Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 60(1): 449-459, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33332100

RESUMO

The dynamics of the photodriven charge transfer-induced spin transition (CTIST) in two Fe/Co Prussian Blue Analogues (PBAs) are revealed by femtosecond IR and UV/vis pump-probe spectroscopy. Depending on temperature, the known tetranuclear square-type complex [Co2Fe2(CN)6(tp*)2(4,4'-dtbbpy)4](PF6)2 (1) exists in two electronic states. In acetonitrile solution, at <240 K, the low temperature (LT) phase is prevalent consisting of low-spin Fe(II) and low-spin Co(III), [FeIILSCoIIILS]2. Temperature rise is the reason behind thermally-induced CTIST toward the high temperature (HT) phase consisting of low-spin Fe(III) and high-spin Co(II), [FeIIILSCoIIHS]2, being prevalent at >300 K. Photoexcitation into the intervalence charge transfer (IVCT) band of the LT phase at 800 nm induces electron transfer in one Fe-Co edge of PBA 1 and produces a [FeIIILSCoIILS] intermediate which by spin-crossover (SCO) is stabilized within 400 fs to a long-lived (>1 ns) [FeIIILSCoIIHS] species. In contrast, IVCT excitation of the HT phase at 400 nm generates a [FeIILSCoIIIHS] species with a lifetime of 3.6 ps. Subsequent back-electron transfer populates the vibrationally hot ground state, which thermalizes within 8 ps. The newly synthesized dinuclear PBA, [CoFe(CN)3(tp*)(pz*4Lut)]ClO4 (2), provides a benchmark of the HT phase of 1, i.e., [FeIIILSCoIIHS], as verified by variable temperature magnetic susceptibility measurements and 57Fe Mössbauer spectroscopy. The photoinduced charge transfer dynamics of PBA 2 indeed are almost identical to that of the HT phase of PBA 1 with a lifetime of the excited [FeIILSCoIIIHS] species of 3.8 ps.

2.
J Am Chem Soc ; 142(14): 6717-6728, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32163715

RESUMO

Nickel(I) metalloradicals bear great potential for the reductive activation of challenging substrates but are often too unstable to be isolated. Similar chemistry may be enabled by nickel(II) hydrides that store the reducing equivalents in hydride bonds and reductively eliminate H2 upon substrate binding. Here we present a pyrazolate-based bis(ß-diketiminato) ligand [LPh]3- with bulky m-terphenyl substituents that can host two Ni-H units in close proximity. Complexes [LPh(NiII-H)2]- (3) are prone to intramolecular reductive H2 elimination, and an equilibrium between 3 and orthometalated dinickel(II) monohydride complexes 2 is evidenced. 2 is shown to form via intramolecular metal-metal cooperative phenyl group C(sp2)-H oxidative addition to the dinickel(I) intermediate [LPhNiI2]- (4). While NiI species have been implicated in catalytic C-H functionalization, discrete activation of C-H bonds at NiI complexes has rarely been described. The reversible H2 and C-H reductive elimination/oxidative addition equilibrium smoothly unmasks the powerful 2-electron reductant 4 from either 2 or 3, which is demonstrated by reaction with benzaldehyde. A dramatic cation effect is observed for the rate of interconversion of 2 and 3 and also for subsequent thermally driven formation of a twice orthometalated dinickel(II) complex 6. X-ray crystallographic and NMR titration studies indicate distinct interaction of the Lewis acidic cation with 2 and 3. The present system allows for the unmasking of a highly reactive [LPhNiI2]- intermediate 4 either via elimination of H2 from dihydride 3 or via reductive C-H elimination from monohydride 2. The latter does not release any H2 byproduct and adds a distinct platform for metal-metal cooperative two-electron substrate reductions while circumventing the isolation of any unstable superreduced form of the bimetallic scaffold.

3.
Chemistry ; 21(24): 8926-38, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25960319

RESUMO

Tuning of ligand properties is at the heart of influencing chemical reactivity and generating tailor-made catalysts. Herein, three series of complexes [Ru(L)(Cl)(X)]PF6 (X=DMSO, PPh3 , or CD3 CN) with tripodal ligands (L1-L5) containing pyridine and triazole arms are presented. Triazole-for-pyridine substitution and the substituent at the triazole systematically influence the redox behavior and photoreactivity of the complexes. The mechanism of the light-driven ligand exchange of the DMSO complexes in CD3 CN could be elucidated, and two seven-coordinate intermediates were identified. Finally, tuning of the ligand framework was applied to the catalytic oxygenation of alkanes, for which the DMSO complexes were the best catalysts and the yield improved with increasing number of triazole arms. These results thus show how click-derived ligands can be tuned on demand for catalytic processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA