Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 154(5): 1151-1161, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23993102

RESUMO

The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: (1) associate with specific cancer-genomic alterations and (2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (http://www.broadinstitute.org/ctrp) to enable users to correlate genetic features to sensitivity in individual lineages and control for confounding factors of CCL profiling. We report a candidate dependency, associating activating mutations in the oncogene ß-catenin with sensitivity to the Bcl-2 family antagonist, navitoclax. The resource can be used to develop novel therapeutic hypotheses and to accelerate discovery of drugs matched to patients by their cancer genotype and lineage.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Neoplasias/genética
2.
Cell ; 150(2): 251-63, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22817889

RESUMO

Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic UV light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19, and ARID2), three of which-RAC1, PPP6C, and STK19-harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis.


Assuntos
Estudo de Associação Genômica Ampla , Melanoma/genética , Mutagênese , Raios Ultravioleta , Sequência de Aminoácidos , Células Cultivadas , Exoma , Humanos , Melanócitos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas B-raf/genética , Alinhamento de Sequência , Proteínas rac1 de Ligação ao GTP/genética
3.
Nature ; 569(7757): 503-508, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31068700

RESUMO

Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers. Together, this dataset and an accompanying public data portal provide a resource for the acceleration of cancer research using model cancer cell lines.


Assuntos
Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/patologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Etnicidade/genética , Edição de Genes , Histonas/metabolismo , Humanos , MicroRNAs/genética , Terapia de Alvo Molecular , Neoplasias/metabolismo , Análise Serial de Proteínas , Splicing de RNA
5.
Br J Cancer ; 120(5): 555-564, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30765874

RESUMO

BACKGROUND: Muscle-invasive bladder cancer (MIBC) is an aggressive neoplasm with poor prognosis, lacking effective therapeutic targets. Oncogenic dependency on members of the TAM tyrosine kinase receptor family (TYRO3, AXL, MERTK) has been reported in several cancer types, but their role in bladder cancer has never been explored. METHODS: TAM receptor expression was evaluated in two series of human bladder tumours by gene expression (TCGA and CIT series), immunohistochemistry and western blotting analyses (CIT series). The role of the different TAM receptors was assessed by loss-of-function experiments and pharmaceutical inhibition in vitro and in vivo. RESULTS: We reported a significantly higher expression of TYRO3, but not AXL or MERTK, in both non-MIBCs and MIBCs, compared to normal urothelium. Loss-of-function experiments identified a TYRO3-dependency of bladder carcinoma-derived cells both in vitro and in a mouse xenograft model, whereas AXL and MERTK depletion had only a minor impact on cell viability. Accordingly, TYRO3-dependent bladder tumour cells were sensitive to pharmacological treatment with two pan-TAM inhibitors. Finally, growth inhibition upon TYRO3 depletion relies on cell cycle inhibition and apoptosis associated with induction of tumour-suppressive signals. CONCLUSIONS: Our results provide a preclinical proof of concept for TYRO3 as a potential therapeutic target in bladder cancer.


Assuntos
Carcinoma de Células de Transição/genética , Receptores Proteína Tirosina Quinases/genética , Neoplasias da Bexiga Urinária/genética , Animais , Apoptose/genética , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Expressão Gênica , Humanos , Hylobatidae , Imunoquímica , Técnicas In Vitro , Camundongos , Terapia de Alvo Molecular , Músculo Liso/patologia , Invasividade Neoplásica , Transplante de Neoplasias , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl
6.
Nature ; 499(7457): 214-218, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23770567

RESUMO

Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour-normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour-normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.


Assuntos
Heterogeneidade Genética , Mutação/genética , Neoplasias/genética , Oncogenes/genética , Artefatos , Período de Replicação do DNA , Exoma/genética , Reações Falso-Positivas , Expressão Gênica , Genoma Humano/genética , Humanos , Neoplasias Pulmonares/genética , Taxa de Mutação , Neoplasias/classificação , Neoplasias/patologia , Neoplasias de Células Escamosas/genética , Reprodutibilidade dos Testes , Tamanho da Amostra
7.
Genes Dev ; 25(14): 1470-5, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21764851

RESUMO

Small cell lung cancer (SCLC) is an aggressive cancer often diagnosed after it has metastasized. Despite the need to better understand this disease, SCLC remains poorly characterized at the molecular and genomic levels. Using a genetically engineered mouse model of SCLC driven by conditional deletion of Trp53 and Rb1 in the lung, we identified several frequent, high-magnitude focal DNA copy number alterations in SCLC. We uncovered amplification of a novel, oncogenic transcription factor, Nuclear factor I/B (Nfib), in the mouse SCLC model and in human SCLC. Functional studies indicate that NFIB regulates cell viability and proliferation during transformation.


Assuntos
Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Oncogenes/fisiologia , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Animais Geneticamente Modificados , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Oncogenes/genética
8.
Nature ; 485(7399): 502-6, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22622578

RESUMO

Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5-55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2)--a PTEN-interacting protein and negative regulator of PTEN in breast cancer--as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumour formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumours revealed genomic evidence of ultraviolet pathogenesis and discovered a new recurrently mutated gene in melanoma.


Assuntos
Genoma Humano/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Melanoma/genética , Mutação/genética , Luz Solar/efeitos adversos , Pontos de Quebra do Cromossomo/efeitos da radiação , Dano ao DNA , Análise Mutacional de DNA , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/patologia , Mutagênese/efeitos da radiação , Mutação/efeitos da radiação , Oncogenes/genética , Raios Ultravioleta/efeitos adversos
9.
Nature ; 483(7391): 603-7, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22460905

RESUMO

The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.


Assuntos
Bases de Dados Factuais , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Enciclopédias como Assunto , Modelos Biológicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Linhagem da Célula , Cromossomos Humanos/genética , Ensaios Clínicos como Assunto/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes ras/genética , Genoma Humano/genética , Genômica , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Farmacogenética , Plasmócitos/citologia , Plasmócitos/efeitos dos fármacos , Plasmócitos/metabolismo , Medicina de Precisão/métodos , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Análise de Sequência de DNA , Inibidores da Topoisomerase/farmacologia
10.
Nature ; 486(7403): 405-9, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22722202

RESUMO

Breast carcinoma is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis and responses to available therapy. Recurrent somatic alterations in breast cancer have been described, including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration. Previous DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA, TP53, AKT1, GATA3 and MAP3K1, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking oestrogen and progesterone receptors and ERBB2 expression. The MAGI3-AKT3 fusion leads to constitutive activation of AKT kinase, which is abolished by treatment with an ATP-competitive AKT small-molecule inhibitor.


Assuntos
Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Mutação/genética , Translocação Genética/genética , Algoritmos , Neoplasias da Mama/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/genética , Análise Mutacional de DNA , Exoma/genética , Feminino , Fusão Gênica/genética , Humanos , Proteínas de Membrana/genética , México , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vietnã
11.
Nature ; 476(7360): 346-50, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21760589

RESUMO

Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of α-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Genômica , Serina/biossíntese , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclo do Ácido Cítrico/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Ácidos Cetoglutáricos/metabolismo , Melanoma/enzimologia , Melanoma/genética , Camundongos , Transplante de Neoplasias , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Interferência de RNA
12.
Genome Res ; 23(4): 665-78, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23269662

RESUMO

Genome-scale RNAi libraries enable the systematic interrogation of gene function. However, the interpretation of RNAi screens is complicated by the observation that RNAi reagents designed to suppress the mRNA transcripts of the same gene often produce a spectrum of phenotypic outcomes due to differential on-target gene suppression or perturbation of off-target transcripts. Here we present a computational method, Analytic Technique for Assessment of RNAi by Similarity (ATARiS), that takes advantage of patterns in RNAi data across multiple samples in order to enrich for RNAi reagents whose phenotypic effects relate to suppression of their intended targets. By summarizing only such reagent effects for each gene, ATARiS produces quantitative, gene-level phenotype values, which provide an intuitive measure of the effect of gene suppression in each sample. This method is robust for data sets that contain as few as 10 samples and can be used to analyze screens of any number of targeted genes. We used this analytic approach to interrogate RNAi data derived from screening more than 100 human cancer cell lines and identified HNF1B as a transforming oncogene required for the survival of cancer cells that harbor HNF1B amplifications. ATARiS is publicly available at http://broadinstitute.org/ataris.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genômica , Interferência de RNA , RNA Interferente Pequeno/genética , Software , Animais , Transformação Celular Neoplásica/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Genômica/métodos , Fator 1-beta Nuclear de Hepatócito/genética , Humanos , Internet , Camundongos , Neoplasias/genética , Fenótipo , Reprodutibilidade dos Testes
13.
Nature ; 468(7326): 968-72, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21107320

RESUMO

Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50-70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma-an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative 'druggable' targets may inform effective long-term treatment strategies. Here we expressed ∼600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.


Assuntos
Resistencia a Medicamentos Antineoplásicos , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Regulação Alostérica , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ativação Enzimática/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Biblioteca Gênica , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , MAP Quinase Quinase Quinases/genética , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Melanoma/genética , Melanoma/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fases de Leitura Aberta/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Vemurafenib
14.
Proc Natl Acad Sci U S A ; 109(10): 3879-84, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22343534

RESUMO

To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase-mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease.


Assuntos
Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Mutação , Motivos de Aminoácidos , Análise por Conglomerados , Análise Mutacional de DNA , Exoma , Éxons , Humanos , Modelos Genéticos , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA , Translocação Genética
15.
Nat Genet ; 38(12): 1386-96, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17099711

RESUMO

Genetic and epigenetic alterations have been identified that lead to transcriptional deregulation in cancers. Genetic mechanisms may affect single genes or regions containing several neighboring genes, as has been shown for DNA copy number changes. It was recently reported that epigenetic suppression of gene expression can also extend to a whole region; this is known as long-range epigenetic silencing. Various techniques are available for identifying regional genetic alterations, but no large-scale analysis has yet been carried out to obtain an overview of regional epigenetic alterations. We carried out an exhaustive search for regions susceptible to such mechanisms using a combination of transcriptome correlation map analysis and array CGH data for a series of bladder carcinomas. We validated one candidate region experimentally, demonstrating histone methylation leading to the loss of expression of neighboring genes without DNA methylation.


Assuntos
Dosagem de Genes , Transcrição Gênica , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Cromossomos Humanos Par 3/genética , Metilação de DNA , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
16.
Proc Natl Acad Sci U S A ; 108(30): 12372-7, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21746896

RESUMO

A comprehensive understanding of the molecular vulnerabilities of every type of cancer will provide a powerful roadmap to guide therapeutic approaches. Efforts such as The Cancer Genome Atlas Project will identify genes with aberrant copy number, sequence, or expression in various cancer types, providing a survey of the genes that may have a causal role in cancer. A complementary approach is to perform systematic loss-of-function studies to identify essential genes in particular cancer cell types. We have begun a systematic effort, termed Project Achilles, aimed at identifying genetic vulnerabilities across large numbers of cancer cell lines. Here, we report the assessment of the essentiality of 11,194 genes in 102 human cancer cell lines. We show that the integration of these functional data with information derived from surveying cancer genomes pinpoints known and previously undescribed lineage-specific dependencies across a wide spectrum of cancers. In particular, we found 54 genes that are specifically essential for the proliferation and viability of ovarian cancer cells and also amplified in primary tumors or differentially overexpressed in ovarian cancer cell lines. One such gene, PAX8, is focally amplified in 16% of high-grade serous ovarian cancers and expressed at higher levels in ovarian tumors. Suppression of PAX8 selectively induces apoptotic cell death of ovarian cancer cells. These results identify PAX8 as an ovarian lineage-specific dependency. More generally, these observations demonstrate that the integration of genome-scale functional and structural studies provides an efficient path to identify dependencies of specific cancer types on particular genes and pathways.


Assuntos
Neoplasias Ovarianas/genética , Oxirredutases do Álcool , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Oncogenes , Neoplasias Ovarianas/patologia , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados/genética , RNA Neoplásico/genética , RNA Interferente Pequeno/genética
17.
bioRxiv ; 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37502974

RESUMO

Tumor mutations can influence the surrounding microenvironment leading to suppression of anti-tumor immune responses and thereby contributing to tumor progression and failure of cancer therapies. Here we use genetically engineered lung cancer mouse models and patient samples to dissect how LKB1 mutations accelerate tumor growth by reshaping the immune microenvironment. Comprehensive immune profiling of LKB1 -mutant vs wildtype tumors revealed dramatic changes in myeloid cells, specifically enrichment of Arg1 + interstitial macrophages and SiglecF Hi neutrophils. We discovered a novel mechanism whereby autocrine LIF signaling in Lkb1 -mutant tumors drives tumorigenesis by reprogramming myeloid cells in the immune microenvironment. Inhibiting LIF signaling in Lkb1 -mutant tumors, via gene targeting or with a neutralizing antibody, resulted in a striking reduction in Arg1 + interstitial macrophages and SiglecF Hi neutrophils, expansion of antigen specific T cells, and inhibition of tumor progression. Thus, targeting LIF signaling provides a new therapeutic approach to reverse the immunosuppressive microenvironment of LKB1 -mutant tumors.

18.
Nat Commun ; 14(1): 6764, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938580

RESUMO

Approximately 30% of early-stage lung adenocarcinoma patients present with disease progression after successful surgical resection. Despite efforts of mapping the genetic landscape, there has been limited success in discovering predictive biomarkers of disease outcomes. Here we performed a systematic multi-omic assessment of 143 tumors and matched tumor-adjacent, histologically-normal lung tissue with long-term patient follow-up. Through histologic, mutational, and transcriptomic profiling of tumor and adjacent-normal tissue, we identified an inflammatory gene signature in tumor-adjacent tissue as the strongest clinical predictor of disease progression. Single-cell transcriptomic analysis demonstrated the progression-associated inflammatory signature was expressed in both immune and non-immune cells, and cell type-specific profiling in monocytes further improved outcome predictions. Additional analyses of tumor-adjacent transcriptomic data from The Cancer Genome Atlas validated the association of the inflammatory signature with worse outcomes across cancers. Collectively, our study suggests that molecular profiling of tumor-adjacent tissue can identify patients at high risk for disease progression.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Inflamação/genética , Neoplasias Pulmonares/genética , Pulmão , Progressão da Doença
19.
Nat Commun ; 13(1): 4443, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927254

RESUMO

A significant proportion of colorectal cancer (CRC) patients develop peritoneal metastases (PM) in the course of their disease. PMs are associated with a poor quality of life, significant morbidity and dismal disease outcome. To improve care for this patient group, a better understanding of the molecular characteristics of CRC-PM is required. Here we present a comprehensive molecular characterization of a cohort of 52 patients. This reveals that CRC-PM represent a distinct CRC molecular subtype, CMS4, but can be further divided in three separate categories, each presenting with unique features. We uncover that the CMS4-associated structural protein Moesin plays a key role in peritoneal dissemination. Finally, we define specific evolutionary features of CRC-PM which indicate that polyclonal metastatic seeding underlies these lesions. Together our results suggest that CRC-PM should be perceived as a distinct disease entity.


Assuntos
Neoplasias Colorretais , Segunda Neoplasia Primária , Neoplasias Peritoneais , Neoplasias Colorretais/patologia , Humanos , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/secundário , Peritônio/metabolismo , Qualidade de Vida
20.
J Pathol ; 221(3): 320-30, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20527025

RESUMO

To investigate whether integration of HPV DNA in cervical carcinoma is responsible for structural alterations of the host genome at the insertion site, a series of 34 primary cervical carcinomas and eight cervical cancer-derived cell lines were analysed. DNA copy number profiles were assessed using the Affymetrix GeneChip Human Mapping 250K Sty array. HPV 16, 18 or 45 integration sites were determined using the DIPS-PCR technique. The genome status at integration sites was classified as follows: no change, amplification, transition normal/gain, normal/loss or gain/LOH. A single HPV integration site was found in 34 cases; two sites were found in seven cases; and three sites in one case (51 sites). Comparison between integration sites and DNA copy number profiles showed that the genome status was altered at 17/51 (33%) integration sites, corresponding to 16/42 cases (38%). Alterations detected were amplification in nine cases, transition normal/loss in four cases, normal/gain in three cases, and gain/LOH in one case. A highly significant association was found between genomic rearrangement and integration of HPV DNA (p < 10(-10)). Activation of the replication origin located in viral integrated sequences in a cell line derived from one of the primary cervical carcinomas induced an increase of the amplification level of both viral and cellular DNA sequences flanking the integration locus. This mechanism may be implicated in the triggering of genome amplification at the HPV integration site in cervical carcinoma. Structural alterations of the host genome are frequently observed at the integration site of HPV DNA in cervical cancer and may act in oncogenesis.


Assuntos
Papillomaviridae/fisiologia , Infecções por Papillomavirus/genética , Neoplasias do Colo do Útero/genética , Integração Viral/genética , Adenocarcinoma/genética , Adenocarcinoma/virologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/virologia , DNA Viral/genética , Feminino , Dosagem de Genes , Perfilação da Expressão Gênica/métodos , Genes Virais , Humanos , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/genética , Papillomaviridae/metabolismo , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/virologia , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA