Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 20(2): 234-242, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37973888

RESUMO

The efficacy of aminoglycoside antibiotics is waning due to the acquisition of diverse resistance mechanisms by bacteria. Among the most prevalent are aminoglycoside acetyltransferases (AACs) that inactivate the antibiotics through acetyl coenzyme A-mediated modification. Most AACs are members of the GCN5 superfamily of acyltransferases which lack conserved active site residues that participate in catalysis. ApmA is the first reported AAC belonging to the left-handed ß-helix superfamily. These enzymes are characterized by an essential active site histidine that acts as an active site base. Here we show that ApmA confers broad-spectrum aminoglycoside resistance with a molecular mechanism that diverges from other detoxifying left-handed ß-helix superfamily enzymes and canonical GCN5 AACs. We find that the active site histidine plays different functions depending on the acetyl-accepting aminoglycoside substrate. This flexibility in the mechanism of a single enzyme underscores the plasticity of antibiotic resistance elements to co-opt protein catalysts in the evolution of drug detoxification.


Assuntos
Aminoglicosídeos , Histidina , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Bactérias/metabolismo
2.
Nature ; 575(7784): 674-678, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695193

RESUMO

Bacteria have evolved sophisticated mechanisms to inhibit the growth of competitors1. One such mechanism involves type VI secretion systems, which bacteria can use to inject antibacterial toxins directly into neighbouring cells. Many of these toxins target the integrity of the cell envelope, but the full range of growth inhibitory mechanisms remains unknown2. Here we identify a type VI secretion effector, Tas1, in the opportunistic pathogen Pseudomonas aeruginosa. The crystal structure of Tas1 shows that it is similar to enzymes that synthesize (p)ppGpp, a broadly conserved signalling molecule in bacteria that modulates cell growth rate, particularly in response to nutritional stress3. However, Tas1 does not synthesize (p)ppGpp; instead, it pyrophosphorylates adenosine nucleotides to produce (p)ppApp at rates of nearly 180,000 molecules per minute. Consequently, the delivery of Tas1 into competitor cells drives rapid accumulation of (p)ppApp, depletion of ATP, and widespread dysregulation of essential metabolic pathways, thereby resulting in target cell death. Our findings reveal a previously undescribed mechanism for interbacterial antagonism and demonstrate a physiological role for the metabolite (p)ppApp in bacteria.


Assuntos
Nucleotídeos de Adenina/biossíntese , Bactérias/efeitos dos fármacos , Bactérias/genética , Toxinas Bacterianas/farmacologia , Toxinas Biológicas/toxicidade , Adenosina/metabolismo , Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Parede Celular/efeitos dos fármacos , Cristalização , Escherichia coli/genética , Fosforilação , Pseudomonas aeruginosa , Toxinas Biológicas/genética , Sistemas de Secreção Tipo VI
3.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301902

RESUMO

Uncovering the basis of small-molecule hormone receptors' evolution is paramount to a complete understanding of how protein structure drives function. In plants, hormone receptors for strigolactones are well suited to evolutionary inquiries because closely related homologs have different ligand preferences. More importantly, because of facile plant transgenic systems, receptors can be swapped and quickly assessed functionally in vivo. Here, we show that only three mutations are required to turn the nonstrigolactone receptor, KAI2, into a receptor that recognizes the plant hormone strigolactone. This modified receptor still retains its native function to perceive KAI2 ligands. Our directed evolution studies indicate that only a few keystone mutations are required to increase receptor promiscuity of KAI2, which may have implications for strigolactone receptor evolution in parasitic plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Furanos/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Compostos Heterocíclicos com 3 Anéis/metabolismo , Hidrolases/metabolismo , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Piranos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolases/genética , Mutação , Filogenia , Ligação Proteica
4.
J Biol Chem ; 298(4): 101734, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181340

RESUMO

Crop parasites of the Striga genera are a major biological deterrent to food security in Africa and are one of the largest obstacles to poverty alleviation on the continent. Striga seeds germinate by sensing small-molecule hormones, strigolactones (SLs), that emanate from host roots. Although SL receptors (Striga hermonthica HYPOSENSITIVE TO LIGHT [ShHTL]) have been identified, discerning their function has been difficult because these parasites cannot be easily grown under laboratory conditions. Moreover, many Striga species are obligate outcrossers that are not transformable, hence not amenable to genetic analysis. By combining phenotypic screening with ShHTL structural information and hybrid drug discovery methods, we discovered a potent SL perception inhibitor for Striga, dormirazine (DOZ). Structural analysis of this piperazine-based antagonist reveals a novel binding mechanism, distinct from that of known SLs, blocking access of the hormone to its receptor. Furthermore, DOZ reduces the flexibility of protein-protein interaction domains important for receptor signaling to downstream partners. In planta, we show, via temporal additions of DOZ, that SL receptors are required at a specific time during seed conditioning. This conditioning is essential to prime seed germination at the right time; thus, this SL-sensitive stage appears to be critical for adequate receptor signaling. Aside from uncovering a function for ShHTL during seed conditioning, these results suggest that future Ag-Biotech Solutions to Striga infestations will need to carefully time the application of antagonists to exploit receptor availability and outcompete natural SLs, critical elements for successful parasitic plant invasions.


Assuntos
Lactonas , Extratos Vegetais , Plantas , Striga , Germinação/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Lactonas/farmacologia , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Plantas/parasitologia , Striga/efeitos dos fármacos , Striga/metabolismo
5.
Infect Immun ; 91(1): e0050522, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36511702

RESUMO

The NleGs are the largest family of type 3 secreted effectors in attaching and effacing (A/E) pathogens, such as enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli, and Citrobacter rodentium. NleG effectors contain a conserved C-terminal U-box domain acting as a ubiquitin protein ligase and target host proteins via a variable N-terminal portion. The specific roles of these effectors during infection remain uncertain. Here, we demonstrate that the three NleG effectors-NleG1Cr, NleG7Cr, and NleG8Cr-encoded by C. rodentium DBS100 play distinct roles during infection in mice. Using individual nleGCr knockout strains, we show that NleG7Cr contributes to bacterial survival during enteric infection while NleG1Cr promotes the expression of diarrheal symptoms and NleG8Cr contributes to accelerated lethality in susceptible mice. Furthermore, the NleG8Cr effector contains a C-terminal PDZ domain binding motif that enables interaction with the host protein GOPC. Both the PDZ domain binding motif and the ability to engage with host ubiquitination machinery via the intact U-box domain proved to be necessary for NleG8Cr function, contributing to the observed phenotype during infection. We also establish that the PTZ binding motif in the EHEC NleG8 (NleG8Ec) effector, which shares 60% identity with NleG8Cr, is engaged in interactions with human GOPC. The crystal structure of the NleG8Ec C-terminal peptide in complex with the GOPC PDZ domain, determined to 1.85 Å, revealed a conserved interaction mode similar to that observed between GOPC and eukaryotic PDZ domain binding motifs. Despite these common features, nleG8Ec does not complement the ΔnleG8Cr phenotype during infection, revealing functional diversification between these NleG effectors.


Assuntos
Infecções por Enterobacteriaceae , Escherichia coli Êntero-Hemorrágica , Escherichia coli Enteropatogênica , Proteínas de Escherichia coli , Humanos , Animais , Camundongos , Citrobacter rodentium/genética , Infecções por Enterobacteriaceae/microbiologia , Transporte Biológico , Proteínas de Escherichia coli/genética , Escherichia coli Enteropatogênica/genética , Escherichia coli Êntero-Hemorrágica/genética , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
6.
Appl Environ Microbiol ; 89(2): e0170422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36719236

RESUMO

Hydrothermal vents are geographically widespread and host microorganisms with robust enzymes useful in various industrial applications. We examined microbial communities and carboxylesterases of two terrestrial hydrothermal vents of the volcanic island of Ischia (Italy) predominantly composed of Firmicutes, Proteobacteria, and Bacteroidota. High-temperature enrichment cultures with the polyester plastics polyhydroxybutyrate and polylactic acid (PLA) resulted in an increase of Thermus and Geobacillus species and to some extent Fontimonas and Schleiferia species. The screening at 37 to 70°C of metagenomic fosmid libraries from above enrichment cultures identified three hydrolases (IS10, IS11, and IS12), all derived from yet-uncultured Chloroflexota and showing low sequence identity (33 to 56%) to characterized enzymes. Enzymes expressed in Escherichia coli exhibited maximal esterase activity at 70 to 90°C, with IS11 showing the highest thermostability (90% activity after 20-min incubation at 80°C). IS10 and IS12 were highly substrate promiscuous and hydrolyzed all 51 monoester substrates tested. Enzymes were active with PLA, polyethylene terephthalate model substrate, and mycotoxin T-2 (IS12). IS10 and IS12 had a classical α/ß-hydrolase core domain with a serine hydrolase catalytic triad (Ser155, His280, and Asp250) in their hydrophobic active sites. The crystal structure of IS11 resolved at 2.92 Å revealed the presence of a N-terminal ß-lactamase-like domain and C-terminal lipocalin domain. The catalytic cleft of IS11 included catalytic Ser68, Lys71, Tyr160, and Asn162, whereas the lipocalin domain enclosed the catalytic cleft like a lid and contributed to substrate binding. Our study identified novel thermotolerant carboxylesterases with a broad substrate range, including polyesters and mycotoxins, for potential applications in biotechnology. IMPORTANCE High-temperature-active microbial enzymes are important biocatalysts for many industrial applications, including recycling of synthetic and biobased polyesters increasingly used in textiles, fibers, coatings and adhesives. Here, we identified three novel thermotolerant carboxylesterases (IS10, IS11, and IS12) from high-temperature enrichment cultures from Ischia hydrothermal vents and incubated with biobased polymers. The identified metagenomic enzymes originated from uncultured Chloroflexota and showed low sequence similarity to known carboxylesterases. Active sites of IS10 and IS12 had the largest effective volumes among the characterized prokaryotic carboxylesterases and exhibited high substrate promiscuity, including hydrolysis of polyesters and mycotoxin T-2 (IS12). Though less promiscuous than IS10 and IS12, IS11 had a higher thermostability with a high temperature optimum (80 to 90°C) for activity and hydrolyzed polyesters, and its crystal structure revealed an unusual lipocalin domain likely involved in substrate binding. The polyesterase activity of these enzymes makes them attractive candidates for further optimization and potential application in plastics recycling.


Assuntos
Hidrolases de Éster Carboxílico , Fontes Hidrotermais , Hidrolases de Éster Carboxílico/metabolismo , Polímeros , Hidrolases/metabolismo , Poliésteres , Plásticos , Especificidade por Substrato
7.
Metab Eng ; 74: 98-107, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244545

RESUMO

Rising concerns about climate change and sustainable energy have attracted efforts towards developing environmentally friendly alternatives to fossil fuels. Biosynthesis of n-butane, a highly desirable petro-chemical, fuel additive and diluent in the oil industry, remains a challenge. In this work, we first engineered enzymes Tes, Car and AD in the termination module to improve the selectivity of n-butane biosynthesis, and ancestral reconstruction and a synthetic RBS significantly improved the AD abundance. Next, we did ribosome binding site (RBS) calculation to identify potential metabolic bottlenecks, and then mitigated the bottleneck with RBS engineering and precursor propionyl-CoA addition. Furthermore, we employed a model-assisted strain design and a nonrepetitive extra-long sgRNA arrays (ELSAs) and quorum sensing assisted CRISPRi to facilitate a dynamic two-stage fermentation. Through systems engineering, n-butane production was increased by 168-fold from 0.04 to 6.74 mg/L. Finally, the maximum n-butane production from acetate was predicted using parsimonious flux balance analysis (pFBA), and we achieved n-butane production from acetate produced by electrocatalytic CO reduction. Our findings pave the way for selectively producing n-butane from renewable carbon source.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Butanos/metabolismo , Acetatos/metabolismo
8.
Molecules ; 27(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35566004

RESUMO

Acetylated glucuronoxylan is one of the most common types of hemicellulose in nature. The structure is formed by a ß-(1→4)-linked D-xylopyranosyl (Xylp) backbone that can be substituted with an acetyl group at O-2 and O-3 positions, and α-(1→2)-linked 4-O-methylglucopyranosyluronic acid (MeGlcpA). Acetyl xylan esterases (AcXE) that target mono- or doubly acetylated Xylp are well characterized; however, the previously studied AcXE from Flavobacterium johnsoniae (FjoAcXE) was the first to remove the acetyl group from 2-O-MeGlcpA-3-O-acetyl-substituted Xylp units, yet structural characteristics of these enzymes remain unspecified. Here, six homologs of FjoAcXE were produced and three crystal structures of the enzymes were solved. Two of them are complex structures, one with bound MeGlcpA and another with acetate. All homologs were confirmed to release acetate from 2-O-MeGlcpA-3-O-acetyl-substituted xylan, and the crystal structures point to key structural elements that might serve as defining features of this unclassified carbohydrate esterase family. Enzymes comprised two domains: N-terminal CBM domain and a C-terminal SGNH domain. In FjoAcXE and all studied homologs, the sequence motif around the catalytic serine is Gly-Asn-Ser-Ile (GNSI), which differs from other SGNH hydrolases. Binding by the MeGlcpA-Xylp ligand is directed by positively charged and highly conserved residues at the interface of the CBM and SGNH domains of the enzyme.


Assuntos
Esterases , Xilanos , Acetatos , Esterases/metabolismo , Especificidade por Substrato , Xilanos/química
9.
J Biol Chem ; 295(2): 597-609, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31806708

RESUMO

Carbon-carbon bond formation is one of the most important reactions in biocatalysis and organic chemistry. In nature, aldolases catalyze the reversible stereoselective aldol addition between two carbonyl compounds, making them attractive catalysts for the synthesis of various chemicals. In this work, we identified several 2-deoxyribose-5-phosphate aldolases (DERAs) having acetaldehyde condensation activity, which can be used for the biosynthesis of (R)-1,3-butanediol (1,3BDO) in combination with aldo-keto reductases (AKRs). Enzymatic screening of 20 purified DERAs revealed the presence of significant acetaldehyde condensation activity in 12 of the enzymes, with the highest activities in BH1352 from Bacillus halodurans, TM1559 from Thermotoga maritima, and DeoC from Escherichia coli The crystal structures of BH1352 and TM1559 at 1.40-2.50 Å resolution are the first full-length DERA structures revealing the presence of the C-terminal Tyr (Tyr224 in BH1352). The results from structure-based site-directed mutagenesis of BH1352 indicated a key role for the catalytic Lys155 and other active-site residues in the 2-deoxyribose-5-phosphate cleavage and acetaldehyde condensation reactions. These experiments also revealed a 2.5-fold increase in acetaldehyde transformation to 1,3BDO (in combination with AKR) in the BH1352 F160Y and F160Y/M173I variants. The replacement of the WT BH1352 by the F160Y or F160Y/M173I variants in E. coli cells expressing the DERA + AKR pathway increased the production of 1,3BDO from glucose five and six times, respectively. Thus, our work provides detailed insights into the molecular mechanisms of substrate selectivity and activity of DERAs and identifies two DERA variants with enhanced activity for in vitro and in vivo 1,3BDO biosynthesis.


Assuntos
Aldeído Liases/metabolismo , Bacillus/enzimologia , Butileno Glicóis/metabolismo , Escherichia coli/enzimologia , Thermotoga maritima/enzimologia , Aldeído Liases/química , Aldeído Liases/genética , Bacillus/genética , Bacillus/metabolismo , Vias Biossintéticas , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Microbiologia Industrial , Modelos Moleculares , Mutagênese Sítio-Dirigida , Filogenia , Engenharia de Proteínas , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
10.
J Biol Chem ; 294(36): 13233-13247, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31324716

RESUMO

Glycoside hydrolase family 74 (GH74) is a historically important family of endo-ß-glucanases. On the basis of early reports of detectable activity on cellulose and soluble cellulose derivatives, GH74 was originally considered to be a "cellulase" family, although more recent studies have generally indicated a high specificity toward the ubiquitous plant cell wall matrix glycan xyloglucan. Previous studies have indicated that GH74 xyloglucanases differ in backbone cleavage regiospecificities and can adopt three distinct hydrolytic modes of action: exo, endo-dissociative, and endo-processive. To improve functional predictions within GH74, here we coupled in-depth biochemical characterization of 17 recombinant proteins with structural biology-based investigations in the context of a comprehensive molecular phylogeny, including all previously characterized family members. Elucidation of four new GH74 tertiary structures, as well as one distantly related dual seven-bladed ß-propeller protein from a marine bacterium, highlighted key structure-function relationships along protein evolutionary trajectories. We could define five phylogenetic groups, which delineated the mode of action and the regiospecificity of GH74 members. At the extremes, a major group of enzymes diverged to hydrolyze the backbone of xyloglucan nonspecifically with a dissociative mode of action and relaxed backbone regiospecificity. In contrast, a sister group of GH74 enzymes has evolved a large hydrophobic platform comprising 10 subsites, which facilitates processivity. Overall, the findings of our study refine our understanding of catalysis in GH74, providing a framework for future experimentation as well as for bioinformatics predictions of sequences emerging from (meta)genomic studies.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Bactérias/enzimologia , Biocatálise , Cristalografia por Raios X , Fungos/enzimologia , Glicosídeo Hidrolases/genética , Cinética , Modelos Moleculares , Conformação Proteica , Estereoisomerismo , Especificidade por Substrato
11.
J Am Chem Soc ; 142(2): 1038-1048, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31886667

RESUMO

Production of platform chemicals from renewable feedstocks is becoming increasingly important due to concerns on environmental contamination, climate change, and depletion of fossil fuels. Adipic acid (AA), 6-aminocaproic acid (6-ACA) and 1,6-hexamethylenediamine (HMD) are key precursors for nylon synthesis, which are currently produced primarily from petroleum-based feedstocks. In recent years, the biosynthesis of adipic acid from renewable feedstocks has been demonstrated using both bacterial and yeast cells. Here we report the biocatalytic conversion/transformation of AA to 6-ACA and HMD by carboxylic acid reductases (CARs) and transaminases (TAs), which involves two rounds (cascades) of reduction/amination reactions (AA → 6-ACA → HMD). Using purified wild type CARs and TAs supplemented with cofactor regenerating systems for ATP, NADPH, and amine donor, we established a one-pot enzyme cascade catalyzing up to 95% conversion of AA to 6-ACA. To increase the cascade activity for the transformation of 6-ACA to HMD, we determined the crystal structure of the CAR substrate-binding domain in complex with AMP and succinate and engineered three mutant CARs with enhanced activity against 6-ACA. In combination with TAs, the CAR L342E protein showed 50-75% conversion of 6-ACA to HMD. For the transformation of AA to HMD (via 6-ACA), the wild type CAR was combined with the L342E variant and two different TAs resulting in up to 30% conversion to HMD and 70% to 6-ACA. Our results highlight the suitability of CARs and TAs for several rounds of reduction/amination reactions in one-pot cascade systems and their potential for the biobased synthesis of terminal amines.


Assuntos
Adipatos/metabolismo , Ácido Aminocaproico/metabolismo , Biocatálise , Diaminas/metabolismo , Oxirredutases/metabolismo , Transaminases/metabolismo , Bactérias/genética , Biotransformação , Clonagem Molecular , Cristalografia por Raios X , Cinética , Oxirredutases/química , Conformação Proteica , Especificidade por Substrato , Transaminases/química
12.
J Biol Chem ; 293(9): 3307-3320, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301934

RESUMO

Host colonization by Gram-negative pathogens often involves delivery of bacterial proteins called "effectors" into the host cell. The pneumonia-causing pathogen Legionella pneumophila delivers more than 330 effectors into the host cell via its type IVB Dot/Icm secretion system. The collective functions of these proteins are the establishment of a replicative niche from which Legionella can recruit cellular materials to grow while evading lysosomal fusion inhibiting its growth. Using a combination of structural, biochemical, and in vivo approaches, we show that one of these translocated effector proteins, Ceg4, is a phosphotyrosine phosphatase harboring a haloacid dehalogenase-hydrolase domain. Ceg4 could dephosphorylate a broad range of phosphotyrosine-containing peptides in vitro and attenuated activation of MAPK-controlled pathways in both yeast and human cells. Our findings indicate that L. pneumophila's infectious program includes manipulation of phosphorylation cascades in key host pathways. The structural and functional features of the Ceg4 effector unraveled here provide first insight into its function as a phosphotyrosine phosphatase, paving the way to further studies into L. pneumophila pathogenicity.


Assuntos
Interações Hospedeiro-Patógeno , Legionella pneumophila/enzimologia , Sistema de Sinalização das MAP Quinases , Proteínas Tirosina Fosfatases/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Células HeLa , Humanos , Legionella pneumophila/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Biochem J ; 475(24): 3963-3978, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30463871

RESUMO

Paenibacillus odorifer produces a single multimodular enzyme containing a glycoside hydrolase (GH) family 74 module (AIQ73809). Recombinant production and characterization of the GH74 module (PoGH74cat) revealed a highly specific, processive endo-xyloglucanase that can hydrolyze the polysaccharide backbone at both branched and unbranched positions. X-ray crystal structures obtained for the free enzyme and oligosaccharide complexes evidenced an extensive hydrophobic binding platform - the first in GH74 extending from subsites -4 to +6 - and unique mobile active-site loops. Site-directed mutagenesis revealed that glycine-476 was uniquely responsible for the promiscuous backbone-cleaving activity of PoGH74cat; replacement with tyrosine, which is conserved in many GH74 members, resulted in exclusive hydrolysis at unbranched glucose units. Likewise, systematic replacement of the hydrophobic platform residues constituting the positive subsites indicated their relative contributions to the processive mode of action. Specifically, W347 (+3 subsite) and W348 (+5 subsite) are essential for processivity, while W406 (+2 subsite) and Y372 (+6 subsite) are not strictly essential, but aid processivity.


Assuntos
Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Paenibacillus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Paenibacillus/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato/fisiologia
14.
Proc Natl Acad Sci U S A ; 113(7): 1901-6, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831115

RESUMO

Autophagy is an essential component of innate immunity, enabling the detection and elimination of intracellular pathogens. Legionella pneumophila, an intracellular pathogen that can cause a severe pneumonia in humans, is able to modulate autophagy through the action of effector proteins that are translocated into the host cell by the pathogen's Dot/Icm type IV secretion system. Many of these effectors share structural and sequence similarity with eukaryotic proteins. Indeed, phylogenetic analyses have indicated their acquisition by horizontal gene transfer from a eukaryotic host. Here we report that L. pneumophila translocates the effector protein sphingosine-1 phosphate lyase (LpSpl) to target the host sphingosine biosynthesis and to curtail autophagy. Our structural characterization of LpSpl and its comparison with human SPL reveals high structural conservation, thus supporting prior phylogenetic analysis. We show that LpSpl possesses S1P lyase activity that was abrogated by mutation of the catalytic site residues. L. pneumophila triggers the reduction of several sphingolipids critical for macrophage function in an LpSpl-dependent and -independent manner. LpSpl activity alone was sufficient to prevent an increase in sphingosine levels in infected host cells and to inhibit autophagy during macrophage infection. LpSpl was required for efficient infection of A/J mice, highlighting an important virulence role for this effector. Thus, we have uncovered a previously unidentified mechanism used by intracellular pathogens to inhibit autophagy, namely the disruption of host sphingolipid biosynthesis.


Assuntos
Aldeído Liases/metabolismo , Autofagia , Legionella pneumophila/enzimologia , Esfingolipídeos/metabolismo , Aldeído Liases/química , Animais , Domínio Catalítico , Cristalografia por Raios X , Doença dos Legionários/imunologia , Camundongos , Conformação Proteica
16.
Nucleic Acids Res ; 44(2): 595-607, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26400178

RESUMO

CouR, a MarR-type transcriptional repressor, regulates the cou genes, encoding p-hydroxycinnamate catabolism in the soil bacterium Rhodococcus jostii RHA1. The CouR dimer bound two molecules of the catabolite p-coumaroyl-CoA (Kd = 11 ± 1 µM). The presence of p-coumaroyl-CoA, but neither p-coumarate nor CoASH, abrogated CouR's binding to its operator DNA in vitro. The crystal structures of ligand-free CouR and its p-coumaroyl-CoA-bound form showed no significant conformational differences, in contrast to other MarR regulators. The CouR-p-coumaroyl-CoA structure revealed two ligand molecules bound to the CouR dimer with their phenolic moieties occupying equivalent hydrophobic pockets in each protomer and their CoA moieties adopting non-equivalent positions to mask the regulator's predicted DNA-binding surface. More specifically, the CoA phosphates formed salt bridges with predicted DNA-binding residues Arg36 and Arg38, changing the overall charge of the DNA-binding surface. The substitution of either arginine with alanine completely abrogated the ability of CouR to bind DNA. By contrast, the R36A/R38A double variant retained a relatively high affinity for p-coumaroyl-CoA (Kd = 89 ± 6 µM). Together, our data point to a novel mechanism of action in which the ligand abrogates the repressor's ability to bind DNA by steric occlusion of key DNA-binding residues and charge repulsion of the DNA backbone.


Assuntos
Acil Coenzima A/química , Proteínas de Bactérias/química , DNA/química , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/química , Acil Coenzima A/metabolismo , Alanina/química , Alanina/metabolismo , Substituição de Aminoácidos , Arginina/química , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Coenzima A/química , Coenzima A/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Cristalografia por Raios X , DNA/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Regiões Promotoras Genéticas , Propionatos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Rhodococcus , Eletricidade Estática , Transcrição Gênica
17.
J Biol Chem ; 291(3): 1175-97, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26507654

RESUMO

The recent classification of glycoside hydrolase family 5 (GH5) members into subfamilies enhances the prediction of substrate specificity by phylogenetic analysis. However, the small number of well characterized members is a current limitation to understanding the molecular basis of the diverse specificity observed across individual GH5 subfamilies. GH5 subfamily 4 (GH5_4) is one of the largest, with known activities comprising (carboxymethyl)cellulases, mixed-linkage endo-glucanases, and endo-xyloglucanases. Through detailed structure-function analysis, we have revisited the characterization of a classic GH5_4 carboxymethylcellulase, PbGH5A (also known as Orf4, carboxymethylcellulase, and Cel5A), from the symbiotic rumen Bacteroidetes Prevotella bryantii B14. We demonstrate that carboxymethylcellulose and phosphoric acid-swollen cellulose are in fact relatively poor substrates for PbGH5A, which instead exhibits clear primary specificity for the plant storage and cell wall polysaccharide, mixed-linkage ß-glucan. Significant activity toward the plant cell wall polysaccharide xyloglucan was also observed. Determination of PbGH5A crystal structures in the apo-form and in complex with (xylo)glucan oligosaccharides and an active-site affinity label, together with detailed kinetic analysis using a variety of well defined oligosaccharide substrates, revealed the structural determinants of polysaccharide substrate specificity. In particular, this analysis highlighted the PbGH5A active-site motifs that engender predominant mixed-linkage endo-glucanase activity vis à vis predominant endo-xyloglucanases in GH5_4. However the detailed phylogenetic analysis of GH5_4 members did not delineate particular clades of enzymes sharing these sequence motifs; the phylogeny was instead dominated by bacterial taxonomy. Nonetheless, our results provide key enzyme functional and structural reference data for future bioinformatics analyses of (meta)genomes to elucidate the biology of complex gut ecosystems.


Assuntos
Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Endo-1,3(4)-beta-Glucanase/metabolismo , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Prevotella/enzimologia , Substituição de Aminoácidos , Apoenzimas/antagonistas & inibidores , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Celulase/antagonistas & inibidores , Celulase/química , Celulase/genética , Celulose/química , Celulose/metabolismo , Endo-1,3(4)-beta-Glucanase/antagonistas & inibidores , Endo-1,3(4)-beta-Glucanase/química , Endo-1,3(4)-beta-Glucanase/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Glucanos/química , Glucanos/metabolismo , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Mutação , Filogenia , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Xilanos/química , Xilanos/metabolismo
18.
Mol Syst Biol ; 12(12): 893, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27986836

RESUMO

Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector-effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector-effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila-translocated substrates. While capturing all known examples of effector-effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct-a hallmark of an emerging class of proteins called metaeffectors, or "effectors of effectors". Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector-effector modulation, may be a common feature of many intracellular pathogens-with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/patogenicidade , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Legionella pneumophila/metabolismo , Modelos Biológicos , Mapas de Interação de Proteínas , Biologia de Sistemas/métodos
19.
Proc Natl Acad Sci U S A ; 111(16): 5872-7, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711382

RESUMO

Vancomycin resistance in Gram-positive bacteria is due to production of cell-wall precursors ending in D-Ala-D-Lac or D-Ala-D-Ser, to which vancomycin exhibits low binding affinities, and to the elimination of the high-affinity precursors ending in D-Ala-D-Ala. Depletion of the susceptible high-affinity precursors is catalyzed by the zinc-dependent D,D-peptidases VanX and VanY acting on dipeptide (D-Ala-D-Ala) or pentapeptide (UDP-MurNac-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala), respectively. Some of the vancomycin resistance operons encode VanXY D,D-carboxypeptidase, which hydrolyzes both di- and pentapeptide. The molecular basis for the diverse specificity of Van D,D-peptidases remains unknown. We present the crystal structures of VanXYC and VanXYG in apo and transition state analog-bound forms and of VanXYC in complex with the D-Ala-D-Ala substrate and D-Ala product. Structural and biochemical analysis identified the molecular determinants of VanXY dual specificity. VanXY residues 110-115 form a mobile cap over the catalytic site, whose flexibility is involved in the switch between di- and pentapeptide hydrolysis. Structure-based alignment of the Van D,D-peptidases showed that VanY enzymes lack this element, which promotes binding of the penta- rather than that of the dipeptide. The structures also highlight the molecular basis for selection of D-Ala-ending precursors over the modified resistance targets. These results illustrate the remarkable adaptability of the D,D-peptidase fold in response to antibiotic pressure via evolution of specific structural elements that confer hydrolytic activity against vancomycin-susceptible peptidoglycan precursors.


Assuntos
Evolução Molecular , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , Resistência a Vancomicina , Vancomicina/farmacologia , Alanina/metabolismo , Sítios de Ligação , Análise Mutacional de DNA , Ligantes , Modelos Moleculares , Mutagênese/efeitos dos fármacos , Mutagênese/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Vancomicina/química , Resistência a Vancomicina/efeitos dos fármacos
20.
J Bacteriol ; 198(7): 1171-81, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833407

RESUMO

UNLABELLED: Sinorhizobium meliloti forms N2-fixing root nodules on alfalfa, and as a free-living bacterium, it can grow on a very broad range of substrates, including l-proline and several related compounds, such as proline betaine, trans-4-hydroxy-l-proline (trans-4-l-Hyp), and cis-4-hydroxy-d-proline (cis-4-d-Hyp). Fourteen hyp genes are induced upon growth of S. meliloti on trans-4-l-Hyp, and of those, hypMNPQ encodes an ABC-type trans-4-l-Hyp transporter and hypRE encodes an epimerase that converts trans-4-l-Hyp to cis-4-d-Hyp in the bacterial cytoplasm. Here, we present evidence that the HypO, HypD, and HypH proteins catalyze the remaining steps in which cis-4-d-Hyp is converted to α-ketoglutarate. The HypO protein functions as a d-amino acid dehydrogenase, converting cis-4-d-Hyp to Δ(1)-pyrroline-4-hydroxy-2-carboxylate, which is deaminated by HypD to α-ketoglutarate semialdehyde and then converted to α-ketoglutarate by HypH. The crystal structure of HypD revealed it to be a member of the N-acetylneuraminate lyase subfamily of the (α/ß)8 protein family and is consistent with the known enzymatic mechanism for other members of the group. It was also shown that S. meliloti can catabolize d-proline as both a carbon and a nitrogen source, that d-proline can complement l-proline auxotrophy, and that the catabolism of d-proline is dependent on the hyp cluster. Transport of d-proline involves the HypMNPQ transporter, following which d-proline is converted to Δ(1)-pyrroline-2-carboxylate (P2C) largely via HypO. The P2C is converted to l-proline through the NADPH-dependent reduction of P2C by the previously uncharacterized HypS protein. Thus, overall, we have now completed detailed genetic and/or biochemical characterization of 9 of the 14 hyp genes. IMPORTANCE: Hydroxyproline is abundant in proteins in animal and plant tissues and serves as a carbon and a nitrogen source for bacteria in diverse environments, including the rhizosphere, compost, and the mammalian gut. While the main biochemical features of bacterial hydroxyproline catabolism were elucidated in the 1960s, the genetic and molecular details have only recently been determined. Elucidating the genetics of hydroxyproline catabolism will aid in the annotation of these genes in other genomes and metagenomic libraries. This will facilitate an improved understanding of the importance of this pathway and may assist in determining the prevalence of hydroxyproline in a particular environment.


Assuntos
Hidroxiprolina/metabolismo , Prolina/metabolismo , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Hidroxiprolina/química , Modelos Moleculares , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Conformação Proteica , Proteínas Recombinantes , Sinorhizobium meliloti/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA