Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Talanta ; 210: 120667, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987161

RESUMO

In this paper we present a novel combined electrochemical-spectroscopic approach suitable to monitor trace levels of heavy metals directly in edible oils. The method is based on the electrochemical preconcentration/extraction of the analyte from the tested real matrix by cathodic deposition onto a Pt working electrode, then transfer and anodic re-oxidation of the metallic deposit to a "clean" aqueous solution, suitable for the subsequent spectroscopic analysis. The procedure has been here focused to the determination of lead in extra virgin olive oil (EVOO), performed by applying ICP-QMS or GFAAS techniques. To this aim, the EVOO samples were mixed with proper amounts of the room temperature ionic liquid (RTIL) [P14,6,6,6]+[NTf2]-, in order to obtain a non-aqueous supporting electrolyte suitable for the electrodeposition process. The feasibility and performance of the analytical strategy were at first tested in standard solutions of Pb(II) in RTIL, produced by anodic dissolution of lead in the RTIL, as well as in olive oil samples mixed with 0.5 M RTIL and spiked with known amounts of Pb(II). The optimisation of the electrochemical parameters was achieved by applying a D-Optimal Design, properly set up to optimise the efficiency of the deposition and re-oxidation steps, quantitative recovery and measurement time. Finally, the analytical procedure was applied to the determination of Pb content in some Italian EVOOs, without any need of performing mineralization pretreatments. Data obtained with the proposed procedure satisfactorily agree with those achieved by ICP-QMS analysis after microwave digestion, being differences between the two approaches within 10%, with the advantage of reducing to half the pretreatment time, operating at room temperature and avoiding the use of aggressive solvents.


Assuntos
Técnicas Eletroquímicas , Chumbo/análise , Azeite de Oliva/química , Espectrometria de Massas
2.
ACS Sens ; 3(7): 1291-1298, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29911865

RESUMO

This work is aimed at developing an electrochemical sensor for the sensitive and selective detection of trace levels of perfluorooctanesulfonate (PFOS) in water. Contamination of waters by perfluorinated alkyl substances (PFAS) is a problem of global concern due to their suspected toxicity and ability to bioaccumulate. PFOS is the perfluorinated compound of major concern, as it has the lowest suggested control concentrations. The sensor reported here is based on a gold electrode modified with a thin coating of a molecularly imprinted polymer (MIP), prepared by anodic electropolymerization of o-phenylenediamine (o-PD) in the presence of PFOS as the template. Activation of the sensor is achieved by template removal with suitable a solvent mixture. Voltammetry, a quartz crystal microbalance, scanning electron microscopy and elemental analysis were used to monitor the electropolymerization process, template removal, and binding of the analyte. Ferrocenecarboxylic acid (FcCOOH) has been exploited as an electrochemical probe able to generate analytically useful voltammetric signals by competing for the binding sites with PFOS, as the latter is not electroactive. The sensor has a low detection limit (0.04 nM), a satisfactory selectivity, and is reproducible and repeatable, giving analytical results in good agreement with those obtained by HPLC-MS/MS analyses.


Assuntos
Ácidos Alcanossulfônicos/análise , Água Potável/análise , Técnicas Eletroquímicas , Fluorocarbonos/análise , Impressão Molecular , Fenilenodiaminas/química , Poluentes Químicos da Água/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Desenho de Equipamento , Ouro/química , Limite de Detecção , Impressão Molecular/instrumentação , Impressão Molecular/métodos
3.
Talanta ; 172: 133-138, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28602285

RESUMO

In this paper we present an electrochemical approach to prepare standard solutions of metal ions in a room temperature ionic liquid (IL), which can find useful application for analysis in hydrophobic matrices. The method, developed here for the case of lead ions, is based on the galvanostatic dissolution of a lead anode dipped directly in a suitable IL, namely tri-hexyl(tetradecyl)phosphonium bis (trifluoromethylsulfonyl) imide ([P14,6,6,6]+[NTf2]-). After each oxidation step, the metal dissolution process in the IL solutions was monitored by cyclic voltammetric measurements at a glassy carbon disk electrode. The results indicated that the peak current relevant to the reduction of the electro-generated Pb(II) increased linearly while increasing the oxidation time. By varying the oxidation time from 200 to 6000s, a set of Pb(II)/[P14,6,6,6]+[NTf2]- solutions at concentrations ranging between 10 and 300µgg-1 was prepared. To validate the efficiency of the electrochemical procedure to produce metal ion standard solutions, the Pb content was quantified by developing a microwave digestion procedure specifically suitable for the IL medium, followed by ICP-QMS analysis in the digested standards. The results indicated a satisfactory agreement between concentrations found by ICP-QMS and calculated from electrochemical data, with a coulometric efficiency of Pb(II) generation in ionic liquid ≥95.6%. Finally, the applicability of the Pb(II)/IL solutions as standards for analyses in hydrophobic media was tested by determining, by ICP-QMS, the Pb content in an extra-virgin olive oil spiked with known amounts of a Pb(II)/IL standard. Satisfactory Pb recoveries, ≥96%, were measured.


Assuntos
Eletroquímica/normas , Interações Hidrofóbicas e Hidrofílicas , Líquidos Iônicos/química , Chumbo/química , Azeite de Oliva/análise , Azeite de Oliva/química , Minerais/química , Oxirredução , Padrões de Referência , Soluções
4.
J Environ Monit ; 7(12): 1305-12, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16307088

RESUMO

Concentrations of dissolved and particle-associated n-alkanes, phthalates and polycyclic aromatic hydrocarbons (PAHs) were measured in sea surface microlayer (SML) and sub-surface water (SSL) samples collected in the coastal area of Terra Nova Bay, Antarctica, during the Austral spring 1998/1999. SML concentrations of the selected organic compounds were higher than SSL values and the enrichment factors were greater in the particulate phase than in the dissolved phase. During the same campaign, "fresh" snow samples, collected at different altitudes (from sea level up to 2670 m) near the coast on Mt Melbourne, immediately after a snowy event, were analysed in order to provide more information on air/sea exchange processes. The same classes of organic compounds found in sea water were also present in "fresh" snow samples. The surfactant fluorescent organic matter (SFOM), adsorbed on the microdrop aerosol surface, could be considered the main constituent of the enrichment and the carrier at higher altitudes of organic compounds. In fact, hydrocarbons (n-alkanes and PAHs), which are not surfactants like phthalates, could interact with SFOM and follow the same fate.


Assuntos
Água do Mar/química , Neve/química , Poluentes Químicos da Água/análise , Aerossóis , Alcanos/análise , Regiões Antárticas , Monitoramento Ambiental , Oceanos e Mares , Ácidos Ftálicos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Sódio/análise , Esqualeno/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA