Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(16): e2123299119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412884

RESUMO

Wheat is a widely grown food crop that suffers major yield losses due to attack by pests and pathogens. A better understanding of biotic stress responses in wheat is thus of major importance. The recently assembled bread wheat genome coupled with extensive transcriptomic resources provides unprecedented new opportunities to investigate responses to pathogen challenge. Here, we analyze gene coexpression networks to identify modules showing consistent induction in response to pathogen exposure. Within the top pathogen-induced modules, we identify multiple clusters of physically adjacent genes that correspond to six pathogen-induced biosynthetic pathways that share a common regulatory network. Functional analysis reveals that these pathways, all of which are encoded by biosynthetic gene clusters, produce various different classes of compounds­namely, flavonoids, diterpenes, and triterpenes, including the defense-related compound ellarinacin. Through comparative genomics, we also identify associations with the known rice phytoalexins momilactones, as well as with a defense-related gene cluster in the grass model plant Brachypodium distachyon. Our results significantly advance the understanding of chemical defenses in wheat and open up avenues for enhancing disease resistance in this agriculturally important crop. They also exemplify the power of transcriptional networks to discover the biosynthesis of chemical defenses in plants with large, complex genomes.


Assuntos
Vias Biossintéticas , Interações Hospedeiro-Patógeno , Doenças das Plantas , Triticum , Vias Biossintéticas/genética , Pão , Resistência à Doença/genética , Família Multigênica/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
2.
Proc Natl Acad Sci U S A ; 116(34): 17096-17104, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31371503

RESUMO

Limonoids are natural products made by plants belonging to the Meliaceae (Mahogany) and Rutaceae (Citrus) families. They are well known for their insecticidal activity, contribution to bitterness in citrus fruits, and potential pharmaceutical properties. The best known limonoid insecticide is azadirachtin, produced by the neem tree (Azadirachta indica). Despite intensive investigation of limonoids over the last half century, the route of limonoid biosynthesis remains unknown. Limonoids are classified as tetranortriterpenes because the prototypical 26-carbon limonoid scaffold is postulated to be formed from a 30-carbon triterpene scaffold by loss of 4 carbons with associated furan ring formation, by an as yet unknown mechanism. Here we have mined genome and transcriptome sequence resources for 3 diverse limonoid-producing species (A. indica, Melia azedarach, and Citrus sinensis) to elucidate the early steps in limonoid biosynthesis. We identify an oxidosqualene cyclase able to produce the potential 30-carbon triterpene scaffold precursor tirucalla-7,24-dien-3ß-ol from each of the 3 species. We further identify coexpressed cytochrome P450 enzymes from M. azedarach (MaCYP71CD2 and MaCYP71BQ5) and C. sinensis (CsCYP71CD1 and CsCYP71BQ4) that are capable of 3 oxidations of tirucalla-7,24-dien-3ß-ol, resulting in spontaneous hemiacetal ring formation and the production of the protolimonoid melianol. Our work reports the characterization of protolimonoid biosynthetic enzymes from different plant species and supports the notion of pathway conservation between both plant families. It further paves the way for engineering crop plants with enhanced insect resistance and producing high-value limonoids for pharmaceutical and other applications by expression in heterologous hosts.


Assuntos
Azadirachta , Citrus sinensis , Sistema Enzimático do Citocromo P-450 , Genoma de Planta , Limoninas , Proteínas de Plantas , Azadirachta/enzimologia , Azadirachta/genética , Citrus sinensis/enzimologia , Citrus sinensis/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Limoninas/biossíntese , Limoninas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(52): 27105-27114, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31806756

RESUMO

Plants produce an array of natural products with important ecological functions. These compounds are often decorated with oligosaccharide groups that influence bioactivity, but the biosynthesis of such sugar chains is not well understood. Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits, as exemplified by avenacins, antimicrobial defense compounds produced by oats. Avenacins have a branched trisaccharide moiety consisting of l-arabinose linked to 2 d-glucose molecules that is critical for antifungal activity. Plant natural product glycosylation is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). We previously characterized the arabinosyltransferase that initiates the avenacin sugar chain; however, the enzymes that add the 2 remaining d-glucose molecules have remained elusive. Here we characterize the enzymes that catalyze these last 2 glucosylation steps. AsUGT91G16 is a classical cytosolic UGT that adds a 1,2-linked d-glucose molecule to l-arabinose. Unexpectedly, the enzyme that adds the final 1,4-linked d-glucose (AsTG1) is not a UGT, but rather a sugar transferase belonging to Glycosyl Hydrolase family 1 (GH1). Unlike classical UGTs, AsTG1 is vacuolar. Analysis of oat mutants reveals that AsTG1 corresponds to Sad3, a previously uncharacterized locus shown by mutation to be required for avenacin biosynthesis. AsTG1 and AsUGT91G16 form part of the avenacin biosynthetic gene cluster. Our demonstration that a vacuolar transglucosidase family member plays a critical role in triterpene biosynthesis highlights the importance of considering other classes of carbohydrate-active enzymes in addition to UGTs as candidates when elucidating pathways for the biosynthesis of glycosylated natural products in plants.

4.
Plant Cell ; 30(12): 3038-3057, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30429223

RESUMO

Glycosylation of small molecules is critical for numerous biological processes in plants, including hormone homeostasis, neutralization of xenobiotics, and synthesis and storage of specialized metabolites. Glycosylation of plant natural products is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits such as disease resistance and flavor and have numerous pharmaceutical applications. Most characterized plant natural product UGTs are glucosyltransferases, and little is known about enzymes that add other sugars. Here we report the discovery and characterization of AsAAT1 (UGT99D1), which is required for biosynthesis of the antifungal saponin avenacin A-1 in oat (Avena strigosa). This enzyme adds l-Ara to the triterpene scaffold at the C-3 position, a modification critical for disease resistance. The only previously reported plant natural product arabinosyltransferase is a flavonoid arabinosyltransferase from Arabidopsis (Arabidopsis thaliana). We show that AsAAT1 has high specificity for UDP-ß-l-arabinopyranose, identify two amino acids required for sugar donor specificity, and through targeted mutagenesis convert AsAAT1 into a glucosyltransferase. We further identify a second arabinosyltransferase potentially implicated in the biosynthesis of saponins that determine bitterness in soybean (Glycine max). Our investigations suggest independent evolution of UDP-Ara sugar donor specificity in arabinosyltransferases in monocots and eudicots.


Assuntos
Glicosiltransferases/metabolismo , Pentosiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Avena/genética , Avena/metabolismo , Glicosiltransferases/genética , Pentosiltransferases/genética , Saponinas/metabolismo , Triterpenos/metabolismo , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
5.
New Phytol ; 227(4): 1109-1123, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31769874

RESUMO

Plants produce an array of specialized metabolites with important ecological functions. The mechanisms underpinning the evolution of new biosynthetic pathways are not well-understood. Here, we exploit available genome sequence resources to investigate triterpene biosynthesis across the Brassicaceae. Oxidosqualene cyclases (OSCs) catalyze the first committed step in triterpene biosynthesis. Systematic analysis of 13 sequenced Brassicaceae genomes was performed to identify all OSC genes. The genome neighbourhoods (GNs) around a total of 163 OSC genes were investigated to identify Pfam domains significantly enriched in these regions. All-vs-all comparisons of OSC neighbourhoods and phylogenomic analysis were used to investigate the sequence similarity and evolutionary relationships of the numerous candidate triterpene biosynthetic gene clusters (BGCs) observed. Functional analysis of three representative BGCs was carried out and their triterpene pathway products were elucidated. Our results indicate that plant genomes are remarkably plastic, and that dynamic GNs generate new biosynthetic pathways in different Brassicaceae lineages by shuffling the genes encoding a core palette of triterpene-diversifying enzymes, presumably in response to strong environmental selection pressure. These results illuminate a genomic basis for diversification of plant-specialized metabolism through natural combinatorics of enzyme families, which can be mimicked using synthetic biology to engineer diverse bioactive molecules.


Assuntos
Vias Biossintéticas , Brassicaceae , Vias Biossintéticas/genética , Brassicaceae/genética , Genoma de Planta/genética , Genômica , Família Multigênica
6.
Nat Prod Rep ; 36(8): 1044-1052, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30783639

RESUMO

Covering: 1948 up to the end of 2018. The triterpene alcohols represent an important and diverse class of natural products. This diversity is believed to originate from the differential enzymatically controlled cyclisation of 2,3-oxidosqualene. It is now a well-established presumption that all naturally occurring tetra- and penta-cyclic triterpene alcohols can be rationalised by the resolution of one of two intermediary tetracyclic cations, termed the protosteryl and dammarenyl cations. Here, a discussion of typical key triterpene structures and their proposed derivation from either of these progenitors is followed by comparison with a recently reported novel pentacyclic triterpene orysatinol which appears to correspond to an unprecedented divergence from this dichotomous protosteryl/dammarenyl view of triterpene biogenesis. Not only does this discovery widen the potential scope of triterpene scaffolds that could exist in nature, it could call into question the reliability of stereochemical assignments of some existing triterpene structures that are supported by only limited spectroscopic evidence. The discovery of orysatinol provides direct experimental evidence to support considering more flexibility in the stereochemical interpretation of the biogenic isoprene rule.


Assuntos
Produtos Biológicos/metabolismo , Compostos Policíclicos/metabolismo , Triterpenos/metabolismo , Cátions/metabolismo , Estrutura Molecular , Triterpenos Pentacíclicos/metabolismo , Plantas/metabolismo , Esteróis/metabolismo
7.
New Phytol ; 221(3): 1544-1555, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30294977

RESUMO

Oats produce avenacins, antifungal triterpenes that are synthesized in the roots and provide protection against take-all and other soilborne diseases. Avenacins are acylated at the carbon-21 position of the triterpene scaffold, a modification critical for antifungal activity. We have previously characterized several steps in the avenacin pathway, including those required for acylation. However, transfer of the acyl group to the scaffold requires the C-21ß position to be oxidized first, by an as yet uncharacterized enzyme. We mined oat transcriptome data to identify candidate cytochrome P450 enzymes that may catalyse C-21ß oxidation. Candidates were screened for activity by transient expression in Nicotiana benthamiana. We identified a cytochrome P450 enzyme AsCYP72A475 as a triterpene C-21ß hydroxylase, and showed that expression of this enzyme together with early pathway steps yields C-21ß oxidized avenacin intermediates. We further demonstrate that AsCYP72A475 is synonymous with Sad6, a previously uncharacterized locus required for avenacin biosynthesis. sad6 mutants are compromised in avenacin acylation and have enhanced disease susceptibility. The discovery of AsCYP72A475 represents an important advance in the understanding of triterpene biosynthesis and paves the way for engineering the avenacin pathway into wheat and other cereals for control of take-all and other diseases.


Assuntos
Avena/enzimologia , Oxirredutases/metabolismo , Triterpenos/metabolismo , Acilação , Sistema Enzimático do Citocromo P-450/metabolismo , Estudos de Associação Genética , Hidroxilação , Mutação/genética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Filogenia , Alicerces Teciduais/química , Nicotiana/metabolismo , Transcriptoma/genética
8.
New Phytol ; 218(3): 1076-1088, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29528490

RESUMO

Triterpene synthases, also known as 2,3-oxidosqualene cyclases (OSCs), synthesize diverse triterpene skeletons that form the basis of an array of functionally divergent steroids and triterpenoids. Tetracyclic and pentacyclic triterpene skeletons are synthesized via protosteryl and dammarenyl cations, respectively. The mechanism of conversion between two scaffolds is not well understood. Here, we report a promiscuous OSC from rice (Oryza sativa) (OsOS) that synthesizes a novel pentacyclic triterpene orysatinol as its main product. The OsOS gene is widely distributed in indica subspecies of cultivated rice and in wild rice accessions. Previously, we have characterized a different OSC, OsPS, a tetracyclic parkeol synthase found in japonica subspecies. Phylogenetic and protein structural analyses identified three key amino acid residues (#732, #365, #124) amongst 46 polymorphic sites that determine functional conversion between OsPS and OsOS, specifically, the chair-semi(chair)-chair and chair-boat-chair interconversions. The different orientation of a fourth amino acid residue Y257 was shown to be important for functional conversion The discovery of orysatinol unlocks a new path to triterpene diversity in nature. Our findings also reveal mechanistic insights into the cyclization of oxidosqualene into tetra- and pentacyclic skeletons, and provide a new strategy to identify key residues determining OSC specificity.


Assuntos
Aminoácidos/metabolismo , Transferases Intramoleculares/química , Oryza/enzimologia , Sequência de Aminoácidos , Ciclização , Variação Genética , Transferases Intramoleculares/genética , Lanosterol/análogos & derivados , Lanosterol/química , Lanosterol/metabolismo , Oryza/genética , Filogenia , Especificidade por Substrato
9.
Metab Eng ; 42: 185-193, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687337

RESUMO

Plants are an excellent source of drug leads. However availability is limited by access to source species, low abundance and recalcitrance to chemical synthesis. Although plant genomics is yielding a wealth of genes for natural product biosynthesis, the translation of this genetic information into small molecules for evaluation as drug leads represents a major bottleneck. For example, the yeast platform for artemisinic acid production is estimated to have taken >150 person years to develop. Here we demonstrate the power of plant transient transfection technology for rapid, scalable biosynthesis and isolation of triterpenes, one of the largest and most structurally diverse families of plant natural products. Using pathway engineering and improved agro-infiltration methodology we are able to generate gram-scale quantities of purified triterpene in just a few weeks. In contrast to heterologous expression in microbes, this system does not depend on re-engineering of the host. We next exploit agro-infection for quick and easy combinatorial biosynthesis without the need for generation of multi-gene constructs, so affording an easy entrée to suites of molecules, some new-to-nature, that are recalcitrant to chemical synthesis. We use this platform to purify a suite of bespoke triterpene analogs and demonstrate differences in anti-proliferative and anti-inflammatory activity in bioassays, providing proof of concept of this system for accessing and evaluating medicinally important bioactives. Together with new genome mining algorithms for plant pathway discovery and advances in plant synthetic biology, this advance provides new routes to synthesize and access previously inaccessible natural products and analogs and has the potential to reinvigorate drug discovery pipelines.


Assuntos
Algoritmos , Avena , Comovirus , Descoberta de Drogas/métodos , Genoma de Planta , Genoma Viral , Nicotiana , Biologia Sintética/métodos , Triterpenos/metabolismo , Avena/enzimologia , Avena/genética , Comovirus/enzimologia , Comovirus/genética , Nicotiana/enzimologia , Nicotiana/genética
10.
J Org Chem ; 80(19): 9454-67, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26356089

RESUMO

The duocarmycins are potent antitumor agents with potential for use in the development of antibody-drug conjugates (ADCs) as well as being clinical candidates in their own right. In this article, we describe the synthesis of a duocarmycin monomer (DSA) that is suitably protected for utilization in solid-phase synthesis. The synthesis was performed on a large scale, and the resulting racemic protected Fmoc-DSA subunit was separated by supercritical fluid chromatography (SFC) into the single enantiomers; its application to solid-phase synthesis methodology gave a series of monomeric and extended duocarmycin analogues with amino acid substituents. The DNA sequence selectivity was similar to that in previous reports for both the monomeric and extended compounds. Substitution at the C-terminus of duocarmycin caused a decrease in antiproliferative activity for all of the compounds studied. An extended compound containing an alanine at the C-terminus was converted to the primary amide or to an extended structure containing a terminal tertiary amine, but this had no beneficial effects on biological activity.


Assuntos
Antibióticos Antineoplásicos/síntese química , Indóis/síntese química , Alquilação , Antibióticos Antineoplásicos/química , Sequência de Bases , Duocarmicinas , Indóis/química , Indóis/farmacologia , Pirrolidinonas/síntese química , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Técnicas de Síntese em Fase Sólida , Estereoisomerismo , Relação Estrutura-Atividade
11.
Science ; 379(6638): 1252-1264, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36952412

RESUMO

The Chilean soapbark tree (Quillaja saponaria) produces soap-like molecules called QS saponins that are important vaccine adjuvants. These highly valuable compounds are sourced by extraction from the bark, and their biosynthetic pathway is unknown. Here, we sequenced the Q. saponaria genome. Through genome mining and combinatorial expression in tobacco, we identified 16 pathway enzymes that together enable the production of advanced QS pathway intermediates that represent a bridgehead for adjuvant bioengineering. We further identified the enzymes needed to make QS-7, a saponin with excellent therapeutic properties and low toxicity that is present in low abundance in Q. saponaria bark extract. Our results enable the production of Q. saponaria vaccine adjuvants in tobacco and open the way for new routes to access and engineer natural and new-to-nature immunostimulants.


Assuntos
Adjuvantes de Vacinas , Vias Biossintéticas , Quillaja , Saponinas , Adjuvantes de Vacinas/biossíntese , Adjuvantes de Vacinas/química , Adjuvantes de Vacinas/genética , Quillaja/enzimologia , Quillaja/genética , Saponinas/biossíntese , Saponinas/química , Saponinas/genética , Análise de Sequência de DNA , Genoma de Planta , Vias Biossintéticas/genética , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Science ; 379(6630): 361-368, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701471

RESUMO

Triterpenes with complex scaffold modifications are widespread in the plant kingdom. Limonoids are an exemplary family that are responsible for the bitter taste in citrus (e.g., limonin) and the active constituents of neem oil, a widely used bioinsecticide (e.g., azadirachtin). Despite the commercial value of limonoids, a complete biosynthetic route has not been described. We report the discovery of 22 enzymes, including a pair of neofunctionalized sterol isomerases, that catalyze 12 distinct reactions in the total biosynthesis of kihadalactone A and azadirone, products that bear the signature limonoid furan. These results enable access to valuable limonoids and provide a template for discovery and reconstitution of triterpene biosynthetic pathways in plants that require multiple skeletal rearrangements and oxidations.


Assuntos
Citrus , Genes de Plantas , Limoninas , Melia azedarach , Citrus/enzimologia , Citrus/genética , Limoninas/metabolismo , Melia azedarach/enzimologia , Melia azedarach/genética , Vias Biossintéticas/genética
13.
Nat Commun ; 12(1): 2563, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963185

RESUMO

Non-random gene organization in eukaryotes plays a significant role in genome evolution. Here, we investigate the origin of a biosynthetic gene cluster for production of defence compounds in oat-the avenacin cluster. We elucidate the structure and organisation of this 12-gene cluster, characterise the last two missing pathway steps, and reconstitute the entire pathway in tobacco by transient expression. We show that the cluster has formed de novo since the divergence of oats in a subtelomeric region of the genome that lacks homology with other grasses, and that gene order is approximately colinear with the biosynthetic pathway. We speculate that the positioning of the late pathway genes furthest away from the telomere may mitigate against a 'self-poisoning' scenario in which toxic intermediates accumulate as a result of telomeric gene deletions. Our investigations reveal a striking example of adaptive evolution underpinned by remarkable genome plasticity.


Assuntos
Avena/genética , Resistência à Doença/genética , Redes e Vias Metabólicas/genética , Telômero/genética , Avena/metabolismo , Grão Comestível/genética , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Família Multigênica , RNA-Seq , Sequências Repetitivas de Ácido Nucleico , Saponinas/biossíntese , Saponinas/química , Saponinas/genética , Sintenia/genética , Nicotiana/metabolismo , Sequenciamento Completo do Genoma
14.
J Vis Exp ; (138)2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30176025

RESUMO

The triterpenes are one of the largest and most structurally diverse families of plant natural products. Many triterpene derivatives have been shown to possess medicinally relevant biological activity. However, thus far this potential has not translated into a plethora of triterpene-derived drugs in the clinic. This is arguably (at least partially) a consequence of limited practical synthetic access to this class of compound, a problem that can stifle the exploration of structure-activity relationships and development of lead candidates by traditional medicinal chemistry workflows. Despite their immense diversity, triterpenes are all derived from a single linear precursor, 2,3-oxidosqualene. Transient heterologous expression of biosynthetic enzymes in N. benthamiana can divert endogenous supplies of 2,3-oxidosqualene towards the production of new high-value triterpene products that are not naturally produced by this host. Agro-infiltration is an efficient and simple means of achieving transient expression in N. benthamiana. The process involves infiltration of plant leaves with a suspension of Agrobacterium tumefaciens carrying the expression construct(s) of interest. Co-infiltration of an additional A. tumefaciens strain carrying an expression construct encoding an enzyme that boosts precursor supply significantly increases yields. After a period of five days, the infiltrated leaf material can be harvested and processed to extract and isolate the resulting triterpene product(s). This is a process that is linearly and reliably scalable, simply by increasing the number of plants used in the experiment. Herein is described a protocol for rapid preparative-scale production of triterpenes utilizing this plant-based platform. The protocol utilizes an easily replicable vacuum infiltration apparatus, which allows the simultaneous infiltration of up to four plants, enabling batch-wise infiltration of hundreds of plants in a short period of time.


Assuntos
Nicotiana/virologia , Folhas de Planta/química , Triterpenos/química , Nicotiana/metabolismo
15.
J Phys Chem B ; 109(41): 19377-84, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16853502

RESUMO

The modification of the liquid/liquid interface with membranes of silicalite, a neutral framework zeolite, is used to extend the potential window. This feature allows the observation of the transfer of extremely hydrophilic ions, due to the size-exclusion of organic ions from the interior of the zeolitic framework. Similarly, volume exclusion effects are shown to affect facilitated ion transfer processes involving alkali metal cations. In contrast, proton transfer is largely unaffected by the presence of the zeolite, which is suggestive of more rapid diffusion processes within the interior of the framework. The technique of liquid/liquid electrochemistry should allow the measurement of solution phase transport parameters for ions within microporous hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA