Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Small ; 20(9): e2307611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37863821

RESUMO

Fullertubes, that is, fullerenes consisting of a carbon nanotube moiety capped by hemifullerene ends, are emerging carbon nanomaterials whose properties show both fullerene and carbon nanotube (CNT) traits. Albeit it may be expected that their electronic states show a certain resemblance to those of the extended nanotube, such a correlation has not yet been found or described. Here it shows a scanning tunneling microscopy (STM) and spectroscopy (STS) characterization of the adsorption, self-assembly, and electronic structure of 2D arrays of [5,5]-C90 fullertube molecules on two different noble metal surfaces, Ag(111) and Au(111). The results demonstrate that the shape of the molecular orbitals of the adsorbed fullertubes corresponds closely to those expected for isolated species on the grounds of density functional theory calculations. Moreover, a comparison between the electronic density profiles in the bands of the extended [5,5]-CNT and in the molecules reveals that some of the frontier orbitals of the fullertube molecules can be described as the result of the quantum confinement imposed by the hemifullerene caps to the delocalized band states in the extended CNT. The results thus provide a conceptual framework for the rational design of custom fullertube molecules and can potentially become a cornerstone in the understanding of these new carbon nanoforms.

2.
Cell Biochem Funct ; 42(2): e3963, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424684

RESUMO

Mycobacterium tuberculosis and nontuberculous mycobacteria such as Mycobacterium abscessus cause diseases that are becoming increasingly difficult to treat due to emerging antibiotic resistance. The development of new antimicrobial molecules is vital for combating these pathogens. Carbon nanomaterials (CNMs) are a class of carbon-containing nanoparticles with promising antimicrobial effects. Fullertubes (C90 ) are novel carbon allotropes with a structure unique among CNMs. The effects of fullertubes on any living cell have not been studied. In this study, we demonstrate that pristine fullertube dispersions show antimicrobial effects on Mycobacterium smegmatis and M. abscessus. Using scanning electron microscopy, light microscopy, and molecular probes, we investigated the effects of these CNMs on mycobacterial cell viability, cellular integrity, and biofilm formation. C90 fullertubes at 1 µM inhibited mycobacterial viability by 97%. Scanning electron microscopy revealed that the cell wall structure of M. smegmatis and M. abscessus was severely damaged within 24 h of exposure to fullertubes. Additionally, exposure to fullertubes nearly abrogated the acid-fast staining property of M. smegmatis. Using SYTO-9 and propidium iodide, we show that exposure to the novel fullertubes compromises the integrity of the mycobacterial cell. We also show that the permeability of the mycobacterial cell wall was increased after exposure to fullertubes from our assays utilizing the molecular probe dichlorofluorescein and ethidium bromide transport. C90 fullertubes at 0.37 µM and C60 fullerenes at 0.56 µM inhibited pellicle biofilm formation by 70% and 90%, respectively. This is the first report on the antimycobacterial activities of fullertubes and fullerenes.


Assuntos
Anti-Infecciosos , Fulerenos , Fulerenos/farmacologia , Mycobacterium smegmatis , Anti-Infecciosos/farmacologia , Biofilmes , Parede Celular
3.
J Am Chem Soc ; 145(48): 25942-25947, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37890151

RESUMO

We report the seminal experimental isolation and DFT characterization of pristine [5,5] C130-D5h(1) fullertubes. This achievement represents the largest soluble carbon molecule obtained in its pristine form. The [5,5] C130 species is the highest aspect ratio fullertube purified to date and now surpasses the recent gigantic [5,5] C120-D5d(1). In contrast to C90, C100, and C120 fullertubes, the longer C130-D5h has more nanotubular carbons (70) than end-cap fullerenyl atoms (60). Starting from 39,393 possible C130 isolated pentagon rule (IPR) structures and after analyzing polarizability, retention time, and UV-vis spectra, these three layers of data remarkably predict a single candidate isomer and fullertube, [5,5] C130-D5h(1). This structural assignment is augmented by atomic resolution STEM data showing distinctive and tubular "pill-like" structures with diameters and aspect ratios consistent with [5,5] C130-D5h(1) fullertubes. The high selectivity of the aminopropanol reaction with spheroidal fullerenes permits facile separation and removal of fullertubes from soot extracts. Experimental analyses (HPLC retention time, UV-vis, and STEM) were synergistically used (with polarizability and DFT property calculations) to down select and confirm the C130 fullertube structure. Achieving the isolation of a new [5,5] C130-D5h fullertube opens the door to application development and fundamental studies of electron confinement, fluorescence, and metallic character for a fullertube series of molecules with systematic tubular elongation. This [5,5] fullertube family also invites comparative studies with single-walled carbon nanotubes (SWCNTs), nanohorns (SWCNHs), and fullerenes.

4.
J Am Chem Soc ; 144(24): 10825-10829, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35675387

RESUMO

We report the fully fledged photophysical characterization of isomerically pure, empty-caged, tubular fullerenes D5h-C90 and D5d-C100 and compare their key properties. In particular, the focus was on cage sizes between 60 and 150 carbon atoms with D3, D3d/h, and D5d/h symmetry. The optical band gap of D5d-C100 is 1.65 eV, which is larger than 1.37 eV of D5h-C90. In stark contrast to the nonluminescent D5h-C90, D5d-C100 luminesces at room temperature. Transient absorption spectroscopy shows that photoexcited D5d-C100 is subject to a slow intersystem crossing that generates a triplet excited state. In contrast, a fast, nonradiative internal conversion governs the deactivation of D5h-C90: In this case, exploring the corresponding triplet excited state required triplet-triplet sensitization experiments with anthracene. Density functional theory calculations revealed the electronic structure of the fullertubes, and calculations are consistent with our experimental findings. The calculated band gap systematically decreases with the number of carbon atoms within the D3 and D3d/h series. In contrast, an oscillating behavior is noted within the series of D5d/h fullertubes. Finally, photoexcited D5d-C100 was found to undergo hole transfer with electron-donating triethylamines readily but not electron transfer with electron-accepting methyl viologens.

5.
J Am Chem Soc ; 144(36): 16287-16291, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36037095

RESUMO

We report the first experimental characterization of isomerically pure and pristine C120 fullertubes, [5,5] C120-D5d(1) and [10,0] C120-D5h(10766). These new molecules represent the highest aspect ratio fullertubes isolated to date; for example, the prior largest empty cage fullertube was [5,5] C100-D5d(1). This increase of 20 carbon atoms represents a gigantic leap in comparison to three decades of C60-C90 fullerene research. Moreover, the [10,0] C120-D5d(10766) fullertube has an end-cap derived from C80-Ih and is a new fullertube whose C40 end-cap has not yet been isolated experimentally. Theoretical and experimental analyses of anisotropic polarizability and UV-vis assign C120 isomer I as a [5,5] C120-D5d(1) fullertube. C120 isomer II matches a [10,0] C120-D5h(10766) fullertube. These structural assignments are further supported by Raman data showing metallic character for [5,5] C120-D5d(1) and nonmetallic character for C120-D5h(10766). STM imaging reveals a tubular structure with an aspect ratio consistent with a [5,5] C120-D5d(1) fullertube. With microgram quantities not amenable to crystallography, we demonstrate that DFT anisotropic polarizability, augmented by long-accepted experimental analyses (HPLC retention time, UV-vis, Raman, and STM) can be synergistically used (with DFT) to down select, predict, and assign C120 fullertube candidate structures. From 10 774 mathematically possible IPR C120 structures, this anisotropic polarizability paradigm is quite favorable to distinguish tubular structures from carbon soot. Identification of isomers I and II was surprisingly facile, i.e., two purified isomers for two possible structures of widely distinguishing features. These metallic and nonmetallic C120 fullertube isomers open the door to both fundamental research and application development.


Assuntos
Fulerenos , Fulerenos/química , Isomerismo
6.
Angew Chem Int Ed Engl ; 61(21): e202116727, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254698

RESUMO

A new isolation protocol was recently reported for highly purified metallic Fullertubes D5h -C90 , D3d -C96 , and D5d -C100, which exhibit unique electronic features. Here, we report the oxygen reduction electrocatalytic behavior of C60 , C70 (spheroidal fullerenes), and C90 , C96 , and C100 (tubular fullerenes) using a combination of experimental and theoretical approaches. C96 (a metal-free catalyst) displayed remarkable oxygen reduction reaction (ORR) activity, with an onset potential of 0.85 V and a halfway potential of 0.75 V, which are close to the state-of-the-art Pt/C benchmark catalyst values. We achieved an excellent power density of 0.75 W cm-2 using C96 as a modified cathode in a proton-exchange membrane fuel cell, comparable to other recently reported efficient metal-free catalysts. Combined band structure (experimentally calculated) and free-energy (DFT) investigations show that both favorable energy-level alignment active catalytic sites on the carbon cage are responsible for the superior activity of C96 .

7.
J Am Chem Soc ; 143(12): 4593-4599, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33733775

RESUMO

Although fullerenes were discovered nearly 35 years ago, scientists still struggle to isolate "single molecule" tubular fullerenes larger than C90. In similar fashion, there is a paucity of reports for pristine single-walled carbon nanotubes (SWNTs). In spite of Herculean efforts, the isolation and properties of pristine members of these carbonaceous classes remain largely unfulfilled. For example, the low abundance of spherical and tubular higher fullerenes in electric-arc extracts (<0.01-0.5%) and multiplicity of structural isomers remain a major challenge. Recently, a new isolation protocol for highly tubular fullerenes, also called f ullertubes, was reported. Herein, we describe spectroscopic characterization including 13C NMR, XPS, and Raman results for purified [5,5] fullertube family members, D5h-C90 and D5d-C100. In addition, DFT computational HOMO-LUMO gaps, polarizability indices, and electron density maps were also obtained. The Raman and 13C NMR results are consistent with semiconducting and metallic properties for D5h-C90 and D5d-C100, respectively. Our report suggests that short [5,5] fullertubes with aspect ratios of only ∼1.5-2 are metallic and could exhibit unique electronic properties.

8.
J Am Chem Soc ; 142(30): 12954-12965, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32586092

RESUMO

The tris- and tetra-adducts of M3N@Ih-C80 metallofullerenes were synthesized and characterized for the first time. The 1,3-dipolar cycloaddition (Prato reaction) of Y3N@Ih-C80 and Gd3N@Ih-C80 with an excess of N-ethylglycine and formaldehyde provided tris- and tetra-fulleropyrrolidine adducts in a regioselective manner. Purification by HPLC and analyses of the isolated peaks by NMR, MS, and vis-NIR spectra revealed that the major products were four tris- and one tetra-isomers for both Y3N@Ih-C80 and Gd3N@Ih-C80. Considering the large number of possible isomers (e.g., at least 1140 isomers for the tris-adduct), the limited number of isomers obtained indicated that the reactions proceeded with high regioselectivity. NMR analyses of the Y3N@Ih-C80 adducts found that the tris-adducts were all-[6,6]- or [6,6][6,6][5,6]-isomers and that some showed mutual isomerization or remained intact at room temperature. The tetra-adduct obtained as a major product was all-[6,6] and stable. For the structural elucidation of Gd3N@Ih-C80 tris- and tetra-adducts, density functional theory (DFT) calculations were performed to estimate the relative stabilities of tris- and tetra-adducts formed upon Prato functionalization of the most pyramidalized regions of the fullerene structure. The most stable structures corresponded to additions on the most pyramidalized (i.e., strained) bonds. Taking together the experimental vis-NIR spectra, NMR assignments, and the computed relative DFT stabilities of the potential tris- and tetra-adducts, the structures of the isolated adducts were elucidated. Electron resonance (ESR) measurements measurements of pristine, bis-, and tris-adducts of Gd3N@C80 suggested that the rotation of the endohedral metal cluster slowed upon increase of the addition numbers to C80 cage, which is favored for accommodating the Gd atoms of the relatively large Gd3N cluster inner space at the sp3 addition sites. This is presumably related to the high regioselectivity in the Prato addition reaction driven by the strain release of the Gd3N@C80 fullerene structure.

9.
J Am Chem Soc ; 142(36): 15614-15623, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32830484

RESUMO

We report a chemical separation method to isolate fullertubes: a new and soluble allotrope of carbon whose structure merges nanotube, graphene, and fullerene subunits. Fullertubes possess single-walled carbon nanotube belts resembling a rolled graphene midsection, but with half-fullerene end-caps. Unlike nanotubes, fullertubes are reproducible in structure, possess a defined molecular weight, and are soluble in pristine form. The high reactivity of amines with spheroidal fullerene cages enables their removal and allows a facile isolation of C96-D3d(3), C90-D5h(1), and C100-D5d(1) fullertubes. A nonchromatographic step (Stage 1) uses a selective reaction of carbon cages with aminopropanol to permit a highly enriched sample of fullertubes. Spheroidal fullerenes are reacted and removed by attaching water-soluble groups onto their cage surfaces. With this enriched (100-1000 times) fullertube mixture, Stage 2 becomes a simple HPLC collection with a single column. This two-stage separation approach permits fullertubes in scalable quantities. Characterization of purified C100-D5d(1) fullertubes is done with samples isolated in pristine and unfunctionalized form. Surprisingly, C60 and C100-D5d(1) are both purplish in solution. For X-ray crystallographic analysis, we used decapyrrylcorannulene (DPC). Isomerically purified C90 and C100 fullertubes were mixed with DPC to obtain black cocrystals of 2DPC{C90-D5h(1)}·4(toluene) and 2DPC{C100-D5d(1)}·4(toluene), respectively. A serendipitous outcome of this chemical separation approach is the enrichment and purification of several unreported larger carbon species, e.g., C120, C132, and C156. Isolation of these higher cage species represents a significant advance in the unknown experimental arena of C100-C200 structures. Our findings represent seminal experimental evidence for the existence of two mathematically predicted families of fullertubes: one family with an axial hexagon with the other series based on an axial pentagon ring. Fullertubes have been predicted theoretically, and herein is their experimental evidence, isolation, and initial characterization.

10.
J Am Chem Soc ; 141(28): 10988-10993, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31266302

RESUMO

The structures of two bis-ethylpyrrolidinoadducts of Gd3N@Ih-C80, obtained by regioselective 1,3-dipolar cycloadditions, were elucidated by single crystal X-ray, visible-near infrared (vis-NIR) spectra, studies on their thermal isomerization, and theoretical calculations. The structure of the minor-bis-adduct reveals a C2-symmetric carbon cage with [6,6][6,6]-addition sites and with an endohedral Gd3N cluster that is completely flattened. This is the first example of a crystal structure of Gd3N@Ih-C80 derivatives. The structure of the major-bis-adduct was inferred by the vis-NIR spectrum being corresponded to the structure of a previously reported major-bis-adduct of Y3N@Ih-C80 known to have an asymmetric [6,6][6,6]-structure. Based on experimental results showing that the minor-bis-adduct of Gd3N@Ih-C80 isomerized to the major-adduct, a possible second addition site was elucidated with support from density functional theory calculations.

11.
Chemistry ; 25(54): 12545-12551, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31268197

RESUMO

Purified samples of Ho3 N@C2 (22010)-C78 and Tb3 N@C2 (22010)-C78 have been isolated by two distinct processes from the rich array of fullerenes and endohedral fullerenes present in carbon soot from graphite rods doped with Ho2 O3 or Tb4 O7 . Crystallographic analysis of the endohedral fullerenes as cocrystals with Ni(OEP) (in which OEP is the dianion of octaethylporphyrin) shows that both molecules contain the chiral C2 (22010)-C78 cage. This cage does not obey the isolated pentagon rule (IPR) but has two sites where two pentagons share a common C-C bond. These pentalene units bind two of the metal ions, whereas the third metal resides near a hexagon of the cage. Inside the cages, the Ho3 N or Tb3 N unit is planar. Ho3 N@C2 (22010)-C78 and Tb3 N@C2 (22010)-C78 use the same cage previously found for Gd3 N@C2 (22010)-C78 rather than the IPR-obeying cage found in Sc3 N@D3h -C78 .

12.
Chemistry ; 24(51): 13479-13484, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30051509

RESUMO

A method has been developed for isolating a pure sample of Er2 C94 from the myriad of fullerenes and endohedral fullerenes that are formed in the electric arc process. Crystallographic analysis of Er2 C94 in a cocrystal formed with Ni(OEP) reveals that the molecule is the carbide Er2 C2 @D3 (85)-C92 . Crystals of Er2 C2 @D3 (85)-C92 ⋅Ni(octaethylporphyrin)⋅2 C7 H8 are isostructural with those of Sm2 @D3 (85)-C92 ⋅Ni(octaethylporphyrin)⋅2 (chlorobenzene). Comparisons are made between the four crystallographically characterized endohedrals (Er2 C2 @D3 (85)-C92 , Gd2 C2 @D3 (85)-C92 , La2 C2 @D3 (85)-C92 , and Sm2 @D3 (85)-C92 ) that utilize the chiral D3 (85)-C92 cage.

13.
Inorg Chem ; 55(1): 62-7, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26419421

RESUMO

While several nonchromatographic methods are available for the isolation and purification of endohedral fullerenes of the type M3N@Ih-C80, little work has been done that would allow other members of the M3N@C2n family to be isolated with minimal chromatography. Here, we report that Gd3N@D2(35)-C88 can be isolated from the multitude of endohedral and empty cage fullerenes present in carbon soot obtained by electric-arc synthesis using Gd2O3-doped graphite rods. The procedure developed utilizes successive precipitation with the Lewis acids CaCl2 and ZnCl2 followed by treatment with amino-functionalized silica gel. The structure of the product was identified by single-crystal X-ray diffraction.

14.
J Am Chem Soc ; 137(36): 11775-82, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26307907

RESUMO

In this work, we briefly report some attempts to control regioisomeric bisadditions on Sc3N@Ih-C80 and Lu3N@Ih-C80 using the tether-controlled multifunctionalization method. We then describe the use of independent (nontethered) bis-1,3-dipolar cycloaddition reactions and the characterization of 5 new bisadducts, 3 for Sc3N@C80 and 2 for Lu3N@C80, which have never been reported before. Unexpectedly and remarkably, 4 of these compounds exhibit relatively high symmetry and 2 of these bisadducts are the first examples of intrinsically chiral endohedral compounds, due to the addition pattern, not to the presence of chiral centers on the addends. Since an analysis of the statistically possible number of bisadduct isomers on an Ih-C80 cage has not been reported, we present it here.

15.
Chemistry ; 21(29): 10362-8, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26059441

RESUMO

By combining two chemical methods of purification, 4 mg of purified CeLu2 N@C80 was readily isolated from 500 mg of carbon soot extract without the use of recycling HPLC, a method which has previously been necessary to obtain pure samples of endohedral fullerenes. In stage 1, CeLu2 N@C80 was selectively precipitated by virtue of its low first oxidation potential (+0.01 V) and the judicious choice of MgCl2 as the Lewis acid precipitant. For stage 2, we used a stir and filter approach (SAFA), which employed the electron-rich NH2 groups immobilized on silica gel to selectively bind residual endohedrals and higher cage fullerenes that were contaminants from stage 1. Crystallographic analysis of CeLu2 N@C80 in the co-crystal CeLu2 N@Ih -C80 ⋅Ni(octaethylporphyrin)⋅2(toluene) reveals that the Ih -C80 cage is present with a pyramidalized CeLu2 N unit inside.

16.
Acc Chem Res ; 46(7): 1548-57, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23489255

RESUMO

Shortly after the discovery of the carbon fullerene allotrope, C60, researchers recognized that the hollow spheroidal shape could accommodate metal atoms, or clusters, which quickly led to the discovery of endohedral metallofullerenes (EMFs). In the past 2 decades, the unique features of EMFs have attracted broad interest in many fields, including inorganic chemistry, organic chemistry, materials chemistry, and biomedical chemistry. Some EMFs produce new metallic clusters that do not exist outside of a fullerene cage, and some other EMFs can boost the efficiency of magnetic resonance (MR) imaging 10-50-fold, in comparison with commercial contrast agents. In 1999, the Dorn laboratory discovered the trimetallic nitride template (TNT) EMFs, which consist of a trimetallic nitride cluster and a host fullerene cage. The TNT-EMFs (A3N@C2n, n = 34-55, A = Sc, Y, or lanthanides) are typically formed in relatively high yields (sometimes only exceeded by empty-cage C60 and C70, but yields may decrease with increasing TNT cluster size), and exhibit high chemical and thermal stability. In this Account, we give an overview of TNT-EMF research, starting with the discovery of these structures and then describing their synthesis and applications. First, we describe our serendipitous discovery of the first member of this class, Sc3N@Ih-C80. Second, we discuss the methodology for the synthesis of several TNT-EMFs. These results emphasize the importance of chemically adjusting plasma temperature, energy, and reactivity (CAPTEAR) to optimize the type and yield of TNT-EMFs produced. Third, we review the approaches that are used to separate and purify pristine TNT-EMF molecules from their corresponding product mixtures. Although we used high-performance liquid chromatography (HPLC) to separate TNT-EMFs in early studies, we have more recently achieved facile separation based on the reduced chemical reactivity of the TNT-EMFs. These improved production yields and separation protocols have allowed industrial researchers to scale up the production of TNT-EMFs for commercial use. Fourth, we summarize the structural features of individual members of the TNT-EMF class, including cage structures, cluster arrangement, and dynamics. Fifth, we illustrate typical functionalization reactions of the TNT-EMFs, particularly cycloadditions and radical reactions, and describe the characterization of their derivatives. Finally, we illustrate the unique magnetic and electronic properties of specific TNT-EMFs for biomedicine and molecular device applications.


Assuntos
Descoberta de Drogas/métodos , Fulerenos/química , Metais/química , Nitrogênio/química , Compostos Organometálicos/química , Conformação Molecular
17.
Inorg Chem ; 53(24): 12939-46, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25415432

RESUMO

We demonstrate the manipulation of the Lewis acid strength to selectively fractionate different types of Gd3N metallofullerenes that are present in complex mixtures. Carbon disulfide is used for all Lewis acid studies. CaCl2 exhibits the lowest reactivity but the highest selectivity by precipitating only those gadolinium metallofullerenes with the lowest first oxidation potentials. ZnCl2 selectively complexes Gd3N@C88 during the first 4 h of reaction. Reaction with ZnCl2 for an additional 7 days permits a selective precipitation of Gd3N@C84 as the dominant endohedral isolated. A third fraction is the filtrate, which possesses Gd3N@C86 and Gd3N@C80 as the two dominant metallofullerenes. The order of increasing reactivity and decreasing selectivity (left to right) is as follows: CaCl2 < ZnCl2 < NiCl2 < MgCl2 < MnCl2 < CuCl2 < WCl4 ≪ WCl6 < ZrCl4 < AlCl3 < FeCl3. As a group, CaCl2, ZnCl2, and NiCl2 are the weakest Lewis acids and have the highest selectivity because of their very low precipitation onsets, which are below +0.19 V (i.e., endohedrals with first oxidation potentials below +0.19 V are precipitated). For CaCl2, the precipitation threshold is estimated at a remarkably low value of +0.06 V. Because most endohedrals possess first oxidation potentials significantly higher than +0.06 V, CaCl2 is especially useful in its ability to precipitate only a select group of gadolinium metallofullerenes. The Lewis acids of intermediate reactivity (i.e., precipitation onsets estimated between +0.19 and +0.4 V) are MgCl2, MnCl2, CuCl2, and WCl4. The strongest Lewis acids (WCl6, ZrCl4, AlCl3, and FeCl3) are the least selective and tend to precipitate the entire family of gadolinium metallofullerenes. Tuning the Lewis acid for a specific type of endohedral should be useful in a nonchromatographic purification method. The ability to control which metallofullerenes are permitted to precipitate and which endohedrals would remain in solution is a key outcome of this work.


Assuntos
Fulerenos/química , Gadolínio/química , Ácidos de Lewis/química , Aminação , Precipitação Química , Dióxido de Silício/química
18.
Inorg Chem ; 52(16): 9606-12, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23952569

RESUMO

A typical arc-synthesis generates many types of fullerenes and endohedrals. Resulting soot extracts contain a complex mixture of >50 types of fullerenes, metallofullerenes, and their structural isomers. Prior to application development, novel separation methods are required to fractionate this rich array of metallic, metallic carbide, metallic nitride, and metallic oxide endohedrals, all of which can be present in a single, soot extract. Herein, we report the discovery of CuCl2 as a Lewis acid that will selectively precipitate only the more reactive members of each of these endohedral families. The more reactive Sc4O2@Ih-C80, Sc3C2@Ih-C80, and Sc3N@D3h-C78 endohedrals are quickly removed from extracts to greatly decrease the number of endohedrals present in a sample. Experiments indicate that enrichment factors of several orders of magnitude can be achieved within minutes of reaction time. CuCl2 also has sufficient selectivity to resolve and separate structural isomers, as demonstrated with Er2@C82 (isomer I, Cs(6)-C82 versus isomer III). The selective complexation of CuCl2 with fullerenes can be correlated to their first oxidation potential. We estimate a significantly lower threshold of precipitation for CuCl2 (<0.19 V) compared to stronger Lewis acids. Fullerenes and metallofullerenes having first oxidation potentials above 0.19 V tend to remain unreacted in solution. In contrast, species with first oxidation potentials below 0.19 V (vs Fc/Fc(+)) precipitate via complexation, and are easily decomplexed. CuCl2 is compared to Lewis acids having higher precipitation thresholds (e.g., FeCl3) in our goal to predict a priori which endohedrals would remain in solution versus which endohedral species would complex and precipitate. The ability to predict endohedral precipitation a priori is beneficial to the design of purification strategies for metallofullerenes.


Assuntos
Compostos Inorgânicos de Carbono/química , Cobre/química , Fulerenos/química , Compostos de Nitrogênio/química , Óxidos/química , Estrutura Molecular , Estereoisomerismo
19.
J Am Chem Soc ; 134(48): 19607-18, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22924339

RESUMO

The clusterfullerene Sc(4)O(2)@C(80) with a mixed redox state of scandium was found to be an exciting molecule for endohedral electrochemistry as demonstrated by means of an in situ electron spin resonance (ESR) spectroelectrochemical study of the spin density distribution in its electrochemically generated cation and anion radicals. The compound exhibits two reversible reduction and oxidation steps with a relatively small electrochemical gap of 1.10 V. The ESR spectra of the ion radicals have a rich hyperfine structure caused by two pairs of equivalent Sc atoms. The Sc-based hyperfine structure with large hyperfine coupling constants shows that both oxidation and reduction of Sc(4)O(2)@C(80) are in cavea redox processes, which is the subject of endohedral electrochemistry. The assignment of the experimentally determined a((45)Sc) values to the two types of Sc atoms in the Sc(4)O(2) cluster was accomplished by extended density functional theory and molecular dynamics simulations. Sc atoms adopting a divalent state in the neutral Sc(4)O(2)@C(80) exhibited an especially large coupling constant of 150.4 G in the cation radical, which is the record high a((45)Sc) value for Sc-based endohedral metallofullerenes. Such a high value is explained by the nature of the highest occupied molecular orbital (HOMO) localized on the six-atom Sc(4)O(2) cluster. This HOMO is a Sc-Sc bonding MO and hence has large contributions from the 4s atomic orbitals of Sc(II). We claim that ESR spectroelectrochemistry is an invaluable experimental tool in the studies of metal-metal bonding in endohedral metallofullerenes and in endohedral electrochemistry.

20.
Inorg Chem ; 51(24): 13096-102, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23214426

RESUMO

The successful preparation and isolation of the mixed-metal endohedral fullerene, LaSc(2)N@I(h)-C(80), and its structural characterization by single-crystal X-ray diffraction are reported. Results from chemically adjusting plasma temperature, energy, and reactivity (CAPTEAR) experiments indicate that a 10 wt % addition of Cu(NO(3))(2)·2.5H(2)O to a mixture of La(2)O(3) and Sc(2)O(3) decreases the amount of C(60) and C(70) found in soot extracts by an order of magnitude. By combining a stoichiometric 2-fold excess of La to Sc atoms in the plasma reactor, an extract containing a greater abundance of LaSc(2)N@I(h)-C(80) relative to Sc(3)N@I(h)-C(80) was obtained. Alternatively, the stir and filter approach (SAFA method) can be used to remove the empty cage fullerenes from a carbon soot sample prepared without using Cu(NO(3))(2)·2.5H(2)O. LaSc(2)N@I(h)-C(80) has been characterized by UV/vis absorption spectroscopy and by single-crystal X-ray diffraction. Ordered crystals with nearly identical orientations of the endohedral relative to the porphyrin have been obtained by cocrystallization of LaSc(2)N@I(h)-C(80) with either Ni(II)(OEP) or H(2)(OEP). The LaSc(2)N unit is planar, although earlier computations suggested that it would be pyramidal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA