RESUMO
Autism spectrum disorders (ASDs) are highly heritable and result in abnormal repetitive behaviors and impairment in communication and cognitive skills. Previous studies have focused on the genetic correlation between ASDs and other neuropsychiatric disorders, but an in-depth understanding of the correlation to other disorders is required. We conducted an extensive meta-analysis of common variants identified in ASDs by genome-wide association studies (GWAS) and compared it to the consensus genes and single nucleotide polymorphisms (SNPs) of Schizophrenia (SCZ). We found approximately 75% of the GWAS genes that are associated with ASD are also associated with SCZ. We further investigated the cellular phenotypes of neurons derived from induced pluripotent stem cell (iPSC) models in ASD and SCZ. Our findings revealed that ASD and SCZ neurons initially follow divergent developmental trajectories compared to control neurons. However, despite these early diametrical differences, both ASD and SCZ neurons ultimately display similar deficits in synaptic activity as they mature. This significant genetic overlap between ASD and SCZ, coupled with the convergence towards similar synaptic deficits, highlights the intricate interplay of genetic and developmental factors in shaping the shared underlying mechanisms of these complex neurodevelopmental and neuropsychiatric disorders.
RESUMO
Schizophrenia affects approximately 1% of the world population. Genetics, epigenetics, and environmental factors are known to play a role in this psychiatric disorder. While there is a high concordance in monozygotic twins, about half of twin pairs are discordant for schizophrenia. To address the question of how and when concordance in monozygotic twins occur, we have obtained fibroblasts from two pairs of schizophrenia discordant twins (one sibling with schizophrenia while the second one is unaffected by schizophrenia) and three pairs of healthy twins (both of the siblings are healthy). We have prepared iPSC models for these 3 groups of patients with schizophrenia, unaffected co-twins, and the healthy twins. When the study started the co-twins were considered healthy and unaffected but both the co-twins were later diagnosed with a depressive disorder. The reprogrammed iPSCs were differentiated into hippocampal neurons to measure the neurophysiological abnormalities in the patients. We found that the neurons derived from the schizophrenia patients were less arborized, were hypoexcitable with immature spike features, and exhibited a significant reduction in synaptic activity with dysregulation in synapse-related genes. Interestingly, the neurons derived from the co-twin siblings who did not have schizophrenia formed another distinct group that was different from the neurons in the group of the affected twin siblings but also different from the neurons in the group of the control twins. Importantly, their synaptic activity was not affected. Our measurements that were obtained from schizophrenia patients and their monozygotic twin and compared also to control healthy twins point to hippocampal synaptic deficits as a central mechanism in schizophrenia.
Assuntos
Células-Tronco Pluripotentes Induzidas , Neurônios , Esquizofrenia , Transmissão Sináptica , Gêmeos Monozigóticos , Gêmeos Monozigóticos/genética , Humanos , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Masculino , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Transmissão Sináptica/fisiologia , Transmissão Sináptica/genética , Adulto , Neurônios/metabolismo , Hipocampo/metabolismo , Pessoa de Meia-Idade , Fibroblastos/metabolismo , Irmãos , Doenças em Gêmeos/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologiaRESUMO
Bipolar disorder (BD) is a neuropsychiatric mood disorder manifested by recurrent episodes of mania and depression. More than half of BD patients are non-responsive to lithium, the first-line treatment drug, complicating BD clinical management. Given its unknown etiology, it is pertinent to understand the genetic signatures that lead to variability in lithium response. We discovered a set of differentially expressed genes (DEGs) from the lymphoblastoid cell lines (LCLs) of 10 controls and 19 BD patients belonging mainly to the immunoglobulin gene family that can be used as potential biomarkers to diagnose and treat BD. Importantly, we trained machine learning algorithms on our datasets that predicted the lithium response of BD subtypes with minimal errors, even when used on a different cohort of 24 BD patients acquired by a different laboratory. This proves the scalability of our methodology for predicting lithium response in BD and for a prompt and suitable decision on therapeutic interventions.
Assuntos
Transtorno Bipolar , Lítio , Humanos , Lítio/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transtorno Bipolar/diagnóstico , Genes de Imunoglobulinas , Compostos de Lítio/farmacologia , Compostos de Lítio/uso terapêutico , Linhagem CelularRESUMO
Smith-Magenis Syndrome (SMS) is a rare genetic disorder, characterized by intellectual disability (ID), behavioral impairments, and sleep disturbances, as well as multiple organ anomalies in some affected individuals. The syndrome is caused by a deletion in the chromosome band around 17p11.2, including the Retinoic Acid Induced 1 (RAI1) gene, a multifaceted transcriptional regulator that modulates the expression of genes involved in cellular proliferation and neurodevelopment. This gene has a positive role in regulating BDNF and, importantly, affects several cell mechanisms and pathways such as the nigro-striatal pathway, which is crucial for motor function. Parkinson's disease (PD) is one of the most common neurodegenerative diseases in older populations. It is characterized by various physical symptoms including tremors, loss of balance, bradykinesia, and a stooping posture. We present a case study of a patient diagnosed with both SMS and early-onset PD (at the age of 49). The association between both conditions is as yet ambiguous. Genome-wide association studies (GWAS) implicate an association between the RAI1 gene and PD. Similarly, the co-existence of both SMS and PD in the patient suggests a possible association between RAI1 copy number variations (CNVs) and PD, further indicating that RAI1 has strong implications for PD pathogenesis. Our results suggest that RAI1 CNVs and the pathophysiology of PD may be related, underscoring the need for further research in this field. Therefore, caregivers of SMS patients should pay careful attention to the possibility of their patients developing EOPD and should consider starting treatment for PD as soon as the first symptoms appear.
Assuntos
Doença de Parkinson , Síndrome de Smith-Magenis , Humanos , Síndrome de Smith-Magenis/genética , Doença de Parkinson/genética , Pessoa de Meia-Idade , Masculino , Variações do Número de Cópias de DNA , Transativadores/genética , Idade de Início , FemininoRESUMO
AIM: Bipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is often used as a first-line treatment. However, clinical studies have shown that Li is fully effective in roughly 30% of BD patients. Our goal in this study was to use features derived from information theory to improve the prediction of the patient's response to Li as well as develop a diagnostic algorithm for the disorder. METHODS: We have performed electrophysiological recordings in patient-derived dentate gyrus (DG) granule neurons (from a total of 9 subjects) for three groups: 3 control individuals, 3 BD patients who respond to Li treatment (LR), and 3 BD patients who do not respond to Li treatment (NR). The recordings were analyzed by the statistical tools of modern information theory. We used a Support Vector Machine (SVM) and Random forest (RF) classifiers with the basic electrophysiological features with additional information theory features. RESULTS: Information theory features provided further knowledge about the distribution of the electrophysiological entities and the interactions between the different features, which improved classification schemes. These newly added features significantly improved our ability to distinguish the BD patients from the control individuals (an improvement from 60% to 74% accuracy) and LR from NR patients (an improvement from 81% to 99% accuracy). CONCLUSION: The addition of Information theory-derived features provides further knowledge about the distribution of the parameters and their interactions, thus significantly improving the ability to discriminate and predict the LRs from the NRs and the patients from the controls.
Assuntos
Transtorno Bipolar , Lítio , Humanos , Lítio/uso terapêutico , Transtorno Bipolar/diagnóstico , Máquina de Vetores de Suporte , Compostos de Lítio/uso terapêutico , Teoria da InformaçãoRESUMO
The extracellular matrix (ECM) of the brain is a dynamic structure made up of a vast network of bioactive macromolecules that modulate cellular events. Structural, organizational, and functional changes in these macromolecules due to genetic variation or environmental stressors are thought to affect cellular functions and may result in disease. However, most mechanistic studies to date usually focus on the cellular aspects of diseases and pay less attention to the relevance of the processes governing the dynamic nature of the extracellular matrix in disease pathogenesis. Thus, due to the ECM's diversified biological roles, increasing interest in its involvement in disease, and the lack of sufficient compiled evidence regarding its relationship with Parkinson's disease (PD) pathology, we aimed to compile the existing evidence to boost the current knowledge on the area and provide refined guidance for the future research. Here, in this review, we gathered postmortem brain tissue and induced pluripotent stem cell (iPSC)-related studies from PubMed and Google Scholar to identify, summarize and describe common macromolecular alterations in the expression of brain ECM components in Parkinson's disease (PD). A literature search was conducted up until 10 February 2023. The overall hits from the database and manual search for proteomic and transcriptome studies were 1243 and 1041 articles, respectively. Following a full-text review, 10 articles from proteomic and 24 from transcriptomic studies were found to be eligible for inclusion. According to proteomic studies, proteins such as collagens, fibronectin, annexins, and tenascins were recognized to be differentially expressed in Parkinson's disease. Transcriptomic studies displayed dysregulated pathways including ECM-receptor interaction, focal adhesion, and cell adhesion molecules in Parkinson's disease. A limited number of relevant studies were accessed from our search, indicating that much work remains to be carried out to better understand the roles of the ECM in neurodegeneration and Parkinson's disease. However, we believe that our review will elicit focused primary studies and thus support the ongoing efforts of the discovery and development of diagnostic biomarkers as well as therapeutic agents for Parkinson's disease.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Proteômica , Encéfalo/metabolismo , Matriz Extracelular/metabolismo , Tenascina/metabolismoRESUMO
Mutations in the IQSEC2 gene are associated with drug-resistant, multifocal infantile and childhood epilepsy; autism; and severe intellectual disability (ID). We used induced pluripotent stem cell (iPSC) technology to obtain hippocampal neurons to investigate the neuropathology of IQSEC2-mediated disease. The neurons were characterized at three-time points during differentiation to assess developmental progression. We showed that immature IQSEC2 mutant dentate gyrus (DG) granule neurons were extremely hyperexcitable, exhibiting increased sodium and potassium currents compared to those of CRISPR-Cas9-corrected isogenic controls, and displayed dysregulation of genes involved in differentiation and development. Immature IQSEC2 mutant cultured neurons exhibited a marked reduction in the number of inhibitory neurons, which contributed further to hyperexcitability. As the mutant neurons aged, they became hypoexcitable, exhibiting reduced sodium and potassium currents and a reduction in the rate of synaptic and network activity, and showed dysregulation of genes involved in synaptic transmission and neuronal differentiation. Mature IQSEC2 mutant neurons were less viable than wild-type mature neurons and had reduced expression of surface AMPA receptors. Our studies provide mechanistic insights into severe infantile epilepsy and neurodevelopmental delay associated with this mutation and present a human model for studying IQSEC2 mutations in vitro.
Assuntos
Transtorno Autístico , Epilepsia , Deficiência Intelectual , Idoso , Transtorno Autístico/genética , Criança , Epilepsia/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Deficiência Intelectual/genética , Mutação/genética , Neurônios/metabolismo , Transmissão Sináptica/genéticaRESUMO
A homozygous mutation in the inositol monophosphatase 1 (IMPA1) gene was recently identified in nine individuals with severe intellectual disability (ID) and disruptive behavior. These individuals belong to the same family from Northeastern Brazil, which has 28 consanguineous marriages and 59 genotyped family members. IMPA1 is responsible for the generation of free inositol from de novo biosynthesis and recycling from inositol polyphosphates and participates in the phosphatidylinositol signaling pathway. To understand the role of IMPA1 deficiency in ID, we generated induced pluripotent stem cells (iPSCs) from patients and neurotypical controls and differentiated these into hippocampal dentate gyrus-like neurons and astrocytes. IMPA1-deficient neuronal progenitor cells (NPCs) revealed substantial deficits in proliferation and neurogenic potential. At low passage NPCs (P1 to P3), we observed cell cycle arrest, apoptosis, progressive change to a glial morphology and reduction in neuronal differentiation. These observations were validated by rescuing the phenotype with myo-inositol supplemented media during differentiation of patient-derived iPSCs into neurons and by the reduction of neurogenic potential in control NPCs-expressing shIMPA1. Transcriptome analysis showed that NPCs and neurons derived from ID patients have extensive deregulation of gene expression affecting pathways necessary for neurogenesis and upregulation of gliogenic genes. IMPA1 deficiency did not affect cell cycle progression or survival in iPSCs and glial progenitor cells or astrocyte differentiation. Therefore, this study shows that the IMPA1 mutation specifically affects NPC survival and neuronal differentiation.
Assuntos
Deficiência Intelectual , Neurogênese , Monoéster Fosfórico Hidrolases , Diferenciação Celular/genética , Humanos , Deficiência Intelectual/genética , Mutação , Neurogênese/genética , Monoéster Fosfórico Hidrolases/genéticaRESUMO
Bipolar disorder (BD) is a psychiatric condition characterized by depressive and manic episodes that affect 2% of the world population. The first-line long-term treatment for mood stabilization is lithium (Li). Induced pluripotent stem cell modeling of BD using hippocampal dentate gyrus-like neurons derived from Li-responsive (LR) and Li-non-responsive (NR) patients previously showed neuronal hyperexcitability. Li treatment reversed hyperexcitability only on the LR neurons. In this study we searched for specific targets of Li resistance in NR neurons and found that the activity of Wnt/ß-catenin signaling pathway was severely affected, with a significant decrease in expression of LEF1. Li targets the Wnt/ß-catenin signaling pathway by inhibiting GSK-3ß and releasing ß-catenin that forms a nuclear complex with TCF/LEF1, activating the Wnt/ß-catenin transcription program. Therefore, we propose that downregulation of LEF1 may account for Li resistance in NR neurons. Our results show that valproic acid (VPA), a drug used to treat NR patients that also acts downstream of GSK-3ß, upregulated LEF1 and Wnt/ß-catenin gene targets, increased transcriptional activity of complex ß-catenin/TCF/LEF1, and reduced excitability in NR neurons. In addition, decreasing LEF1 expression in control neurons using shLEF1 caused hyperexcitability, confirming that the impact of VPA on excitability in NR neurons was connected to changes in LEF1 and in the Wnt/ß-catenin pathway. Our results suggest that LEF1 may be a useful target for the discovery of new drugs for BD treatment.
Assuntos
Transtorno Bipolar , Lítio , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Lítio/farmacologia , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Neurônios/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismoRESUMO
Bipolar disorder (BD) and schizophrenia are psychiatric disorders that manifest unusual mental, behavioral, and emotional patterns leading to suffering and disability. These disorders span heterogeneous conditions with variable heredity and elusive pathophysiology. Mood stabilizers such as lithium and valproic acid (VPA) have been shown to be effective in BD and, to some extent in schizophrenia. This review highlights the efficacy of lithium and VPA treatment in several randomized, controlled human trials conducted in patients suffering from BD and schizophrenia. Furthermore, we also address the importance of using induced pluripotent stem cells (iPSCs) as a disease model for mirroring the disease's phenotypes. In BD, iPSC-derived neurons enabled finding an endophenotype of hyperexcitability with increased hyperpolarizations. Some of the disease phenotypes were significantly alleviated by lithium treatment. VPA studies have also reported rescuing the Wnt/ß-catenin pathway and reducing activity. Another significant contribution of iPSC models can be attributed to studying the molecular etiologies of schizophrenia such as abnormal differentiation of patient-derived neural stem cells, decreased neuronal connectivity and neurite number, impaired synaptic function, and altered gene expression patterns. Overall, despite significant advances using these novel models, much more work remains to fully understand the mechanisms by which these disorders affect the patients' brains.
Assuntos
Antimaníacos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Modelos Biológicos , Animais , Humanos , Técnicas In VitroRESUMO
Mutations in the KCNT1 (Slack, KNa1.1) sodium-activated potassium channel produce severe epileptic encephalopathies. Expression in heterologous systems has shown that the disease-causing mutations give rise to channels that have increased current amplitude. It is not known, however, whether such gain of function occurs in human neurons, nor whether such increased KNa current is expected to suppress or increase the excitability of cortical neurons. Using genetically engineered human induced pluripotent stem cell (iPSC)-derived neurons, we have now found that sodium-dependent potassium currents are increased several-fold in neurons bearing a homozygous P924L mutation. In current-clamp recordings, the increased KNa current in neurons with the P924L mutation acts to shorten the duration of action potentials and to increase the amplitude of the afterhyperpolarization that follows each action potential. Strikingly, the number of action potentials that were evoked by depolarizing currents as well as maximal firing rates were increased in neurons expressing the mutant channel. In networks of spontaneously active neurons, the mean firing rate, the occurrence of rapid bursts of action potentials, and the intensity of firing during the burst were all increased in neurons with the P924L Slack mutation. The feasibility of an increased KNa current to increase firing rates independent of any compensatory changes was validated by numerical simulations. Our findings indicate that gain-of-function in Slack KNa channels causes hyperexcitability in both isolated neurons and in neural networks and occurs by a cell-autonomous mechanism that does not require network interactions.SIGNIFICANCE STATEMENTKCNT1 mutations lead to severe epileptic encephalopathies for which there are no effective treatments. This study is the first demonstration that a KCNT1 mutation increases the Slack current in neurons. It also provides the first explanation for how this increased potassium current induces hyperexcitability, which could be the underlining factor causing seizures.
Assuntos
Epilepsia/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Mutação/fisiologia , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Canais de Potássio Ativados por Sódio/genética , Potenciais de Ação/fisiologia , Diferenciação Celular/fisiologia , Epilepsia/fisiopatologia , Células HEK293 , HumanosRESUMO
Several lines of evidence implicate serotonin in the etiology of multiple psychiatric disorders, especially mood disorders, such as major depressive disorder (MDD) and bipolar disorder (BD). Much of our current understanding of biological mechanisms underlying serotonergic alterations in mood disorders comes from animal studies. Innovation in induced pluripotent stem cell and transdifferentiation technologies for deriving neurons from adult humans has enabled the study of disease-relevant cellular phenotypes in vitro. In this context, human serotonergic neurons can now be generated using three recently published methodologies. In this mini-review, we broadly discuss evidence linking altered serotonergic neurotransmission in MDD and BD and focus on recently published methods for generating human serotonergic neurons in vitro.
Assuntos
Transtorno Bipolar/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Modelos Neurológicos , Neurônios Serotoninérgicos/fisiologia , Serotonina/fisiologia , Adulto , Animais , Técnicas de Cultura de Células , Transdiferenciação Celular , Humanos , Camundongos , Transmissão SinápticaRESUMO
BACKGROUND: Down syndrome incidence in humans increases dramatically with maternal age. This is mainly the result of increased meiotic errors, but factors such as differences in abortion rate may play a role as well. Since the meiotic error rate increases almost exponentially after a certain age, its contribution to the overall incidence aneuploidy may mask the contribution of other processes. RESULTS: To focus on such selection mechanisms we investigated transmission in trisomic females, using data from mouse models and from Down syndrome humans. In trisomic females the a-priori probability for trisomy is independent of meiotic errors and thus approximately constant in the early embryo. Despite this, the rate of transmission of the extra chromosome decreases with age in females of the Ts65Dn and, as we show, for the Tc1 mouse models for Down syndrome. Evaluating progeny of 73 Tc1 births and 112 Ts65Dn births from females aged 130 days to 250 days old showed that both models exhibit a 3-fold reduction of the probability to transmit the trisomy with increased maternal ageing. This is concurrent with a 2-fold reduction of litter size with maternal ageing. Furthermore, analysis of previously reported 30 births in Down syndrome women shows a similar tendency with an almost three fold reduction in the probability to have a Down syndrome child between a 20 and 30 years old Down syndrome woman. CONCLUSIONS: In the two types of mice models for Down syndrome that were used for this study, and in human Down syndrome, older females have significantly lower probability to transmit the trisomy to the offspring. Our findings, taken together with previous reports of decreased supportive environment of the older uterus, add support to the notion that an older uterus negatively selects the less fit trisomic embryos.
Assuntos
Síndrome de Down/epidemiologia , Trissomia/genética , Adolescente , Adulto , Fatores Etários , Animais , Modelos Animais de Doenças , Síndrome de Down/genética , Feminino , Humanos , Idade Materna , Camundongos , Mães , Gravidez , Fatores de Risco , Adulto JovemRESUMO
Schizophrenia symptomatology includes negative symptoms and cognitive impairment. Several studies have linked schizophrenia with the PDE4 family of enzymes due to their genetic association and function in cognitive processes such as long-term potentiation. We conducted a systematic gene expression meta-analysis of four PDE4 genes (PDE4A-D) in 10 brain sample datasets (437 samples) and three blood sample datasets (300 samples). Subsequently, we measured mRNA levels in iPSC-derived hippocampal dentate gyrus neurons generated from fibroblasts of three groups: healthy controls, healthy monozygotic twins (MZ), and their MZ siblings with schizophrenia. We found downregulation of PDE4B in brain tissues, further validated by independent data of the CommonMind consortium (515 samples). Interestingly, the downregulation signal was present in a subgroup of the patients, while the others showed no differential expression or even upregulation. Notably, PDE4A, PDE4B, and PDE4D exhibited upregulation in iPSC-derived neurons compared to healthy controls, whereas in blood samples, PDE4B was found to be upregulated while PDE4A was downregulated. While the precise mechanism and direction of altered PDE4 expression necessitate further investigation, the observed multilevel differential expression across the brain, blood, and iPSC-derived neurons compellingly suggests the involvement of PDE4 genes in the pathophysiology of schizophrenia.
Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Células-Tronco Pluripotentes Induzidas , Neurônios , Esquizofrenia , Esquizofrenia/genética , Esquizofrenia/sangue , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Feminino , AdultoRESUMO
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. Primary symptoms of PD arise with the loss of dopaminergic (DA) neurons in the Substantia Nigra Pars Compacta, but PD also affects the hippocampus and cortex, usually in its later stage. Approximately 15% of PD cases are familial with a genetic mutation. Two of the most associated genes with autosomal recessive (AR) early-onset familial PD are PINK1 and PRKN. In vitro studies of these genetic mutations are needed to understand the neurophysiological changes in patients' neurons that may contribute to neurodegeneration. In this work, we generated and differentiated DA and hippocampal neurons from human induced pluripotent stem cells (hiPSCs) derived from two patients with a double mutation in their PINK1 and PRKN (one homozygous and one heterozygous) genes and assessed their neurophysiology compared to two healthy controls. We showed that the synaptic activity of PD neurons generated from patients with the PINK1 and PRKN mutations is impaired in the hippocampus and dopaminergic neurons. Mutant dopaminergic neurons had enhanced excitatory post-synaptic activity. In addition, DA neurons with the homozygous mutation of PINK1 exhibited more pronounced electrophysiological differences compared to the control neurons. Signaling network analysis of RNA sequencing results revealed that Focal adhesion and ECM receptor pathway were the top two upregulated pathways in the mutant PD neurons. Our findings reveal that the phenotypes linked to PINK1 and PRKN mutations differ from those from other PD mutations, suggesting a unique interplay between these two mutations that drives different PD mechanisms.
RESUMO
Parkinson's disease (PD) is a neurodegenerative disease with both genetic and sporadic origins. In this study, we investigated the electrophysiological properties, synaptic activity, and gene expression differences in dopaminergic (DA) neurons derived from induced pluripotent stem cells (iPSCs) of healthy controls, sporadic PD (sPD) patients, and PD patients with E326K-GBA1 mutations. Our results demonstrate reduced sodium currents and synaptic activity in DA neurons derived from PD patients with E326K-GBA1 mutations, suggesting a potential contribution to PD pathophysiology. We also observed distinct electrophysiological alterations in sPD DA neurons, which included a decrease in synaptic currents. RNA sequencing analysis revealed unique dysregulated pathways in sPD neurons and E326K-GBA1 neurons, further supporting the notion that molecular mechanisms driving PD may differ between PD patients. In agreement with our previous reports, Extracellular matrix and Focal adhesion pathways were among the top dysregulated pathways in DA neurons from sPD patients and from patients with E326K-GBA1 mutations. Overall, our study further confirms that impaired synaptic activity is a convergent functional phenotype in DA neurons derived from PD patients across multiple genetic mutations as well as sPD. At the transcriptome level, we find that the brain extracellular matrix is highly involved in PD pathology across multiple PD-associated mutations as well as sPD.
RESUMO
The receptor tyrosine kinase Tyro3 is abundantly expressed in neurons of the neocortex, hippocampus, and striatum, but its role in these cells is unknown. We found that neuronal expression of this receptor was markedly up-regulated in the postnatal mouse neocortex immediately prior to the final development of glutamatergic synapses. In the absence of Tyro3, cortical and hippocampal synapses never completed end-stage differentiation and remained electrophysiologically and ultrastructurally immature. Tyro3-/- cortical neurons also exhibited diminished plasma membrane expression of the GluA2 subunits of AMPA-type glutamate receptors, which are essential to mature synaptic function. Correspondingly, GluA2 membrane insertion in wild-type neurons was stimulated by Gas6, a Tyro3 ligand widely expressed in the postnatal brain. Behaviorally, Tyro3-/- mice displayed learning enhancements in spatial recognition and fear-conditioning assays. Together, these results demonstrate that Tyro3 promotes the functional maturation of glutamatergic synapses by driving plasma membrane translocation of GluA2 AMPA receptor subunits.
RESUMO
INTRODUCTION: Mnemonic discrimination (MD), the ability to discriminate new stimuli from similar memories, putatively involves dentate gyrus pattern separation. Since lithium may normalize dentate gyrus functioning in lithium-responsive bipolar disorder (BD), we hypothesized that lithium treatment would be associated with better MD in lithium-responsive BD patients. METHODS: BD patients (N = 69; NResponders = 16 [23 %]) performed the Continuous Visual Memory Test (CVMT), which requires discriminating between novel and previously seen images. Before testing, all patients had prophylactic lithium responsiveness assessed over ≥1 year of therapy (with the Alda Score), although only thirty-eight patients were actively prescribed lithium at time of testing (55 %; 12/16 responders, 26/53 nonresponders). We then used computational modelling to extract patient-specific MD indices. Linear models were used to test how (A) lithium treatment, (B) lithium responsiveness via the continuous Alda score, and (C) their interaction, affected MD. RESULTS: Superior MD performance was associated with lithium treatment exclusively in lithium-responsive patients (Lithium x AldaScore ß = 0.257 [SE 0.078], p = 0.002). Consistent with prior literature, increased age was associated with worse MD (ß = -0.03 [SE 0.01], p = 0.005). LIMITATIONS: Secondary pilot analysis of retrospectively collected data in a cross-sectional design limits generalizability. CONCLUSION: Our study is the first to examine MD performance in BD. Lithium is associated with better MD performance only in lithium responders, potentially due to lithium's effects on dentate gyrus granule cell excitability. Our results may influence the development of behavioural probes for dentate gyrus neuronal hyperexcitability in BD.
Assuntos
Transtorno Bipolar , Lítio , Humanos , Lítio/uso terapêutico , Lítio/farmacologia , Transtorno Bipolar/tratamento farmacológico , Projetos Piloto , Estudos Retrospectivos , Estudos Transversais , Compostos de Lítio/uso terapêuticoRESUMO
Autism spectrum disorder (ASD) is characterized by social and neurocognitive impairments, with mutations of the SHANK3 gene being prominent in patients with monogenic ASD. Using the InsG3680 mouse model with a Shank3 mutation seen in humans, we revealed an unknown role for Shank3 in postsynaptic oligodendrocyte (OL) features, similar to its role in neurons. This was shown by impaired molecular and physiological glutamatergic traits of InsG3680-derived primary OL cultures. In vivo, InsG3680 mice exhibit significant reductions in the expression of key myelination-related transcripts and proteins, along with deficits in myelin ultrastructure, white matter, axonal conductivity, and motor skills. Last, we observed significant impairments, with clinical relevance, in induced pluripotent stem cell-derived OLs from a patient with the InsG3680 mutation. Together, our study provides insight into Shank3's role in OLs and reveals a mechanism of the crucial connection of myelination to ASD pathology.
Assuntos
Transtorno do Espectro Autista , Modelos Animais de Doenças , Ácido Glutâmico , Células-Tronco Pluripotentes Induzidas , Mutação , Bainha de Mielina , Proteínas do Tecido Nervoso , Oligodendroglia , Transdução de Sinais , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos , Oligodendroglia/metabolismo , Bainha de Mielina/metabolismo , Ácido Glutâmico/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismoRESUMO
Avoiding potentially harmful, and consuming safe food is crucial for the survival of living organisms. However, the perceived valence of sensory information can change following conflicting experiences. Pleasurability and aversiveness are two crucial parameters defining the perceived valence of a taste and can be impacted by novelty. Importantly, the ability of a given taste to serve as the conditioned stimulus (CS) in conditioned taste aversion (CTA) is dependent on its valence. Activity in anterior insula (aIC) Layer IV-VI pyramidal neurons projecting to the basolateral amygdala (BLA) is correlated with and necessary for CTA learning and retrieval, as well as the expression of neophobia toward novel tastants, but not learning taste familiarity. Yet, the cellular mechanisms underlying the updating of taste valence representation in this specific pathway are poorly understood. Here, using retrograde viral tracing and whole-cell patch-clamp electrophysiology in trained mice, we demonstrate that the intrinsic properties of deep-lying Layer IV-VI, but not superficial Layer I-III aIC-BLA neurons, are differentially modulated by both novelty and valence, reflecting the subjective predictability of taste valence arising from prior experience. These correlative changes in the profile of intrinsic properties of LIV-VI aIC-BLA neurons were detectable following both simple taste experiences, as well as following memory retrieval, extinction learning, and reinstatement.