RESUMO
DNA double-strand breaks (DSBs) are repaired at DSB sites. How DSB sites assemble and how broken DNA is prevented from separating is not understood. Here we uncover that the synapsis of broken DNA is mediated by the DSB sensor protein poly(ADP-ribose) (PAR) polymerase 1 (PARP1). Using bottom-up biochemistry, we reconstitute functional DSB sites and show that DSB sites form through co-condensation of PARP1 multimers with DNA. The co-condensates exert mechanical forces to keep DNA ends together and become enzymatically active for PAR synthesis. PARylation promotes release of PARP1 from DNA ends and the recruitment of effectors, such as Fused in Sarcoma, which stabilizes broken DNA ends against separation, revealing a finely orchestrated order of events that primes broken DNA for repair. We provide a comprehensive model for the hierarchical assembly of DSB condensates to explain DNA end synapsis and the recruitment of effector proteins for DNA damage repair.
Assuntos
Reparo do DNA , Poli(ADP-Ribose) Polimerase-1 , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , HumanosRESUMO
Many proteins contain disordered regions of low-sequence complexity, which cause aging-associated diseases because they are prone to aggregate. Here, we study FUS, a prion-like protein containing intrinsically disordered domains associated with the neurodegenerative disease ALS. We show that, in cells, FUS forms liquid compartments at sites of DNA damage and in the cytoplasm upon stress. We confirm this by reconstituting liquid FUS compartments in vitro. Using an in vitro "aging" experiment, we demonstrate that liquid droplets of FUS protein convert with time from a liquid to an aggregated state, and this conversion is accelerated by patient-derived mutations. We conclude that the physiological role of FUS requires forming dynamic liquid-like compartments. We propose that liquid-like compartments carry the trade-off between functionality and risk of aggregation and that aberrant phase transitions within liquid-like compartments lie at the heart of ALS and, presumably, other age-related diseases.
Assuntos
Envelhecimento/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Mutação , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/genética , Envelhecimento/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Núcleo Celular/química , Citoplasma/química , Humanos , Príons/química , Agregados Proteicos , Estrutura Terciária de Proteína , Proteína FUS de Ligação a RNA/metabolismoRESUMO
A single mutagen can generate multiple different types of DNA lesions. How different repair pathways cooperate in complex DNA lesions, however, remains largely unclear. Here we measured, clustered, and modeled the kinetics of recruitment and dissociation of 70 DNA repair proteins to laser-induced DNA damage sites in HeLa cells. The precise timescale of protein recruitment reveals that error-prone translesion polymerases are considerably delayed compared to error-free polymerases. We show that this is ensured by the delayed recruitment of RAD18 to double-strand break sites. The time benefit of error-free polymerases disappears when PARP inhibition significantly delays PCNA recruitment. Moreover, removal of PCNA from complex DNA damage sites correlates with RPA loading during 5'-DNA end resection. Our systematic study of the dynamics of DNA repair proteins in complex DNA lesions reveals the multifaceted coordination between the repair pathways and provides a kinetics-based resource to study genomic instability and anticancer drug impact.
Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Neoplasias do Colo do Útero/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Instabilidade Genômica , Células HeLa , Humanos , Cinética , Modelos Genéticos , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologiaRESUMO
The measurement of dynamic changes in protein level and localization throughout the cell cycle is of major relevance to studies of cellular processes tightly coordinated with the cycle, such as replication, transcription, DNA repair, and checkpoint control. Currently available methods include biochemical assays of cells in bulk following synchronization, which determine protein levels with poor temporal and no spatial resolution. Taking advantage of genetic engineering and live-cell microscopy, we performed time-lapse imaging of cells expressing fluorescently tagged proteins under the control of their endogenous regulatory elements in order to follow their levels throughout the cell cycle. We effectively discern between cell cycle phases and S subphases based on fluorescence intensity and distribution of co-expressed proliferating cell nuclear antigen (PCNA)-mCherry. This allowed us to precisely determine and compare the levels and distribution of multiple replication-associated factors, including Rap1-interacting factor 1 (RIF1), minichromosome maintenance complex component 6 (MCM6), origin recognition complex subunit 1 (ORC1, and Claspin, with high spatiotemporal resolution in HeLa Kyoto cells. Combining these data with available mass spectrometry-based measurements of protein concentrations reveals the changes in the concentration of these proteins throughout the cell cycle. Our approach provides a practical basis for a detailed interrogation of protein dynamics in the context of the cell cycle.
Assuntos
Ciclo Celular , Replicação do DNA , Humanos , Células HeLa , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Imagem com Lapso de TempoRESUMO
Elucidating the dynamics of DNA repair proteins is essential to understanding the mechanisms that preserve genomic stability and prevent carcinogenesis. However, the measurement and modeling of protein dynamics at DNA lesions via currently available image analysis tools is cumbersome. Therefore, we developed CellTool-a stand-alone open-source software with a graphical user interface for the analysis of time-lapse microscopy images. It combines data management, image processing, mathematical modeling, and graphical presentation of data in a single package. Multiple image filters, segmentation, and particle tracking algorithms, combined with direct visualization of the obtained results, make CellTool an ideal application for the comprehensive analysis of DNA repair protein dynamics. This software enables the fitting of obtained kinetic data to predefined or custom mathematical models. Importantly, CellTool provides a platform for easy implementation of custom image analysis packages written in a variety of programing languages. Using CellTool, we demonstrate that the ALKB homolog 2 (ALKBH2) demethylase is excluded from DNA damage sites despite recruitment of its putative interaction partner proliferating cell nuclear antigen (PCNA). Further, CellTool facilitates the straightforward fluorescence recovery after photobleaching (FRAP) analysis of BRCA1 associated RING domain 1 (BARD1) exchange at complex DNA lesions. In summary, the software presented herein enables the time-efficient analysis of a wide range of time-lapse microscopy experiments through a user-friendly interface.
Assuntos
Algoritmos , Software , Modelos Teóricos , Reparo do DNA , Processamento de Imagem Assistida por Computador/métodosRESUMO
Cells have evolved elaborate mechanisms to regulate DNA replication machinery and cell cycles in response to DNA damage and replication stress in order to prevent genomic instability and cancer. The E3 ubiquitin ligase SCFDia2 in S. cerevisiae is involved in the DNA replication and DNA damage stress response, but its effect on cell growth is still unclear. Here, we demonstrate that the absence of Dia2 prolongs the cell cycle by extending both S- and G2/M-phases while, at the same time, activating the S-phase checkpoint. In these conditions, Ctf4-an essential DNA replication protein and substrate of Dia2-prolongs its binding to the chromatin during the extended S- and G2/M-phases. Notably, the prolonged cell cycle when Dia2 is absent is accompanied by a marked increase in cell size. We found that while both DNA replication inhibition and an absence of Dia2 exerts effects on cell cycle duration and cell size, Dia2 deficiency leads to a much more profound increase in cell size and a substantially lesser effect on cell cycle duration compared to DNA replication inhibition. Our results suggest that the increased cell size in dia2∆ involves a complex mechanism in which the prolonged cell cycle is one of the driving forces.
Assuntos
Ciclo Celular/genética , Tamanho Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas F-Box/genética , Deleção de Genes , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Cromatina/genética , Cromatina/metabolismo , Imunofluorescência , Viabilidade Microbiana , Ligação Proteica , Saccharomyces cerevisiae/citologiaRESUMO
Here we propose an easy to build up and apply glass slide preparation system for single DNA molecules stretching. It is based on fast and simple coating of a solid glass with a cocktail of acrylic monomers that are easily polymerized via ultraviolet illumination. The acrylated slides are used to successfully stretch DNA molecules in a broader pH range compared to that of the commonly used amino-silanes. Moreover, the single DNA molecules that are stretched on the acrylated slides give a brighter and more photostable signal when visualized under a fluorescent microscope.
RESUMO
Genome integrity is under constant insult from endogenous and exogenous sources. In order to cope, eukaryotic cells have evolved an elaborate network of DNA repair that can deal with diverse lesion types and exhibits considerable functional redundancy. PARP1 is a major sensor of DNA breaks with established and putative roles in a number of pathways within the DNA repair network, including repair of single- and double-strand breaks as well as protection of the DNA replication fork. Importantly, PARP1 is the major target of small-molecule PARP inhibitors (PARPi), which are employed in the treatment of homologous recombination (HR)-deficient tumors, as the latter are particularly susceptible to the accumulation of DNA damage due to an inability to efficiently repair highly toxic double-strand DNA breaks. The clinical success of PARPi has fostered extensive research into PARP biology, which has shed light on the involvement of PARP1 in various genomic transactions. A major goal within the field has been to understand the relationship between catalytic inhibition and PARP1 trapping. The specific consequences of inhibition and trapping on genomic stability as a basis for the cytotoxicity of PARP inhibitors remain a matter of debate. Finally, PARP inhibition is increasingly recognized for its capacity to elicit/modulate anti-tumor immunity. The clinical potential of PARP inhibition is, however, hindered by the development of resistance. Hence, extensive efforts are invested in identifying factors that promote resistance or sensitize cells to PARPi. The current review provides a summary of advances in our understanding of PARP1 biology, the mechanistic nature, and molecular consequences of PARP inhibition, as well as the mechanisms that give rise to PARPi resistance.
RESUMO
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) not only suppress PARP1 catalytic activity but also prolong its association to damaged chromatin. Here, through live-cell imaging, we quantify the alterations in PARP1 dynamics and activity elicited by seven PARPis over a wide range of concentrations to deliver a unified mechanism of PARPi-induced PARP1 chromatin retention. We find that gross PARP1 retention at DNA damage sites is jointly governed by catalytic inhibition and allosteric trapping, albeit in a strictly independent manner-catalytic inhibition causes multiple unproductive binding-dissociation cycles of PARP1, while allosteric trapping prolongs the lesion-bound state of PARP1 to greatly increase overall retention. Importantly, stronger PARP1 retention produces greater temporal shifts in downstream DNA repair events and superior cytotoxicity, highlighting PARP1 retention, a complex but precisely quantifiable characteristic of PARPis, as a valuable biomarker for PARPi efficacy. Our approach can be promptly repurposed for interrogating the properties of DNA-repair-targeting compounds beyond PARPis.
Assuntos
Cromatina , Dano ao DNA , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Cromatina/metabolismo , Reparo do DNA/efeitos dos fármacosRESUMO
During DNA repair, ATM-induced H2AX histone phosphorylation and MDC1 recruitment spread megabases beyond the damage site. While loop extrusion has been suggested to drive this spread, the underlying mechanism remains unclear. Herein, we provide two lines of evidence that loop extrusion is not the only driver of damage-induced γH2AX spread. First, cohesin loader NIPBL and cohesin subunit RAD21 accumulate considerably later than the phosphorylation of H2AX and MDC1 recruitment at micro-IR-induced damage. Second, auxin-induced RAD21 depletion does not affect γH2AX/MDC1 spread following micro-irradiation or DSB induction by zeocin. To determine if diffusion of activated ATM could account for the observed behavior, we measured the exchange rate and diffusion constants of ATM and MDC1 within damaged and unperturbed chromatin. Using these measurements, we introduced a quantitative model in which the freely diffusing activated ATM phosphorylates H2AX. This model faithfully describes the dynamics of ATM and subsequent γH2AX/MDC1 spread at complex DNA lesions.
RESUMO
The efficiency of virus internalization into target cells is a major determinant of infectivity. SARS-CoV-2 internalization occurs via S-protein-mediated cell binding followed either by direct fusion with the plasma membrane or endocytosis and subsequent fusion with the endosomal membrane. Despite the crucial role of virus internalization, the precise kinetics of the processes involved remains elusive. We developed a pipeline, which combines live-cell microscopy and advanced image analysis, for measuring the rates of multiple internalization-associated molecular events of single SARS-CoV-2-virus-like particles (VLPs), including endosome ingression and pH change. Our live-cell imaging experiments demonstrate that only a few minutes after binding to the plasma membrane, VLPs ingress into RAP5-negative endosomes via dynamin-dependent scission. Less than two minutes later, VLP speed increases in parallel with a pH drop below 5, yet these two events are not interrelated. By co-imaging fluorescently labeled nucleocapsid proteins, we show that nucleocapsid release occurs with similar kinetics to VLP acidification. Neither Omicron mutations nor abrogation of the S protein polybasic cleavage site affected the rate of VLP internalization, indicating that they do not confer any significant advantages or disadvantages during this process. Finally, we observe that VLP internalization occurs two to three times faster in VeroE6 than in A549 cells, which may contribute to the greater susceptibility of the former cell line to SARS-CoV-2 infection. Taken together, our precise measurements of the kinetics of VLP internalization-associated processes shed light on their contribution to the effectiveness of SARS-CoV-2 propagation in cells.
Assuntos
COVID-19 , Endossomos , SARS-CoV-2 , Internalização do Vírus , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , Humanos , Cinética , COVID-19/virologia , COVID-19/metabolismo , Endossomos/metabolismo , Endossomos/virologia , Endocitose , Animais , Concentração de Íons de Hidrogênio , Chlorocebus aethiops , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Membrana Celular/metabolismo , Membrana Celular/virologia , Vírion/metabolismoRESUMO
To answer the demands of scientific and medical imaging issues, the family of nucleic acid fluorescent dyes is constantly enlarging. Most of the developed dyes reveal high qualities in bulk solution assays but are inefficient to produce a strong and sufficiently stable signal to enable the application of single-molecule techniques. Therefore, we tested 12 novel monomeric and homodimeric cyanine dyes for potential single DNA molecule imaging. Although their qualities in bulk solutions have already been described, nothing was known about their behavior on a single-molecule level. All 12 dyes demonstrated strong emission when intercalated into single DNA molecules and stretched on a silanized surface, which makes them the perfect choice for fluorescent microscopy imaging. A comparison of their fluorescence intensity and photostability with the most applicable dyes in single-molecule techniques, fluorescent dyes YOYO-1 and POPO-3, was carried out. They all exhibited a strong signal, comparable to that of YOYO-1. However, in contrast to YOYO-1, which is visualized under a green filter only, their emission permits red filter visualization. As their photostability highly exceeds that of similar spectrum POPO-3 dye, the studied dyes stand out as the best choice for a broad range of solid surface single-molecule applications when yellow to red DNA backbone fluorescence is needed.
Assuntos
DNA/análise , Corantes Fluorescentes , Imagem Molecular/métodos , Benzoxazóis , Compostos de QuinolínioRESUMO
Cells are constantly exposed to numerous mutagens that produce diverse types of DNA lesions. Eukaryotic cells have evolved an impressive array of DNA repair mechanisms that are able to detect and repair these lesions, thus preventing genomic instability. The DNA repair process is subjected to precise spatiotemporal coordination, and repair proteins are recruited to lesions in an orderly fashion, depending on their function. Here, we present DNArepairK, a unique open-access database that contains the kinetics of recruitment and removal of 70 fluorescently tagged DNA repair proteins to complex DNA damage sites in living HeLa Kyoto cells. An interactive graphical representation of the data complemented with live cell imaging movies facilitates straightforward comparisons between the dynamics of proteins contributing to different DNA repair pathways. Notably, most of the proteins included in DNArepairK are represented by their kinetics in both nontreated and PARP1/2 inhibitor-treated (talazoparib) cells, thereby providing an unprecedented overview of the effects of anticancer drugs on the regular dynamics of the DNA damage response. We believe that the exclusive dataset available in DNArepairK will be of value to scientists exploring the DNA damage response but, also, to inform and guide the development and evaluation of novel DNA repair-targeting anticancer drugs.
RESUMO
Cellular DNA is constantly being damaged by numerous internal and external mutagenic factors. Probably the most severe type of insults DNA could suffer are the double-strand DNA breaks (DSBs). They sever both DNA strands and compromise genomic stability, causing deleterious chromosomal aberrations that are implicated in numerous maladies, including cancer. Not surprisingly, cells have evolved several DSB repair pathways encompassing hundreds of different DNA repair proteins to cope with this challenge. In eukaryotic cells, DSB repair is fulfilled in the immensely complex environment of the chromatin. The chromatin is not just a passive background that accommodates the multitude of DNA repair proteins, but it is a highly dynamic and active participant in the repair process. Chromatin alterations, such as changing patterns of histone modifications shaped by numerous histone-modifying enzymes and chromatin remodeling, are pivotal for proficient DSB repair. Dynamic chromatin changes ensure accessibility to the damaged region, recruit DNA repair proteins, and regulate their association and activity, contributing to DSB repair pathway choice and coordination. Given the paramount importance of DSB repair in tumorigenesis and cancer progression, DSB repair has turned into an attractive target for the development of novel anticancer therapies, some of which have already entered the clinic.
Assuntos
Cromatina/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Inibidores Enzimáticos/farmacologia , Histonas/metabolismo , Neoplasias/tratamento farmacológico , Animais , Humanos , LevedurasRESUMO
Chromatin regulators control transcription and replication, however if and how they might influence the coordination of these processes still is largely unknown. RUVBL1 and the related ATPase RUVBL2 participate in multiple nuclear processes and are implicated in cancer. Here, we report that both the excess and the deficit of the chromatin regulator RUVBL1 impede DNA replication as a consequence of altered transcription. Surprisingly, cells that either overexpressed or were silenced for RUVBL1 had slower replication fork rates and accumulated phosphorylated H2AX, dependent on active transcription. However, the mechanisms of transcription-dependent replication stress were different when RUVBL1 was overexpressed and when depleted. RUVBL1 overexpression led to increased c-Myc-dependent pause release of RNAPII, as evidenced by higher overall transcription, much stronger Ser2 phosphorylation of Rpb1- C-terminal domain, and enhanced colocalization of Rpb1 and c-Myc. RUVBL1 deficiency resulted in increased ubiquitination of Rpb1 and reduced mobility of an RNAP subunit, suggesting accumulation of stalled RNAPIIs on chromatin. Overall, our data show that by modulating the state of RNAPII complexes, RUVBL1 deregulation induces replication-transcription interference and compromises genome integrity during S-phase.
Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , RNA Polimerase II/metabolismo , Fase S , Estresse Fisiológico , Transcrição Gênica , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Transporte/genética , DNA Helicases/genética , Humanos , Células PC-3 , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase II/genéticaRESUMO
Chromatin regulators play crucial roles in the DNA damage response. While the chromatin changes needed for double-strand break repair and nucleotide excision repair have been intensely studied, the chromatin requirements of interstrand crosslink (ICL) repair have remained largely unexplored. Here, we studied the effect of silencing the INO80 chromatin remodeler subunits on the cellular response to ICLs. Cells depleted of Ino80 ATPase were more sensitive to mitomycin C (MMC) and defective in FANCD2 chromatin recruitment. Ino80-deficient cells displayed strongly reduced Chk1 phosphorylation after MMC treatment indicating impaired ATR-dependent DNA damage signaling, likely due to the significantly slower RPA foci formation which we observed in these cells. MMC treatment of cells silenced for FANCM - a protein required for ICL-induced checkpoint signaling, Ino80 or both genes simultaneously led to similar decreases in RPA phosphorylation suggesting that the two proteins were involved in the same checkpoint pathway. Co-immunoprecipitation data indicated that Ino80 and FANCM interact physically. Taken together our data demonstrate for the first time that the INO80 chromatin remodeler cooperates with FANCM to mediate ICL-induced checkpoint activation by promoting accumulation of RPA at the lesion sites. This constitutes a novel mechanism by which the INO80 chromatin remodeler participates in the repair of ICLs and genome integrity maintenance.
Assuntos
Pontos de Checagem do Ciclo Celular , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Reparo do DNA , DNA/genética , ATPases Associadas a Diversas Atividades Celulares , DNA/química , Dano ao DNA , DNA Helicases/deficiência , DNA Helicases/genética , Proteínas de Ligação a DNA , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas dos Microfilamentos/deficiência , Células PC-3 , Ligação Proteica , Proteína de Replicação A/genéticaRESUMO
The process of DNA replication includes duplex unwinding, followed immediately by DNA synthesis. In eukaryotes, DNA synthesis is disturbed in damaged DNA regions, in replication slow zones, or as a result of insufficient nucleotide level. This review aims to discuss the mechanisms that coordinate DNA unwinding and synthesis, allowing replication to be completed even in the presence of genomic insults. There is a growing body of evidence which suggests that S-phase checkpoint pathways regulate both replicative unwinding and DNA synthesis, to synchronize the two processes, thus ensuring genome stability.
Assuntos
Replicação do DNA/fisiologia , Fase S/fisiologia , Saccharomyces cerevisiae/genética , Animais , DNA/biossíntese , DNA Helicases/metabolismo , DNA Helicases/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae/metabolismo , XenopusRESUMO
Poly (ADP-ribose)ylation is a dynamic protein modification that regulates multiple cellular processes. Here, we describe a system for identifying and characterizing PARylation events that exploits the ability of a PBZ (PAR-binding zinc finger) protein domain to bind PAR with high-affinity. By linking PBZ domains to bimolecular fluorescent complementation biosensors, we developed fluorescent PAR biosensors that allow the detection of temporal and spatial PARylation events in live cells. Exploiting transposon-mediated recombination, we integrate the PAR biosensor en masse into thousands of protein coding genes in living cells. Using these PAR-biosensor "tagged" cells in a genetic screen we carry out a large-scale identification of PARylation targets. This identifies CTIF (CBP80/CBP20-dependent translation initiation factor) as a novel PARylation target of the tankyrase enzymes in the centrosomal region of cells, which plays a role in the distribution of the centrosomal satellites.
Assuntos
Técnicas Biossensoriais , Fatores de Iniciação em Eucariotos/metabolismo , Mitose , Processamento de Proteína Pós-Traducional , Tanquirases/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Centríolos/metabolismo , Centríolos/ultraestrutura , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Elementos de DNA Transponíveis , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fatores de Iniciação em Eucariotos/genética , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Testes Genéticos , Células HeLa , Humanos , Poli ADP Ribosilação , Poli Adenosina Difosfato Ribose/metabolismo , Recombinação Genética , Transdução de Sinais , Tanquirases/genéticaRESUMO
Although PARP inhibitors (PARPi) target homologous recombination defective tumours, drug resistance frequently emerges, often via poorly understood mechanisms. Here, using genome-wide and high-density CRISPR-Cas9 "tag-mutate-enrich" mutagenesis screens, we identify close to full-length mutant forms of PARP1 that cause in vitro and in vivo PARPi resistance. Mutations both within and outside of the PARP1 DNA-binding zinc-finger domains cause PARPi resistance and alter PARP1 trapping, as does a PARP1 mutation found in a clinical case of PARPi resistance. This reinforces the importance of trapped PARP1 as a cytotoxic DNA lesion and suggests that PARP1 intramolecular interactions might influence PARPi-mediated cytotoxicity. PARP1 mutations are also tolerated in cells with a pathogenic BRCA1 mutation where they result in distinct sensitivities to chemotherapeutic drugs compared to other mechanisms of PARPi resistance (BRCA1 reversion, 53BP1, REV7 (MAD2L2) mutation), suggesting that the underlying mechanism of PARPi resistance that emerges could influence the success of subsequent therapies.
Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Idoso , Animais , Proteína BRCA1/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Análise Mutacional de DNA/métodos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Embrionárias Murinas , Mutagênese , Neoplasias/genética , Neoplasias/patologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Mutação Puntual , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Medicina de Precisão/métodos , Sequenciamento Completo do Genoma/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Dedos de Zinco/genéticaRESUMO
The replicative DNA helicases can unwind DNA in the absence of polymerase activity in vitro. In contrast, replicative unwinding is coupled with DNA synthesis in vivo. The temperature-sensitive yeast polymerase alpha/primase mutants cdc17-1, pri2-1 and pri1-m4, which fail to execute the early step of DNA replication, have been used to investigate the interaction between replicative unwinding and DNA synthesis in vivo. We report that some of the plasmid molecules in these mutant strains became extensively negatively supercoiled when DNA synthesis is prevented. In contrast, additional negative supercoiling was not detected during formation of DNA initiation complex or hydroxyurea replication fork arrest. Together, these results indicate that the extensive negative supercoiling of DNA is a result of replicative unwinding, which is not followed by DNA synthesis. The limited number of unwound plasmid molecules and synthetic lethality of polymerase alpha or primase with checkpoint mutants suggest a checkpoint regulation of the replicative unwinding. In concordance with this suggestion, we found that the Tof1/Csm3/Mrc1 checkpoint complex interacts directly with the MCM helicase during both replication fork progression and when the replication fork is stalled.