Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Brain Res ; 240(4): 1257-1266, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35199188

RESUMO

Self-motion perception refers to the ability to perceive how the body is moving through the environment. Perception of self-motion has been shown to depend upon the locomotor action patterns used to move the body through the environment. Two separate lines of enquiry have led to the establishment of two distinct theories regarding this effect. One theory has proposed that distances travelled during locomotion are perceived via higher order perceptual variables detected by the haptic perceptual system. This theory proposes that two higher order haptic perceptual variables exist, and that the implication of one of these variables depends upon the type of gait pattern that is used. A second theory proposes that self-motion is perceived via a higher order perceptual variable termed multimodally specified energy expenditure (MSEE). This theory proposes that the effect of locomotor actions patterns upon self-motion perception is related to changes in the metabolic cost of locomotion per unit of perceptually specified traversed distance. Here, we test the hypothesis that the development of these distinct theories is the result of different choices in methodology. The theory of gait type has been developed based largely on the results of homing tasks, whereas the effect of MSEE has been developed based on the results of distance matching tasks. Here we test the hypothesis that the seemly innocuous change in experimental design from using a homing task to using a distance matching task changes the type of perceptual variables implicated in self-motion perception. To test this hypothesis, we closely replicated a recent study of the effect of gait type in all details bar one-we investigated a distance matching task rather than a homing task. As hypothesized, this change yielded results consistent with the predictions of MSEE, and distinct from gait type. We further show that, unlike the effect of gait type, the effect of MSEE is unaffected by the availability of vision. In sum, our findings support the existence of two distinct types of higher order perceptual variables in self-motion perception. We discuss the roles of these two types of perceptual variables in supporting effective human wayfinding.


Assuntos
Locomoção , Percepção de Movimento , Metabolismo Energético , Marcha , Humanos , Visão Ocular
2.
Exp Brain Res ; 239(4): 1305-1316, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33630131

RESUMO

The visual, vestibular, and haptic perceptual systems are each able to detect self-motion. Such information can be integrated during locomotion to perceive traversed distances. The process of distance integration is referred to as odometry. Visual odometry relies on information in optic flow patterns. For haptic odometry, such information is associated with leg movement patterns. Recently, it has been shown that haptic odometry is differently calibrated for different types of gaits. Here, we use this fact to examine the relative contributions of the perceptual systems to odometry. We studied a simple homing task in which participants travelled set distances away from an initial starting location (outbound phase), before turning and attempting to walk back to that location (inbound phase). We manipulated whether outbound gait was a walk or a gallop-walk. We also manipulated the outbound availability of optic flow. Inbound reports were performed via walking with eyes closed. Consistent with previous studies of haptic odometry, inbound reports were shorter when the outbound gait was a gallop-walk. We showed that the availability of optic flow decreased this effect. In contrast, the availability of optic flow did not have an observable effect when the outbound gait was walking. We interpreted this to suggest that visual odometry and haptic odometry via walking are similarly calibrated. By measuring the decrease in shortening in the gallop-walk condition, and scaling it relative to the walk condition, we estimated a relative contribution of optic flow to odometry of 41%. Our results present a proof of concept for a new, potentially more generalizable, method for examining the contributions of different perceptual systems to odometry, and by extension, path integration. We discuss implications for understanding human wayfinding.


Assuntos
Percepção de Distância , Marcha , Humanos , Locomoção , Visão Ocular , Caminhada
3.
IEEE Wirel Commun ; 28(2): 121-127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366719

RESUMO

Information-Centric Networking (ICN) has emerged as a paradigm to cope with the lack of built-in security primitives and efficient mechanisms for content distribution of today's Internet. However, deploying ICN in a wireless environment poses a different set of challenges compared to a wired environment, especially when it comes to security. In this paper, we present the security issues that may arise and the attacks that may occur from different points of view when ICN is deployed in wireless environments. The discussed attacks may target both applications and the ICN network itself by exploiting elements of the ICN architecture, such as content names and in-network content caches. Furthermore, we discuss potential solutions to the presented issues and countermeasures to the presented attacks. Finally, we identify future research opportunities and directions.

4.
J Neuroeng Rehabil ; 17(1): 41, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138747

RESUMO

BACKGROUND: There is scientific evidence that older adults aged 65 and over walk with increased step width variability which has been associated with risk of falling. However, there are presently no threshold levels that define the optimal reference range of step width variability. Thus, the purpose of our study was to estimate the optimal reference range for identifying older adults with normative and excessive step width variability. METHODS: We searched systematically the BMC, Cochrane Library, EBSCO, Frontiers, IEEE, PubMed, Scopus, SpringerLink, Web of Science, Wiley, and PROQUEST databases until September 2018, and included the studies that measured step width variability in both younger and older adults during walking at self-selected speed. Data were pooled in meta-analysis, and standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated. A single-decision threshold method based on the Youden index, and a two-decision threshold method based on the uncertain interval method were used to identify the optimal threshold levels (PROSPERO registration: CRD42018107079). RESULTS: Ten studies were retrieved (older adults = 304; younger adults = 219). Step width variability was higher in older than in younger adults (SMD = 1.15, 95% CI = 0.60; 1.70; t = 4.72, p = 0.001). The single-decision method set the threshold level for excessive step width variability at 2.14 cm. For the two-decision method, step width variability values above the upper threshold level of 2.50 cm were considered excessive, while step width variability values below the lower threshold level of 1.97 cm were considered within the optimal reference range. CONCLUSION: Step width variability is higher in older adults than in younger adults, with step width variability values above the upper threshold level of 2.50 cm to be considered as excessive. This information could potentially impact rehabilitation technology design for devices targeting lateral stability during walking.


Assuntos
Envelhecimento/fisiologia , Marcha/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Adulto Jovem
5.
Pediatr Phys Ther ; 32(1): 80-83, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31842102

RESUMO

PURPOSE: The purpose of this study was to describe changes in linear and nonlinear measures of postural control along with motor outcomes in a young child with cerebral palsy. SUMMARY OF KEY POINTS: Posturography in sitting and standing, the Gross Motor Function Measure-66 (GMFM-66), and the Early Clinical Assessment of Balance (ECAB) were performed prior to, during, and after physical therapy. The child demonstrated independent sitting throughout the study and developed independent standing during the study. He made improvements in the GMFM-66 and ECAB throughout the study. Higher average values were found in all linear and nonlinear measures in standing when compared to sitting, which may indicate less predictable movement due to less experience with standing. RECOMMENDATIONS FOR CLINICAL PRACTICE: Greater variability and lower predictability in postural control likely reflect early stages of skill acquisition. Research is needed to understand the optimal levels of movement variability and predictability.


Assuntos
Paralisia Cerebral/reabilitação , Modalidades de Fisioterapia , Equilíbrio Postural/fisiologia , Humanos , Lactente , Masculino , Destreza Motora , Movimento
6.
J Exp Biol ; 222(Pt 14)2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31253712

RESUMO

During walking, uneven surfaces impose new demands for controlling balance and forward progression at each step. It is unknown to what extent walking may be refined given an amount of stride-to-stride unpredictability at the distal level. Here, we explored the effects of an uneven terrain surface on whole-body locomotor dynamics immediately following exposure and after a familiarization period. Eleven young, unimpaired adults walked for 12 min on flat and uneven terrain treadmills. The whole-body center of mass excursion range (COMexc) and peak velocity (COMvel), step length and width were estimated. On first exposure to uneven terrain, we saw significant increases in medial-lateral COMexc and lateral COMvel, and in the variability of COMexc, COMvel and foot placement in both anterior-posterior and medial-lateral directions. Increases in step width and decreases in step length supported the immediate adoption of a cautious, restrictive solution on uneven terrain. After familiarization, step length increased and the variability of anterior-posterior COMvel and step length reduced, while step width and lateral COMvel reduced, alluding to a refinement of movement and a reduction of conservative strategies over time. However, the variability of medial-lateral COMexc and lateral COMvel increased, consistent with the release of previously constrained degrees of freedom. Despite this increase in variability, a strong relationship between step width and medial-lateral center of mass movement was maintained. Our results indicate that movement strategies of unimpaired adults when walking on uneven terrain can evolve over time with longer exposure to the surface.


Assuntos
Equilíbrio Postural , Caminhada , Adulto , Fenômenos Biomecânicos , Teste de Esforço , Marcha , Humanos , Adulto Jovem
7.
J Neuroeng Rehabil ; 16(1): 25, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717750

RESUMO

BACKGROUND: Uneven ground is a frequently encountered, yet little-studied challenge for individuals with amputation. The absence of control at the prosthetic ankle to facilitate correction for surface inconsistencies, and diminished sensory input from the extremity, add unpredictability to an already complex control problem, and leave limited means to produce appropriate corrective responses in a timely manner. Whole body angular momentum, L, and its variability across several strides may provide insight into the extent to which an individual can regulate their movement in such a context. The aim of this study was to explore L in individuals with a transtibial amputation, when challenged by an uneven surface. We hypothesized that, similar to previous studies, sagittal plane L would be asymmetrical on uneven terrain, and further, that uneven terrain would evoke a greater variability in L from stride to stride in individuals with amputation in comparison to unimpaired individuals, due to a limited ability to discern and correct for changing contours beneath the prosthetic foot. METHODS: We examined sagittal plane L in ten individuals with a unilateral transtibial amputation and age- and gender- matched control participants walking on flat (FT) and uneven (UT) treadmills. The average range of L in the first 50% of the gait cycle (LR), the average L at foot contact (LC) and their standard deviations (vLR, vLC) were computed over 60 strides on each treadmill. RESULTS: On both surfaces we observed a higher LR on the prosthetic side and a reduced LC on the sound side (p < 0.001) in the amputee cohort, consistent with previous findings. UT invoked an increase in LC (p = 0.006), but not LR (p = 0.491). vLR, and vLC were higher in individuals with amputation (p < 0.001, p = 0.002), and increased in both groups on UT (p < 0.001). CONCLUSIONS: These findings support previous assertions that individuals with amputation regulate L less effectively, and suggest that the deficits of the prosthesis are exacerbated on uneven terrain, potentially to the detriment of balance. Further, the results indicate that a greater demand may be placed on the unaffected side to control movement.


Assuntos
Amputação Cirúrgica , Amputados , Membros Artificiais , Meio Ambiente , Adulto , Idoso , Algoritmos , Fenômenos Biomecânicos , Estudos de Coortes , Feminino , , Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Equilíbrio Postural
8.
Sensors (Basel) ; 18(8)2018 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-30103484

RESUMO

Control of shear ground reaction forces (sGRF) is important in performing running and cutting tasks as poor sGRF control has implications for those with knee injuries, such as anterior cruciate ligament (ACL) ruptures. The goal of this study was to develop a novel and safe task to evaluate control or accurate modulation of shear ground reaction forces related to those generated during cutting. Our approach utilized a force control task using real-time visual feedback of a subject's force production and evaluated control capabilities through accuracy and divergence measurements. Ten healthy recreational athletes completed the force control task while force control via accuracy measures and divergence calculations was investigated. Participants were able to accurately control sGRF in multiple directions based on error measurements. Forces generated during the task were equal to or greater than those measured during a number of functional activities. We found no significant difference in the divergence of the force profiles using the Lyapunov Exponent of the sGRF trajectories. Participants using our approach produced high accuracy and low divergence force profiles and functional force magnitudes. Moving forward, we will utilize this task in at-risk populations who are unable to complete a cutting maneuver in early stages of rehabilitation, such as ACL deficient and newly reconstructed individuals, allowing insight into force control not obtainable otherwise.

9.
J Vasc Surg ; 66(1): 178-186.e12, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28647034

RESUMO

OBJECTIVE: Peripheral artery disease (PAD), a common manifestation of atherosclerosis, is characterized by lower leg ischemia and myopathy in association with leg dysfunction. Patients with PAD have impaired gait from the first step they take with consistent defects in the movement around the ankle joint, especially in plantar flexion. Our goal was to develop muscle strength profiles to better understand the problems in motor control responsible for the walking impairment in patients with PAD. METHODS: Ninety-four claudicating PAD patients performed maximal isometric plantar flexion contractions lasting 10 seconds in two conditions: pain free (patient is well rested and has no claudication symptoms) and pain induced (patient has walked and has claudication symptoms). Sixteen matched healthy controls performed the pain-free condition only. Torque curves were analyzed for dependent variables of muscle strength and motor control. Independent t-tests were used to compare variables between groups, and dependent t-tests determined differences between conditions. RESULTS: Patients with PAD had significantly reduced peak torque and area under the curve compared with controls. Measures of control differed between PAD conditions only. Load rate and linear region duration were greater in the pain condition. Time to peak torque was shorter in the pain condition. CONCLUSIONS: This study conclusively demonstrates that the plantar flexor muscles of the PAD patient at baseline and without pain are weaker in patients with PAD compared with controls. With the onset of claudication pain, patients with PAD exhibit altered muscle control strategies and further strength deficits are manifest compared to baseline levels. The myopathy of PAD legs appears to have a central role in the functional deterioration of the calf muscles, as it is evident both before and after onset of ischemic pain.


Assuntos
Claudicação Intermitente/fisiopatologia , Contração Isométrica , Força Muscular , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiopatologia , Doença Arterial Periférica/fisiopatologia , Idoso , Área Sob a Curva , Estudos de Casos e Controles , Teste de Esforço , Feminino , Humanos , Claudicação Intermitente/diagnóstico , Modelos Lineares , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Atividade Motora , Doença Arterial Periférica/diagnóstico , Estudos Prospectivos , Curva ROC , Fatores de Tempo , Torque
10.
Somatosens Mot Res ; 34(4): 265-272, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29409404

RESUMO

AIM OF THE STUDY: Independent sitting requires the control of the involved body segments over the base of support using information obtained from the three sensory systems (visual, vestibular, and somatosensory). The contribution of somatosensory information in infant sitting has not been explored. To address this gap, we altered the context of the sitting support surface and examined the infants' immediate postural responses. MATERIALS AND METHODS: Ten 7-month-old typically developing infants sat on compliant and firm surfaces in one session. Spatial, frequency, and temporal measures of postural control were obtained using center of pressure data. Results Our results suggest that infants' postural sway is not immediately affected by the different types of foam surface while sitting. CONCLUSIONS: It seems that mature sitter infants are able to adapt to different environmental constraints by disregarding the distorted somatosensory information from the support surface and relying more on their remaining senses (visual and vestibular) to control their sitting posture.


Assuntos
Desenvolvimento Infantil/fisiologia , Movimento/fisiologia , Equilíbrio Postural/fisiologia , Postura/fisiologia , Análise de Variância , Feminino , Humanos , Lactente , Masculino , Sensação/fisiologia
11.
J Neurol Phys Ther ; 41(4): 245-251, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28834791

RESUMO

BACKGROUND AND PURPOSE: Physical therapists seek to optimize movement as a means of reducing disability and improving health. The short-term effects of interventions designed to optimize movement ultimately are intended to be adapted for use across various future patterns of behavior, in potentially unpredictable ways, with varying frequency, and in the context of multiple tasks and environmental conditions. In this perspective article, we review and discuss the implications of recent evidence that optimal movement variability, which previously had been associated with adaptable motor behavior, contains a specific complex nonlinear feature known as "multifractality." SUMMARY OF KEY POINTS: Multifractal movement fluctuation patterns reflect robust physiologic interactivity occurring within the movement system across multiple time scales. Such patterns provide conceptual support for the idea that patterns of motor behavior occurring in the moment are inextricably linked in complex, physiologic ways to patterns of motor behavior occurring over much longer periods. The human movement system appears to be particularly tuned to multifractal fluctuation patterns and exhibits the ability to reorganize its output in response to external stimulation embedded with multifractal features. RECOMMENDATIONS FOR CLINICAL PRACTICE: As a fundamental feature of human movement, multifractality opens new avenues for conceptualizing the link between physiologic interactivity and adaptive capacity. Preliminary evidence supporting the positive influence of multifractal rhythmic auditory stimulation on the gait patterns of individuals with Parkinson disease is used to illustrate how physical therapy interventions might be devised to specifically target the adaptive capacity of the human movement system.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A183).


Assuntos
Transtornos dos Movimentos/reabilitação , Reabilitação Neurológica , Dinâmica não Linear , Modalidades de Fisioterapia , Humanos
12.
Exp Brain Res ; 234(2): 511-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26525712

RESUMO

Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, are believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study, we therefore investigated the effect of optic flow on tactile-stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetries were similar in the two groups, suggesting that temporal parameters are not modified by optic flow. However, whereas the TC group displayed significant stance time asymmetries during the post-treadmill session, such aftereffects were absent in the VRT group. The results indicated that the enhanced transfer resulting from exposure to plantar cutaneous vibration during adaptation was alleviated by optic flow information. The presence of visual self-motion information may have reduced proprioceptive gain during learning. Thus, during overground walking, the learned proprioceptive split-belt pattern is more rapidly overridden by visual input due to its increased relative gain. The results suggest that when visual stimulation is provided during adaptive training, the system acquires the novel movement dynamics while maintaining the ability to flexibly adapt to different environments.


Assuntos
Adaptação Fisiológica/fisiologia , Atividade Motora/fisiologia , Fluxo Óptico/fisiologia , Desempenho Psicomotor/fisiologia , Comportamento Espacial/fisiologia , Tato/fisiologia , Adulto , Teste de Esforço/métodos , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Fatores de Tempo , Adulto Jovem
13.
Respir Res ; 16: 31, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25849481

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by the frequent association of disease outside the lung. The objective of this study was to determine the presence of biomechanical gait abnormalities in COPD patients compared to healthy controls while well rested and without rest. METHODS: Patients with COPD (N = 17) and aged-matched, healthy controls (N = 21) walked at their self-selected pace down a 10-meter walkway while biomechanical gait variables were collected. A one-minute rest was given between each of the five collected trials to prevent tiredness (REST condition). Patients with COPD then walked at a self-selected pace on a treadmill until the onset of self-reported breathlessness or leg tiredness. Subjects immediately underwent gait analysis with no rest between each of the five collected trials (NO REST condition). Statistical models with and without covariates age, gender, and smoking history were used. RESULTS: After adjusting for covariates, COPD patients demonstrated more ankle power absorption in mid-stance (P = 0.006) than controls during both conditions. Both groups during NO REST demonstrated increased gait speed (P = 0.04), stride length (P = 0.03), and peak hip flexion (P = 0.04) with decreased plantarflexion moment (P = 0.04) and increased knee power absorption (P = 0.04) as compared to REST. A significant interaction revealed that peak ankle dorsiflexion moment was maintained from REST to NO REST for COPD but increased for controls (P < 0.01). Stratifying by disease severity did not alter these findings, except that step width decreased in NO REST as compared to REST (P = 0.01). Standardized effect sizes of significant effects varied from 0.5 to 0.98. CONCLUSIONS: Patients with COPD appear to demonstrate biomechanical gait changes at the ankle as compared to healthy controls. This was seen not only in increased peak ankle power absorption during no rest but was also demonstrated by a lack of increase in peak ankle dorsiflexion moment from the REST to the NO REST condition as compared to the healthy controls. Furthermore, a wider step width has been associated with fall risk and this could account for the increased incidence of falls in patients with COPD.


Assuntos
Tornozelo/fisiopatologia , Transtornos Neurológicos da Marcha/etiologia , Marcha , Doença Pulmonar Obstrutiva Crônica/complicações , Idoso , Fenômenos Biomecânicos , Estudos de Casos e Controles , Teste de Esforço/métodos , Tolerância ao Exercício , Feminino , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Fadiga Muscular , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fatores de Tempo , Caminhada
14.
Exp Brain Res ; 233(10): 3005-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169104

RESUMO

Patterns of human locomotion are highly adaptive and flexible and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 min of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated-measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant group differences were observed overground. Step and swing time asymmetries learned on the split-belt treadmill were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern.


Assuntos
Adaptação Fisiológica/fisiologia , Marcha/fisiologia , Propriocepção/fisiologia , Desempenho Psicomotor/fisiologia , Percepção do Tato/fisiologia , Transferência de Experiência/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Adulto Jovem
15.
J Appl Biomech ; 36(3): 125, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163921
16.
Pediatr Phys Ther ; 27(1): 16-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25401455

RESUMO

PURPOSE: To investigate whether focused attention (FA) changes over time as sitting postural control improves and whether an impairment in sitting postural control affects the development of FA in children with cerebral palsy (CP). METHODS: Nineteen children with CP, mean ages 21.47 months, were assessed for FA and sitting scores pre- and postintervention. RESULTS: Longest, total, and global FA increased and frequency of FA decreased in children who achieved independent sitting. However, children who achieved mobility postintervention exhibited a decrease in longest FA and an increase in frequency of FA. CONCLUSION: Sitting postural control and the development of FA appear associated in children with CP. The increase in FA may signal a key opportunity for learning and attending to objects. However, the time of early mobility may interrupt these long periods of attention, resulting in less sustained attention to objects.


Assuntos
Atenção , Paralisia Cerebral/reabilitação , Desenvolvimento Infantil , Modalidades de Fisioterapia , Equilíbrio Postural , Postura , Pré-Escolar , Cognição , Feminino , Humanos , Lactente , Masculino , Destreza Motora , Fatores de Tempo
17.
Nonlinear Dynamics Psychol Life Sci ; 19(4): 345-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26375932

RESUMO

Dexterous action, as conceptualized by Bernstein in his influential ecological analysis of human behavior, is revealed in the ability to flexibly generate behaviors that are adaptively tailored to the demands of the context in which they are embedded. Conceived as complex adaptive behavior, dexterity depends upon the qualities of robustness and degeneracy, and is supported by the functional complexity of the agent-environment system. Using Bernstein's and Gibson's ecological analyses of behavior situated in natural environments as conceptual touchstones, we consider the hypothesis that complex adaptive behavior capitalizes upon general principles of self-organization. Here, we outline a perspective in which the complex interactivity of nervous-system, body, and environment is revealed as an essential resource for adaptive behavior. From this perspective, we consider the implications for interpreting the functionality and dysfunctionality of human behavior. This paper demonstrates that, optimal variability, the topic of this special issue, is a logical consequence of interpreting the functionality of human behavior as complex adaptive behavior.


Assuntos
Adaptação Psicológica/fisiologia , Atividade Motora/fisiologia , Fenômenos Biomecânicos , Meio Ambiente , Humanos , Dinâmica não Linear
18.
Exp Brain Res ; 232(9): 2797-806, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24792502

RESUMO

In this study, we explored whether gaze and posture would exhibit coordination with the motion of a presented visual stimulus, specifically with regard to the complexity of the motion structure. Fourteen healthy adults viewed a set of four visual stimulus motion conditions, in both self-selected and semi-tandem stance, during which the stimulus moved horizontally across a screen, with position updated to follow a sine, chaos, surrogate, or random noise trajectory. Posture was measured using a standard force platform in self-selected and semi-tandem stance conditions while gaze was recorded using image-based eye-tracking equipment. Cross-correlation confirmed the continuous coordination of gaze with each type of stimulus motion, with increasing lag as stimulus motion complexity increased. Correlation dimension and approximate entropy were used to assess the complexity of the measured gaze and posture behaviors, with these values compared against those of the actual stimulus via ANOVA and dependent t tests. We found that gaze behavior was particularly sensitive to the complexity of the stimulus motion, according to both metrics. Posture seemed to be unaffected by stimulus motion viewing; however, different stance conditions did exhibit differences in posture metrics. Our results support an evolving understanding of how vision is used for determining perception and action.


Assuntos
Atenção/fisiologia , Fixação Ocular/fisiologia , Percepção de Movimento/fisiologia , Postura/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Análise de Variância , Feminino , Humanos , Masculino , Estimulação Luminosa , Estatística como Assunto , Adulto Jovem
19.
Chaos ; 24(1): 013140, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24697402

RESUMO

The presence of chaos in walking is considered to provide a stable, yet adaptable means for locomotion. This study examined whether lower limb amputation and subsequent prosthetic rehabilitation resulted in a loss of complexity in amputee gait. Twenty-eight individuals with transtibial amputation participated in a 6 week, randomized cross-over design study in which they underwent a 3 week adaptation period to two separate prostheses. One prosthesis was deemed "more appropriate" and the other "less appropriate" based on matching/mismatching activity levels of the person and the prosthesis. Subjects performed a treadmill walking trial at self-selected walking speed at multiple points of the adaptation period, while kinematics of the ankle were recorded. Bilateral sagittal plane ankle motion was analyzed for underlying complexity through the pseudoperiodic surrogation analysis technique. Results revealed the presence of underlying deterministic structure in both prostheses and both the prosthetic and sound leg ankle (discriminant measure largest Lyapunov exponent). Results also revealed that the prosthetic ankle may be more likely to suffer loss of complexity than the sound ankle, and a "more appropriate" prosthesis may be better suited to help restore a healthy complexity of movement within the prosthetic ankle motion compared to a "less appropriate" prosthesis (discriminant measure sample entropy). Results from sample entropy results are less likely to be affected by the intracycle periodic dynamics as compared to the largest Lyapunov exponent. Adaptation does not seem to influence complexity in the system for experienced prosthesis users.


Assuntos
Amputados/reabilitação , Tornozelo/fisiopatologia , Membros Artificiais , Modelos Biológicos , Desenho de Prótese , Caminhada , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Phys Occup Ther Pediatr ; 34(2): 197-212, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23901882

RESUMO

This longitudinal study focused on the interaction of developing sitting postural control with look time, which served as a measure for cognitive processing. Twenty-eight typically developing infants and 16 infants with motor delays were evaluated using center-of-pressure measures to assess stability of sitting postural control and videography to assess look time at objects, at three progressive stages of sitting development. Results indicated that look time decreased significantly (p < .001) in conjunction with a significant increase in postural stability (p < .001) in both groups as sitting progressed to independence. Infants with motor delays showed significantly longer looks when compared to typical infants (p = .02) at the middle stage of sitting. We conclude that developmental changes in look time are related to changes in sitting postural control, and infants with motor delay may have greater difficulty looking during emerging postural control skills in sitting. Early interventionists may use look time as an indicator of sitting effort and cognitive processing during assessment and program planning.


Assuntos
Desenvolvimento Infantil/fisiologia , Transtornos das Habilidades Motoras/fisiopatologia , Transtornos das Habilidades Motoras/reabilitação , Equilíbrio Postural/fisiologia , Visão Ocular/fisiologia , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA