfolipases A2 do Grupo II/genética , Humanos , Fígado/metabolismo , Masculino , Camundongos
11.
Am J Physiol Endocrinol Metab ; 313(3): E335-E343, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28465283

RESUMO

Impairments in mitochondrial function and substrate metabolism are implicated in the etiology of obesity and Type 2 diabetes. MicroRNAs (miRNAs) can degrade mRNA or repress protein translation and have been implicated in the development of such disorders. We used a contrasting rat model system of selectively bred high- (HCR) or low- (LCR) intrinsic running capacity with established differences in metabolic health to investigate the molecular mechanisms through which miRNAs regulate target proteins mediating mitochondrial function and substrate oxidation processes. Quantification of select miRNAs using the rat miFinder miRNA PCR array revealed differential expression of 15 skeletal muscles (musculus tibialis anterior) miRNAs between HCR and LCR rats (14 with higher expression in LCR; P < 0.05). Ingenuity Pathway Analysis predicted these altered miRNAs to collectively target multiple proteins implicated in mitochondrial dysfunction and energy substrate metabolism. Total protein abundance of citrate synthase (CS; miR-19 target) and voltage-dependent anion channel 1 (miR-7a target) were higher in HCR compared with LCR cohorts (~57 and ~26%, respectively; P < 0.05). A negative correlation was observed for miR-19a-3p and CS (r = 0.32, P = 0.015) protein expression. To determine whether miR-19a-3p can regulate CS in vitro, we performed luciferase reporter and transfection assays in C2C12 myotubes. MiR-19a-3p binding to the CS untranslated region did not change luciferase reporter activity; however, miR-19a-3p transfection decreased CS protein expression (∼70%; P < 0.05). The differential miRNA expression targeting proteins implicated in mitochondrial dysfunction and energy substrate metabolism may contribute to the molecular basis, mediating the divergent metabolic health profiles of LCR and HCR rats.


Assuntos
Tolerância ao Exercício/genética , MicroRNAs/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Corrida , Animais , Western Blotting , Linhagem Celular , Citrato (si)-Sintase/metabolismo , Metabolismo Energético/genética , Técnicas In Vitro , Camundongos , Fibras Musculares Esqueléticas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canal de Ânion 1 Dependente de Voltagem/metabolismo
12.
J Med Internet Res ; 19(2): e52, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28242594

RESUMO

BACKGROUND: Multiple sclerosis (MS), a progressive demyelinating disease of the brain and spinal cord, is the leading cause of nontraumatic neurological damage in young adults. Canada has one of the highest reported incidents of MS, with estimates between 55 and 240 per 100,000 individuals. Between 2009 and 2014, the MS Society of Canada provided over Can $90 million to researchers and, since 2013, has encouraged researchers to make both current and previous research products openly available. OBJECTIVE: The goal of the study was to determine the open access (OA) cost implications and repository policies of journals frequently used by a sample of MS researchers. This study benchmarked current publishing preferences by MS Society of Canada researchers by examining the OA full-text availability of journal articles written by researchers funded between 2009 and 2014. METHODS: Researchers were identified from the 2009 to 2014 annual MS Society of Canada Research Summaries. Articles were identified through searches in Web of Science, Scopus, Medline and Embase (both via OVID). Journal level analysis included comparison of OA policies, including article processing charges (APCs) and repository policies. Data were analyzed using descriptive statistics. RESULTS: There were 758 articles analyzed in this study, of which 288 (38.0%) were OA articles. The majority of authors were still relying on journal policies for deposit in PubMed Central or availability on publisher websites for OA. Gold OA journals accounted for 10.2% of the journals in this study and were associated with significantly lower APCs (US $1900) than in hybrid journals (US $3000). Review of the journal self-archiving options highlighted the complexity of stipulations that authors would have to navigate to legally deposit a version of their article. CONCLUSIONS: This study found that there are currently researcher- and publisher-imposed barriers to both the gold and green roads to OA. These results provide a current benchmark against which efforts to enhance openness can be measured and can serve as a reference point in future assessments of the impact of OA policies within this field. With funding agencies worldwide releasing OA mandates, future success in compliance will require changes to how researchers and publishers approach production and dissemination of research.


Assuntos
Acesso à Informação , Esclerose Múltipla , Canadá , Financiamento Governamental , Humanos , Publicações
13.
Biochim Biophys Acta ; 1852(1): 92-103, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25463632

RESUMO

There is a relationship between cerebral vasculature and multiple sclerosis (MS) lesions: abnormal accumulations of iron have been found in the walls of dilated veins in MS plaques. The sources of this iron can be varied, but capillary and venous hemorrhages leading to blood extravasation have been recorded, and could result in the release of hemoglobin extracellularly. Extracellular hemoglobin oxidizes quickly and is known to become a reactive molecule that triggers low-density lipoprotein oxidation and plays a pivotal role in atherogenesis. In MS, it could lead to local oxidative stress, inflammation, and tissue damage. Here, we investigated whether extracellular hemoglobin and its breakdown products can cause direct oxidative damage to myelin components in a peroxidative environment such as occurs in inflamed tissue. Oxidation of lipids was assessed by the formation of fluorescent peroxidized lipid-protein covalent adducts, by the increase in conjugated diene and malondialdehyde. Oxidation of proteins was analyzed by the change in protein mass. The results suggest that the globin radical could be a trigger of myelin basic protein oxidative cross-linking, and that heme transferred to the lipids is involved in lipid peroxidation. This study provides new insight into the mechanism by which hemoglobin exerts its pathological oxidative activity towards myelin components. This work supports further research into the vascular pathology in MS, to gain insight into the origin and role of iron deposits in disease pathogenesis, or in stimulation of different comorbidities such as cardiovascular disease.


Assuntos
Hemoglobinas/metabolismo , Bainha de Mielina/metabolismo , Animais , Linhagem Celular Transformada , Espaço Extracelular/metabolismo , Técnicas In Vitro , Camundongos , Esclerose Múltipla/metabolismo , Oxirredução
14.
Am J Physiol Endocrinol Metab ; 310(11): E1003-15, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27117006

RESUMO

We have investigated the effects of in utero exposure to environmentally persistent free radicals (EPFRs) on growth, metabolism, energy utilization, and skeletal muscle mitochondria in a mouse model of diet-induced obesity. Pregnant mice were treated with laboratory-generated, combustion-derived particular matter (MCP230). The adult offspring were placed on a high-fat diet for 12 wk, after which we observed a 9.8% increase in their body weight. The increase in body size observed in the MCP230-exposed mice was not associated with increases in food intake but was associated with a reduction in physical activity and lower energy expenditure. The reduced energy expenditure in mice indirectly exposed to MCP230 was associated with reductions in skeletal muscle mitochondrial DNA copy number, lower mRNA levels of electron transport genes, and reduced citrate synthase activity. Upregulation of key genes involved in ameliorating oxidative stress was also observed in the muscle of MCP230-exposed mice. These findings suggest that gestational exposure to MCP230 leads to a reduction in energy expenditure at least in part through alterations to mitochondrial metabolism in the skeletal muscle.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Radicais Livres/toxicidade , Mitocôndrias Musculares/metabolismo , Material Particulado/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Relação Dose-Resposta a Droga , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/patologia , Doenças Mitocondriais/induzido quimicamente , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Gravidez/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia
15.
Am J Physiol Endocrinol Metab ; 311(5): E869-E880, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27624101

RESUMO

The peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors is central to the pathophysiology and treatment of metabolic disease through the receptors' ability to regulate the expression of genes involved in glucose homeostasis, adipogenesis, and lipid metabolism. However, the mechanism by which PPAR is regulated remains incompletely understood. We generated a transgenic mouse strain (ZFP-TG) that overexpressed Zfp407 primarily in muscle and heart. Transcriptome analysis by RNA-Seq identified 1,300 differentially expressed genes in the muscle of ZFP-TG mice, among which PPAR target genes were significantly enriched. Among the physiologically important PPARγ target genes, Glucose transporter (Glut)-4 mRNA and protein levels were increased in heart and muscle. The increase in Glut4 and other transcriptional effects of Zfp407 overexpression together decreased body weight and lowered plasma glucose, insulin, and HOMA-IR scores relative to control littermates. When placed on high-fat diet, ZFP-TG mice remained more glucose tolerant than their wild-type counterparts. Cell-based assays demonstrated that Zfp407 synergistically increased the transcriptional activity of all PPAR subtypes, PPARα, PPARγ, and PPARδ. The increased PPAR activity was not associated with increased PPAR mRNA or protein levels, suggesting that Zfp407 posttranslationally regulates PPAR activity. Collectively, these results demonstrate that Zfp407 overexpression improved glucose homeostasis. Thus, Zfp407 represents a new drug target for treating metabolic disease.


Assuntos
Glicemia/metabolismo , Proteínas de Ligação a DNA/genética , Transportador de Glucose Tipo 4/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Animais , Dieta Hiperlipídica , Perfilação da Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Homeostase/genética , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Processamento de Proteína Pós-Traducional/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
16.
Biochim Biophys Acta ; 1840(4): 1285-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24345456

RESUMO

BACKGROUND: The increased prevalence of obesity and its co-morbidities and their strong association with inactivity have produced an 'exercise-deficient phenotype' in which individuals with a particular combination of disease-susceptible genes collide with environmental influences to cross a biological 'threshold' that ultimately manifests as overt clinical conditions (i.e., risk-factors for disease states). These risk-factors have been linked to impairments in skeletal muscle mitochondrial function. SCOPE OF REVIEW: The question of whether 'inborn' mitochondrial deficiencies and/or defective mitochondrial metabolism contribute to metabolic disease, or if environmental factors are the major determinant, will be examined. MAJOR CONCLUSIONS: We contend that impaired whole-body insulin resistance along with impaired skeletal muscle handling of carbohydrate and lipid fuels (i.e., metabolic inflexibility) is associated with a reduced skeletal muscle mitochondrial content which, in large part, is a maladaptive response to an 'inactivity cycle' which predisposes to a reduced level of habitual physical activity. While genetic components play a role in the pathogenesis of metabolic disease, exercise is a powerful environmental stimulus capable of restoring the metabolic flexibility of fuel selection and reduces risk-factors for metabolic disease in genetically-susceptible individuals. GENERAL SIGNIFICANCE: Given the apathy towards voluntary physical activity in most Western societies, it is clear that there is an urgent need for innovative, clinically-effective exercise strategies, coupled with changes in current attitudes and methods of delivering exercise prescription and dietary advice, in order to improve metabolic health and reduce metabolic disease risk at the population level. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.


Assuntos
Interação Gene-Ambiente , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/genética , Mitocôndrias/fisiologia , Comportamento Sedentário , Animais , Exercício Físico/fisiologia , Humanos , Aptidão Física
17.
Am J Physiol Endocrinol Metab ; 305(3): E429-38, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23757406

RESUMO

Impaired visceral white adipose tissue (WAT) metabolism has been implicated in the pathogenesis of several lifestyle-related disease states, with diminished expression of several WAT mitochondrial genes reported in both insulin-resistant humans and rodents. We have used rat models selectively bred for low- (LCR) or high-intrinsic running capacity (HCR) that present simultaneously with divergent metabolic phenotypes to test the hypothesis that oxidative enzyme expression is reduced in epididymal WAT from LCR animals. Based on this assumption, we further hypothesized that short-term exercise training (6 wk of treadmill running) would ameliorate this deficit. Approximately 22-wk-old rats (generation 22) were studied. In untrained rats, the abundance of mitochondrial respiratory complexes I-V, citrate synthase (CS), and PGC-1 was similar for both phenotypes, although CS activity was greater than 50% in HCR (P = 0.09). Exercise training increased CS activity in both phenotypes but did not alter mitochondrial protein content. Training increased the expression and phosphorylation of proteins with roles in ß-adrenergic signaling, including ß3-adrenergic receptor (16% increase in LCR; P < 0.05), NOR1 (24% decrease in LCR, 21% decrease in HCR; P < 0.05), phospho-ATGL (25% increase in HCR; P < 0.05), perilipin (25% increase in HCR; P < 0.05), CGI-58 (15% increase in LCR; P < 0.05), and GLUT4 (16% increase in HCR; P < 0.0001). A training effect was also observed for phospho-p38 MAPK (12% decrease in LCR, 20% decrease in HCR; P < 0.05) and phospho-JNK (29% increase in LCR, 20% increase in HCR; P < 0.05). We conclude that in the LCR-HCR model system, mitochondrial protein expression in WAT is not affected by intrinsic running capacity or exercise training. However, training does induce alterations in the activity and expression of several proteins that are essential to the intracellular regulation of WAT metabolism.


Assuntos
Tecido Adiposo Branco/metabolismo , Condicionamento Físico Animal/fisiologia , Resistência Física/genética , Resistência Física/fisiologia , Corrida/fisiologia , Animais , Western Blotting , Peso Corporal/fisiologia , Citrato (si)-Sintase/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Transportador de Glucose Tipo 4/biossíntese , Transportador de Glucose Tipo 4/genética , Lipólise/fisiologia , Masculino , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Ratos , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
18.
Am J Physiol Heart Circ Physiol ; 304(5): H729-39, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23262135

RESUMO

Rats selectively bred for low (LCR) or high (HCR) intrinsic running capacity simultaneously present with contrasting risk factors for cardiovascular and metabolic disease. However, the impact of these phenotypes on left ventricular (LV) morphology and microvascular function, and their progression with aging, remains unresolved. We tested the hypothesis that the LCR phenotype induces progressive age-dependent LV remodeling and impairments in microvascular function, glucose utilization, and ß-adrenergic responsiveness, compared with HCR. Hearts and vessels isolated from female LCR (n = 22) or HCR (n = 26) were studied at 12 and 35 wk. Nonselected N:NIH founder rats (11 wk) were also investigated (n = 12). LCR had impaired glucose tolerance and elevated plasma insulin (but not glucose) and body-mass at 12 wk compared with HCR, with early LV remodeling. By 35 wk, LV prohypertrophic and glucose transporter GLUT4 gene expression were up- and downregulated, respectively. No differences in LV ß-adrenoceptor expression or cAMP content between phenotypes were observed. Macrovascular endothelial function was predominantly nitric oxide (NO)-mediated in both phenotypes and remained intact in LCR for both age-groups. In contrast, mesenteric arteries microvascular endothelial function, which was impaired in LCR rats regardless of age. At 35 wk, endothelial-derived hyperpolarizing factor-mediated relaxation was impaired whereas the NO contribution to relaxation is intact. Furthermore, there was reduced ß2-adrenoceptor responsiveness in both aorta and mesenteric LCR arteries. In conclusion, diminished intrinsic exercise capacity impairs systemic glucose tolerance and is accompanied by progressive development of LV remodeling. Impaired microvascular perfusion is a likely contributing factor to the cardiac phenotype.


Assuntos
Envelhecimento/fisiologia , Circulação Coronária/fisiologia , Tolerância ao Exercício/fisiologia , Coração/fisiologia , Remodelação Ventricular/fisiologia , Envelhecimento/genética , Animais , Fatores Biológicos/metabolismo , Tolerância ao Exercício/genética , Feminino , Fibrose/fisiopatologia , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Síndrome Metabólica/genética , Síndrome Metabólica/fisiopatologia , Microcirculação/fisiologia , Miócitos Cardíacos/fisiologia , Óxido Nítrico/metabolismo , Fenótipo , Ratos , Ratos Endogâmicos , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/fisiologia , Resistência Vascular/fisiologia , Vasodilatação/fisiologia , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
19.
Obesity (Silver Spring) ; 31(11): 2786-2798, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37712194

RESUMO

OBJECTIVE: Alström syndrome (AS) is a rare multisystem disorder of which early onset childhood obesity is a cardinal feature. Like humans with AS, animal models with Alms1 loss-of-function mutations develop obesity, supporting the notion that ALMS1 is required for the regulatory control of energy balance across species. This study aimed to determine which component(s) of energy balance are reliant on ALMS1. METHODS: Comprehensive energy balance phenotyping was performed on Alms1tvrm102 mice at both 8 and 18 weeks of age. RESULTS: It was found that adiposity gains occurred early and rapidly in Alms1tvrm102 male mice but much later in females. Rapid increases in body fat in males were due to a marked reduction in energy expenditure (EE) during early life and not due to any genotype-specific increases in energy intake under chow conditions. Energy intake did increase in a genotype-specific manner when mice were provided a high-fat diet, exacerbating the effects of reduced EE on obesity progression. The EE deficit observed in male Alms1tvrm102 mice did not persist as mice aged. CONCLUSIONS: Either loss of ALMS1 causes a developmental delay in the mechanisms controlling early life EE or activation of compensatory mechanisms occurs after obesity is established in AS. Future studies will determine how ALMS1 modulates EE and how sex moderates this process.


Assuntos
Síndrome de Alstrom , Obesidade Infantil , Feminino , Masculino , Criança , Humanos , Camundongos , Animais , Idoso , Síndrome de Alstrom/genética , Proteínas de Ciclo Celular/genética , Modelos Animais de Doenças , Tecido Adiposo
20.
Front Mol Neurosci ; 16: 1251432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025264

RESUMO

Background: Intracerebral hemorrhage (ICH) is the predominant type of hemorrhagic stroke with high mortality and disability. In other neurological conditions, the deposition of extracellular matrix (ECM) molecules is a prominent obstacle for regenerative processes and an enhancer of neuroinflammation. Whether ECM molecules alter in composition after ICH, and which ECM members may inhibit repair, remain largely unknown in hemorrhagic stroke. Methods: The collagenase-induced ICH mouse model and an autopsied human ICH specimen were investigated for expression of ECM members by immunofluorescence microscopy. Confocal image z-stacks were analyzed with Imaris 3D to assess the association of immune cells and ECM molecules. Sections from a mouse model of multiple sclerosis were used as disease and staining controls. Tissue culture was employed to examine the roles of ECM members on oligodendrocyte precursor cells (OPCs). Results: Among the lectican chondroitin sulfate proteoglycan (CSPG) members, neurocan but not aggrecan, versican-V1 and versican-V2 was prominently expressed in perihematomal tissue and lesion core compared to the contralateral area in murine ICH. Fibrinogen, fibronectin and heparan sulfate proteoglycan (HSPG) were also elevated after murine ICH while thrombospondin and tenascin-C was not. Confocal microscopy with Imaris 3D rendering co-localized neurocan, fibrinogen, fibronectin and HSPG molecules to Iba1+ microglia/macrophages or GFAP+ astrocytes. Marked differentiation from the multiple sclerosis model was observed, the latter with high versican-V1 and negligible neurocan. In culture, purified neurocan inhibited adhesion and process outgrowth of OPCs, which are early steps in myelination in vivo. The prominent expression of neurocan in murine ICH was corroborated in human ICH sections. Conclusion: ICH caused distinct alterations in ECM molecules. Among CSPG members, neurocan was selectively upregulated in both murine and human ICH. In tissue culture, neurocan impeded the properties of oligodendrocyte lineage cells. Alterations to the ECM in ICH may adversely affect reparative outcomes after stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA