Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(20): 11258-11276, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37791873

RESUMO

Mutations in the Fused in Sarcoma (FUS) gene cause the familial and progressive form of amyotrophic lateral sclerosis (ALS). FUS is a nuclear RNA-binding protein involved in RNA processing and the biogenesis of a specific set of microRNAs. Here we report that Drosha and two previously uncharacterized Drosha-dependent miRNAs are strong modulators of FUS expression and prevent the cytoplasmic segregation of insoluble mutant FUS in vivo. We demonstrate that depletion of Drosha mitigates FUS-mediated degeneration, survival and motor defects in Drosophila. Mutant FUS strongly interacts with Drosha and causes its cytoplasmic mis-localization into the insoluble FUS inclusions. Reduction in Drosha levels increases the solubility of mutant FUS. Interestingly, we found two Drosha dependent microRNAs, miR-378i and miR-6832-5p, which differentially regulate the expression, solubility and cytoplasmic aggregation of mutant FUS in iPSC neurons and mammalian cells. More importantly, we report different modes of action of these miRNAs against mutant FUS. Whereas miR-378i may regulate mutant FUS inclusions by preventing G3BP-mediated stress granule formation, miR-6832-5p may affect FUS expression via other proteins or pathways. Overall, our research reveals a possible association between ALS-linked FUS mutations and the Drosha-dependent miRNA regulatory circuit, as well as a useful perspective on potential ALS treatment via microRNAs.


Assuntos
Proteínas de Drosophila , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H , MicroRNAs , Ribonuclease III , Animais , Esclerose Lateral Amiotrófica/metabolismo , Drosophila/genética , Drosophila/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Doenças Neurodegenerativas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Humanos , Ribonuclease III/metabolismo , Proteínas de Drosophila/metabolismo
2.
EMBO Rep ; 22(5): e51740, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33738926

RESUMO

Stress granules (SGs) are dynamic condensates associated with protein misfolding diseases. They sequester stalled mRNAs and signaling factors, such as the mTORC1 subunit raptor, suggesting that SGs coordinate cell growth during and after stress. However, the molecular mechanisms linking SG dynamics and signaling remain undefined. We report that the chaperone Hsp90 is required for SG dissolution. Hsp90 binds and stabilizes the dual-specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3) in the cytosol. Upon Hsp90 inhibition, DYRK3 dissociates from Hsp90 and becomes inactive. Inactive DYRK3 is subjected to two different fates: it either partitions into SGs, where it is protected from irreversible aggregation, or it is degraded. In the presence of Hsp90, DYRK3 is active and promotes SG disassembly, restoring mTORC1 signaling and translation. Thus, Hsp90 links stress adaptation and cell growth by regulating the activity of a key kinase involved in condensate disassembly and translation restoration.


Assuntos
Grânulos Citoplasmáticos , Transdução de Sinais , Citoplasma , Grânulos Citoplasmáticos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação , RNA Mensageiro/metabolismo
3.
Hum Mol Genet ; 28(17): 2835-2850, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31108504

RESUMO

The fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) is characterized by a profound loss of motor neurons (MNs). Until now only riluzole minimally extends life expectancy in ALS, presumably by inhibiting glutamatergic neurotransmission and calcium overload of MNs. Therefore, the aim of this study was to investigate the glutamate receptor properties and key aspects of intracellular calcium dynamics in induced pluripotent stem cell (iPSC)-derived MNs from ALS patients with C9orf72 (n = 4 cell lines), fused in sarcoma (FUS) (n = 9), superoxide dismutase 1 (SOD1) (n = 3) or transactive response DNA-binding protein 43 (TDP43) (n = 3) mutations as well as healthy (n = 7 cell lines) and isogenic controls (n = 3). Using calcium imaging, we most frequently observed spontaneous transients in mutant C9orf72 MNs. Basal intracellular calcium levels and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced signal amplitudes were elevated in mutant TDP43 MNs. Besides, a majority of mutant TDP43 MNs responded to 3.5-dihydroxyphenylglycine as metabotropic glutamate receptor agonist. Quantitative real-time PCR demonstrated significantly increased expression levels of AMPA and kainate receptors in mutant FUS cells compared to healthy and isogenic controls. Furthermore, the expression of kainate receptors and voltage gated calcium channels in mutant C9orf72 MNs as well as metabotropic glutamate receptors in mutant SOD1 cells was markedly elevated compared to controls. Our data of iPSC-derived MNs from familial ALS patients revealed several mutation-specific alterations in glutamate receptor properties and calcium dynamics that could play a role in ALS pathogenesis and may lead to future translational strategies with individual stratification of neuroprotective ALS treatments.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Mutação , Receptores de Glutamato/metabolismo , Esclerose Lateral Amiotrófica/diagnóstico , Biomarcadores , Proteína C9orf72/genética , Sinalização do Cálcio , Proteínas de Ligação a DNA/genética , Suscetibilidade a Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1/genética
4.
Nat Rev Genet ; 15(9): 625-39, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25069490

RESUMO

Tractable and accurate disease models are essential for understanding disease pathogenesis and for developing new therapeutics. As stem cells are capable of self-renewal and differentiation, they are ideally suited both for generating these models and for obtaining the large quantities of cells required for drug development and transplantation therapies. Although proof of principle for the use of adult stem cells and embryonic stem cells in disease modelling has been established, induced pluripotent stem cells (iPSCs) have demonstrated the greatest utility for modelling human diseases. Furthermore, combining gene editing with iPSCs enables the generation of models of genetically complex disorders.


Assuntos
Doença/genética , Genoma Humano/genética , Células-Tronco Pluripotentes Induzidas/patologia , Diferenciação Celular , Humanos , Mutação , Edição de RNA/genética
5.
Proc Natl Acad Sci U S A ; 114(11): E2243-E2252, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28246330

RESUMO

Rapid and efficient protocols to generate oligodendrocytes (OL) from human induced pluripotent stem cells (iPSC) are currently lacking, but may be a key technology to understand the biology of myelin diseases and to develop treatments for such disorders. Here, we demonstrate that the induction of three transcription factors (SOX10, OLIG2, NKX6.2) in iPSC-derived neural progenitor cells is sufficient to rapidly generate O4+ OL with an efficiency of up to 70% in 28 d and a global gene-expression profile comparable to primary human OL. We further demonstrate that iPSC-derived OL disperse and myelinate the CNS of Mbpshi/shiRag-/- mice during development and after demyelination, are suitable for in vitro myelination assays, disease modeling, and screening of pharmacological compounds potentially promoting oligodendroglial differentiation. Thus, the strategy presented here to generate OL from iPSC may facilitate the studying of human myelin diseases and the development of high-throughput screening platforms for drug discovery.


Assuntos
Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Fatores de Transcrição/genética , Animais , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Morte Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Análise por Conglomerados , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Expressão Ectópica do Gene , Perfilação da Expressão Gênica , Humanos , Camundongos , Mutação , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Estresse Oxidativo , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/ultraestrutura , Fatores de Transcrição/metabolismo , Transcriptoma , Proteínas tau/genética , Proteínas tau/metabolismo
6.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967368

RESUMO

Amyotropic lateral sclerosis (ALS) is a lethally progressive and irreversible neurodegenerative disease marked by apparent death of motor neurons present in the spinal cord, brain stem and motor cortex. While more and more gene mutants being established for genetic ALS, the vast majority suffer from sporadic ALS (>90%). It has been challenging, thus, to model sporadic ALS which is one reason why the underlying pathophysiology remains elusive and has stalled the development of therapeutic strategies of this progressive motor neuron disease. To further unravel these pathological signaling pathways, human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs) from FUS- and SOD1 ALS patients and healthy controls were systematically compared to independent published datasets. Here through this study we created a gene profile of ALS by analyzing the DEGs, the Kyoto encyclopedia of Genes and Genomes (KEGG) pathways, the interactome and the transcription factor profiles (TF) that would identify altered molecular/functional signatures and their interactions at both transcriptional (mRNAs) and translational levels (hub proteins and TFs). Our findings suggest that FUS and SOD1 may develop from dysregulation in several unique pathways and herpes simplex virus (HSV) infection was among the topmost predominant cellular pathways connected to FUS and not to SOD1. In contrast, SOD1 is mainly characterized by alterations in the metabolic pathways and alterations in the neuroactive-ligand-receptor interactions. This suggests that different genetic ALS forms are singular diseases rather than part of a common spectrum. This is important for patient stratification clearly pointing towards the need for individualized medicine approaches in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Proteína FUS de Ligação a RNA , Superóxido Dismutase-1 , Idoso , Esclerose Lateral Amiotrófica/classificação , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Herpes Simples/genética , Herpes Simples/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Simplexvirus/genética , Simplexvirus/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Transcriptoma
7.
Int J Mol Sci ; 21(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443559

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most common and devastating motor neuron (MN) disease. Its pathophysiological cascade is still enigmatic. More than 90% of ALS patients suffer from sporadic ALS, which makes it specifically demanding to generate appropriate model systems. One interesting aspect considering the seeding, spreading and further disease development of ALS is the cerebrospinal fluid (CSF). We therefore asked whether CSF from sporadic ALS patients is capable of causing disease typical changes in human patient-derived spinal MN cultures and thus could represent a novel model system for sporadic ALS. By using induced pluripotent stem cell (iPSC)-derived MNs from healthy controls and monogenetic forms of ALS we could demonstrate a harmful effect of ALS-CSF on healthy donor-derived human MNs. Golgi fragmentation-a typical finding in lower organism models and human postmortem tissue-was induced solely by addition of ALS-CSF, but not control-CSF. No other neurodegenerative hallmarks-including pathological protein aggregation-were found, underpinning Golgi fragmentation as early event in the neurodegenerative cascade. Of note, these changes occurred predominantly in MNs, the cell type primarily affected in ALS. We thus present a novel way to model early features of sporadic ALS.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Complexo de Golgi/patologia , Neurônios Motores/patologia , Agregação Patológica de Proteínas , Medula Espinal/fisiopatologia , Adulto , Esclerose Lateral Amiotrófica/metabolismo , Líquido Cefalorraquidiano , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Medula Espinal/metabolismo
8.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151030

RESUMO

Chorea acanthocytosis (ChAc), an ultra-rare devastating neurodegenerative disease, is caused by mutations in the VPS13A gene, which encodes for the protein chorein. Affected patients suffer from chorea, orofacial dyskinesia, epilepsy, parkinsonism as well as peripheral neuropathy. Although medium spinal neurons of the striatum are mainly affected, other regions are impaired as well over the course of the disease. Animal studies as well as studies on human erythrocytes suggest Lynkinase inhibition as valuable novel opportunity to treat ChAc. In order to investigate the peripheral neuropathy aspect, we analyzed induced pluripotent stem cell derived midbrain/hindbrain cell cultures from ChAc patients in vitro. We observed dendritic microtubule fragmentation. Furthermore, by using in vitro live cell imaging, we found a reduction in the number of lysosomes and mitochondria, shortened mitochondria, an increase in retrograde transport and hyperpolarization as measured with the fluorescent probe JC-1. Deep phenotyping pointed towards a proximal axonal deterioration as the primary axonal disease phenotype. Interestingly, pharmacological interventions, which proved to be successful in different models of ChAc, were ineffective in treating the observed axonal phenotypes. Our data suggests that treatment of this multifaceted disease might be cell type and/or neuronal subtype specific, and thus necessitates precision medicine in this ultra-rare disease.


Assuntos
Axônios/patologia , Dendritos/patologia , Doença dos Neurônios Motores/patologia , Mutação , Neuroacantocitose/fisiopatologia , Neurônios/patologia , Proteínas de Transporte Vesicular/metabolismo , Adulto , Axônios/metabolismo , Células Cultivadas , Dendritos/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Lisossomos/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Modelos Biológicos , Doença dos Neurônios Motores/etiologia , Doença dos Neurônios Motores/metabolismo , Neurônios/metabolismo , Proteínas de Transporte Vesicular/genética
9.
Acta Neuropathol ; 138(1): 67-84, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30937520

RESUMO

Amyotrophic lateral sclerosis (ALS) is a lethal disease characterized by motor neuron degeneration and associated with aggregation of nuclear RNA-binding proteins (RBPs), including FUS. How FUS aggregation and neurodegeneration are prevented in healthy motor neurons remain critically unanswered questions. Here, we use a combination of ALS patient autopsy tissue and induced pluripotent stem cell-derived neurons to study the effects of FUS mutations on RBP homeostasis. We show that FUS' tendency to aggregate is normally buffered by interacting RBPs, but this buffering is lost when FUS mislocalizes to the cytoplasm due to ALS mutations. The presence of aggregation-prone FUS in the cytoplasm causes imbalances in RBP homeostasis that exacerbate neurodegeneration. However, enhancing autophagy using small molecules reduces cytoplasmic FUS, restores RBP homeostasis and rescues motor function in vivo. We conclude that disruption of RBP homeostasis plays a critical role in FUS-ALS and can be treated by stimulating autophagy.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Autofagia/fisiologia , Neurônios Motores/patologia , Citoplasma/metabolismo , Humanos , Corpos de Inclusão/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Mutação/genética , Proteína FUS de Ligação a RNA/metabolismo
10.
Mol Cell Neurosci ; 92: 137-148, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30081151

RESUMO

Mutations in the VPS13A gene leading to depletion of chorein protein are causative for Chorea Acanthocytosis (ChAc), a rare devastating disease, which is characterized by neurodegeneration mainly affecting the basal ganglia as well as deformation of erythrocytes. Studies on patient blood samples highlighted a dysregulation of Actin cytoskeleton caused by downregulation of the PI3K pathway and hyper-activation of Lyn-kinase, but to what extent these mechanisms are present and relevant in the affected neurons remains elusive. We studied the effects of the absence of chorein protein on the morphology and trafficking of lysosomal and mitochondrial compartments in ChAc patient-specific induced pluripotent stem cell-derived medium spiny neurons (MSNs). Numbers of both organelle types were reduced in ChAc MSNs. Mitochondrial length was shortened and their membrane potential showed significant hyperpolarization. In contrast to previous studies, showing Lyn kinase dependency of ChAc-associated pathological events in erythrocytes, pharmacological studies demonstrate that the impairment of mitochondria and lysosomes are independent of Lyn kinase activity. These data suggest that impairment in mitochondrial and lysosomal morphologies in MSNs is not mediated by a dysregulation of Lyn kinase and thus the pathological pathways in ChAc might be - at least in part - cell-type specific.


Assuntos
Lisossomos/metabolismo , Mitocôndrias/metabolismo , Neuroacantocitose/metabolismo , Quinases da Família src/metabolismo , Adulto , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Lisossomos/patologia , Masculino , Potencial da Membrana Mitocondrial , Pessoa de Meia-Idade , Mitocôndrias/patologia , Neuroacantocitose/genética , Neuroacantocitose/patologia , Transdução de Sinais , Proteínas de Transporte Vesicular/genética
11.
Angew Chem Int Ed Engl ; 58(46): 16617-16628, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31454140

RESUMO

The Hedgehog (Hh) signaling pathway is crucial for vertebrate embryonic development, tissue homeostasis and regeneration. Hh signaling is upregulated in basal cell carcinoma and medulloblastoma and Hh pathway inhibitors targeting the Smoothened (SMO) protein are in clinical use. However, the signaling cascade is incompletely understood and novel druggable proteins in the pathway are in high demand. We describe the discovery of the Hh-pathway modulator Pipinib by means of cell-based screening. Target identification and validation revealed that Pipinib selectively inhibits phosphatidylinositol 4-kinase IIIß (PI4KB) and suppresses GLI-mediated transcription and Hh target gene expression by impairing SMO translocation to the cilium. Therefore, inhibition of PI4KB and, consequently, reduction in phosphatidyl-4-phosphate levels may be considered an alternative approach to inhibit SMO function and thus, Hedgehog signaling.


Assuntos
Antineoplásicos/farmacologia , Proteínas Hedgehog/antagonistas & inibidores , Antígenos de Histocompatibilidade Menor/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cílios/metabolismo , Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Morfolinas/farmacologia , Osteogênese/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Purinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Relação Estrutura-Atividade , Tiofenos/química
12.
J Neurosci ; 36(47): 12027-12043, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881786

RESUMO

Chorea-acanthocytosis (ChAc) is a fatal neurological disorder characterized by red blood cell acanthocytes and striatal neurodegeneration. Recently, severe cell membrane disturbances based on depolymerized cortical actin and an elevated Lyn kinase activity in erythrocytes from ChAc patients were identified. How this contributes to the mechanism of neurodegeneration is still unknown. To gain insight into the pathophysiology, we established a ChAc patient-derived induced pluripotent stem cell model and an efficient differentiation protocol providing a large population of human striatal medium spiny neurons (MSNs), the main target of neurodegeneration in ChAc. Patient-derived MSNs displayed enhanced neurite outgrowth and ramification, whereas synaptic density was similar to controls. Electrophysiological analysis revealed a pathologically elevated synaptic activity in ChAc MSNs. Treatment with the F-actin stabilizer phallacidin or the Src kinase inhibitor PP2 resulted in the significant reduction of disinhibited synaptic currents to healthy control levels, suggesting a Src kinase- and actin-dependent mechanism. This was underlined by increased G/F-actin ratios and elevated Lyn kinase activity in patient-derived MSNs. These data indicate that F-actin stabilization and Src kinase inhibition represent potential therapeutic targets in ChAc that may restore neuronal function. SIGNIFICANCE STATEMENT: Chorea-acanthocytosis (ChAc) is a fatal neurodegenerative disease without a known cure. To gain pathophysiological insight, we newly established a human in vitro model using skin biopsies from ChAc patients to generate disease-specific induced pluripotent stem cells (iPSCs) and developed an efficient iPSC differentiation protocol providing striatal medium spiny neurons. Using patch-clamp electrophysiology, we detected a pathologically enhanced synaptic activity in ChAc neurons. Healthy control levels of synaptic activity could be restored by treatment of ChAc neurons with the F-actin stabilizer phallacidin and the Src kinase inhibitor PP2. Because Src kinases are involved in bridging the membrane to the actin cytoskeleton by membrane protein phosphorylation, our data suggest an actin-dependent mechanism of this dysfunctional phenotype and potential treatment targets in ChAc.


Assuntos
Actinas/metabolismo , Corpo Estriado/patologia , Neurônios GABAérgicos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Neuroacantocitose/metabolismo , Neuroacantocitose/patologia , Quinases da Família src/metabolismo , Adulto , Diferenciação Celular , Células Cultivadas , Corpo Estriado/metabolismo , Feminino , Neurônios GABAérgicos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios , Transmissão Sináptica , Quinases da Família src/antagonistas & inibidores
13.
Stem Cells ; 34(6): 1563-75, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26946488

RESUMO

Despite decades of research on amyotrophic lateral sclerosis (ALS), there is only one approved drug, which minimally extends patient survival. Here, we investigated pathophysiological mechanisms underlying ALS using motor neurons (MNs) differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying mutations in FUS or SOD1. Patient-derived MNs were less active and excitable compared to healthy controls, due to reduced Na(+) /K(+) ratios in both ALS groups accompanied by elevated potassium channel (FUS) and attenuated sodium channel expression levels (FUS, SOD1). ALS iPSC-derived MNs showed elevated endoplasmic reticulum stress (ER) levels and increased caspase activation. Treatment with the FDA approved drug 4-Aminopyridine (4AP) restored ion-channel imbalances, increased neuronal activity levels and decreased ER stress and caspase activation. This study provides novel pathophysiological data, including a mechanistic explanation for the observed hypoexcitability in patient-derived MNs and a new therapeutic strategy to provide neuroprotection in MNs affected by ALS. Stem Cells 2016;34:1563-1575.


Assuntos
4-Aminopiridina/farmacologia , Esclerose Lateral Amiotrófica/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/patologia , Esclerose Lateral Amiotrófica/genética , Caspases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Canais Iônicos/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação/genética , Neuroproteção/efeitos dos fármacos , Fenótipo , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase/genética , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
14.
Angew Chem Int Ed Engl ; 56(42): 13021-13025, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28833911

RESUMO

Cell-based assays enable monitoring of small-molecule bioactivity in a target-agnostic manner and help uncover new biological mechanisms. Subsequent identification and validation of the small-molecule targets, typically employing proteomics techniques, is very challenging and limited, in particular if the targets are membrane proteins. Herein, we demonstrate that the combination of cell-based bioactive-compound discovery with cheminformatic target prediction may provide an efficient approach to accelerate the process and render target identification and validation more efficient. Using a cell-based assay, we identified the pyrazolo-imidazole smoothib as a new inhibitor of hedgehog (Hh) signaling and an antagonist of the protein smoothened (SMO) with a novel chemotype. Smoothib targets the heptahelical bundle of SMO, prevents its ciliary localization, reduces the expression of Hh target genes, and suppresses the growth of Ptch+/- medulloblastoma cells.


Assuntos
Proteínas Hedgehog/metabolismo , Imidazóis/química , Animais , Sítios de Ligação , Linhagem Celular , Descoberta de Drogas , Células HEK293 , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Imidazóis/metabolismo , Imidazóis/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Células NIH 3T3 , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Domínios Proteicos , Pirazóis/química , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/antagonistas & inibidores , Receptor Smoothened/metabolismo , Alcaloides de Veratrum/química , Alcaloides de Veratrum/metabolismo
15.
Hum Mol Genet ; 23(8): 2005-22, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24271013

RESUMO

Neuronal ceroid lipofuscinosis (NCL) comprises ∼13 genetically distinct lysosomal disorders primarily affecting the central nervous system. Here we report successful reprograming of patient fibroblasts into induced pluripotent stem cells (iPSCs) for the two most common NCL subtypes: classic late-infantile NCL, caused by TPP1(CLN2) mutation, and juvenile NCL, caused by CLN3 mutation. CLN2/TPP1- and CLN3-iPSCs displayed overlapping but distinct biochemical and morphological abnormalities within the endosomal-lysosomal system. In neuronal derivatives, further abnormalities were observed in mitochondria, Golgi and endoplasmic reticulum. While lysosomal storage was undetectable in iPSCs, progressive disease subtype-specific storage material was evident upon neural differentiation and was rescued by reintroducing the non-mutated NCL proteins. In proof-of-concept studies, we further documented differential effects of potential small molecule TPP1 activity inducers. Fenofibrate and gemfibrozil, previously reported to induce TPP1 activity in control cells, failed to increase TPP1 activity in patient iPSC-derived neural progenitor cells. Conversely, nonsense suppression by PTC124 resulted in both an increase of TPP1 activity and attenuation of neuropathology in patient iPSC-derived neural progenitor cells. This study therefore documents the high value of this powerful new set of tools for improved drug screening and for investigating early mechanisms driving NCL pathogenesis.


Assuntos
Aminopeptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Glicoproteínas de Membrana/genética , Modelos Neurológicos , Chaperonas Moleculares/genética , Mutação/genética , Lipofuscinoses Ceroides Neuronais/genética , Serina Proteases/genética , Aminopeptidases/metabolismo , Western Blotting , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Eletrofisiologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Fenofibrato/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Genfibrozila/farmacologia , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Técnicas Imunoenzimáticas , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Serina Proteases/metabolismo , Tripeptidil-Peptidase 1
16.
Neurobiol Dis ; 82: 420-429, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26253605

RESUMO

Autosomal-dominant mutations within the gene FUS (fused in sarcoma) are responsible for 5% of familial cases of amyotrophic lateral sclerosis (ALS). The FUS protein is physiologically mainly located in the nucleus, while cytoplasmic FUS aggregates are pathological hallmarks of FUS-ALS. Data from non-neuronal cell models and/or models using heterologous expression of FUS mutants suggest cytoplasmic FUS translocation as a pivotal initial event which leads to neurodegeneration depending on a second hit. Here we present the first human model of FUS-ALS using patient-derived neurons carrying endogenous FUS mutations leading to a benign (R521C) or a more severe clinical phenotype (frameshift mutation R495QfsX527). We thereby showed that the severity of the underlying FUS mutation determines the amount of cytoplasmic FUS accumulation and cellular vulnerability to exogenous stress. Cytoplasmic FUS inclusions formed spontaneously depending on both, severity of FUS mutation and neuronal aging. These aggregates showed typical characteristics of FUS-ALS including methylated FUS. Finally, neurodegeneration was not specific to layer V cortical neurons perfectly in line with the current model of disease spreading in ALS. Our study highlights the value and usefulness of patient-derived cell models in FUS-ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/patologia , Proteína FUS de Ligação a RNA/genética , Adulto , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Progressão da Doença , Feminino , Humanos , Corpos de Inclusão/patologia , Corpos de Inclusão/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Pessoa de Meia-Idade , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Mutação , Neurônios/fisiologia , Fenótipo , Proteína FUS de Ligação a RNA/metabolismo , Índice de Gravidade de Doença , Medula Espinal/patologia , Medula Espinal/fisiopatologia
17.
Biomedicines ; 12(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540253

RESUMO

Frontotemporal dementia (FTD) is a neurodegenerative disease characterized by the progressive loss of neurons mainly in the frontal and temporal lobes of the brain. Mutations (e.g., V337M, N297K) in the microtubule-associated protein TAU (MAPT) are responsible 5-20% of familial FTD cases and have been associated with defects in organelle trafficking that plays a critical role in the proper function of cells, including transport of essential molecules and degradation of waste products. Due to the critical role of TAU mutations in microtubule stabilization and organelle transportation, it is of great interest to study these molecular mechanisms to develop effective therapeutic strategies. Therefore, herein, we analyzed mitochondrial and lysosomal trafficking in disease-specific spinal motor neurons by using live cell imaging in undirected (uncompartmentalized) and directed (compartmentalized) cell culture systems. While V337M neurons only expressed 3R TAU, the N297K mutant neurons expressed both 3R and 4R TAU. Axonal trafficking was affected differentially in V337M and N297 MAPT mutated neurons. These findings suggest that the MAPT mutations V337M and N297K impaired axon physiology differentially, which highlights the need for mutation- and/or 3R/4R TAU-specific therapeutic approaches.

18.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38760174

RESUMO

Amyotrophic lateral sclerosis (ALS) leads to death within 2-5 yr. Currently, available drugs only slightly prolong survival. We present novel insights into the pathophysiology of Superoxide Dismutase 1 (SOD1)- and in particular Fused In Sarcoma (FUS)-ALS by revealing a supposedly central role of glycolic acid (GA) and D-lactic acid (DL)-both putative products of the Parkinson's disease associated glyoxylase DJ-1. Combined, not single, treatment with GA/DL restored axonal organelle phenotypes of mitochondria and lysosomes in FUS- and SOD1-ALS patient-derived motoneurons (MNs). This was not only accompanied by restoration of mitochondrial membrane potential but even dependent on it. Despite presenting an axonal transport deficiency as well, TDP43 patient-derived MNs did not share mitochondrial depolarization and did not respond to GA/DL treatment. GA and DL also restored cytoplasmic mislocalization of FUS and FUS recruitment to DNA damage sites, recently reported being upstream of the mitochondrial phenotypes in FUS-ALS. Whereas these data point towards the necessity of individualized (gene-) specific therapy stratification, it also suggests common therapeutic targets across different neurodegenerative diseases characterized by mitochondrial depolarization.


Assuntos
Esclerose Lateral Amiotrófica , Glicolatos , Ácido Láctico , Mitocôndrias , Proteína Desglicase DJ-1 , Proteína FUS de Ligação a RNA , Superóxido Dismutase-1 , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Glicolatos/metabolismo , Glicolatos/farmacologia , Mitocôndrias/metabolismo , Proteína Desglicase DJ-1/metabolismo , Proteína Desglicase DJ-1/genética , Ácido Láctico/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/genética , Potencial da Membrana Mitocondrial , Neurônios Motores/metabolismo , Lisossomos/metabolismo
19.
Biology (Basel) ; 13(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275734

RESUMO

The degeneration of axon terminals before the soma, referred to as "dying back", is a feature of Parkinson's disease (PD). Axonal assays are needed to model early PD pathogenesis as well as identify protective therapeutics. We hypothesized that defects in axon lysosomal trafficking as well as injury repair might be important contributing factors to "dying back" pathology in PD. Since primary human PD neurons are inaccessible, we developed assays to quantify axonal trafficking and injury repair using induced pluripotent stem cell (iPSC)-derived neurons with LRRK2 G2019S, which is one of the most common known PD mutations, and isogenic controls. We observed a subtle axonal trafficking phenotype that was partially rescued by a LRRK2 inhibitor. Mutant LRRK2 neurons showed increased phosphorylated Rab10-positive lysosomes, and lysosomal membrane damage increased LRRK2-dependent Rab10 phosphorylation. Neurons with mutant LRRK2 showed a transient increase in lysosomes at axotomy injury sites. This was a pilot study that used two patient-derived lines to develop its methodology; we observed subtle phenotypes that might correlate with heterogeneity in LRRK2-PD patients. Further analysis using additional iPSC lines is needed. Therefore, our axonal lysosomal assays can potentially be used to characterize early PD pathogenesis and test possible therapeutics.

20.
Cell Rep Med ; 5(5): 101546, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703766

RESUMO

Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by motor neuron (MN) loss. We previously discovered that macrophage migration inhibitory factor (MIF), whose levels are extremely low in spinal MNs, inhibits mutant SOD1 misfolding and toxicity. In this study, we show that a single peripheral injection of adeno-associated virus (AAV) delivering MIF into adult SOD1G37R mice significantly improves their motor function, delays disease progression, and extends survival. Moreover, MIF treatment reduces neuroinflammation and misfolded SOD1 accumulation, rescues MNs, and corrects dysregulated pathways as observed by proteomics and transcriptomics. Furthermore, we reveal low MIF levels in human induced pluripotent stem cell-derived MNs from familial ALS patients with different genetic mutations, as well as in post mortem tissues of sporadic ALS patients. Our findings indicate that peripheral MIF administration may provide a potential therapeutic mechanism for modulating misfolded SOD1 in vivo and disease outcome in ALS patients.


Assuntos
Esclerose Lateral Amiotrófica , Fatores Inibidores da Migração de Macrófagos , Neurônios Motores , Superóxido Dismutase-1 , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/patologia , Animais , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Camundongos Transgênicos , Dependovirus/genética , Modelos Animais de Doenças , Masculino , Mutação/genética , Feminino , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA