Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 72(3): 426-443.e12, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401430

RESUMO

Protein phase separation by low-complexity, intrinsically disordered domains generates membraneless organelles and links to neurodegeneration. Cellular prion protein (PrPC) contains such domains, causes spongiform degeneration, and is a receptor for Alzheimer's amyloid-ß oligomers (Aßo). Here, we show that PrPC separates as a liquid phase, in which α-helical Thr become unfolded. At the cell surface, PrPC Lys residues interact with Aßo to create a hydrogel containing immobile Aßo and relatively mobile PrPC. The Aßo/PrP hydrogel has a well-defined stoichiometry and dissociates with excess Aßo. NMR studies of hydrogel PrPC reveal a distinct α-helical conformation for natively unfolded amino-terminal Gly and Ala residues. Aßo/PrP hydrogel traps signal-transducing mGluR5 on the plasma membrane. Recombinant PrPC extracts endogenous Aßo from human Alzheimer's soluble brain lysates into hydrogel, and a PrPC antagonist releases Aßo from endogenous brain hydrogel. Thus, coupled phase and conformational transitions of PrPC are driven by Aß species from Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/fisiologia , Proteínas PrPC/química , Proteínas PrPC/fisiologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo , Células COS , Linhagem Celular , Membrana Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Hidrogéis , Imageamento por Ressonância Magnética/métodos , Conformação Molecular , Neurônios , Príons/química , Príons/fisiologia , Ligação Proteica , Receptor de Glutamato Metabotrópico 5 , Transdução de Sinais
2.
J Biol Chem ; 299(10): 105232, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690690

RESUMO

After adult mammalian central nervous system injury, axon regeneration is extremely limited or absent, resulting in persistent neurological deficits. Axon regeneration failure is due in part to the presence of inhibitory proteins, including NogoA (Rtn4A), from which two inhibitory domains have been defined. When these inhibitory domains are deleted, but an amino-terminal domain is still expressed in a gene trap line, mice show axon regeneration and enhanced recovery from injury. In contrast, when there is no amino-terminal Nogo-A fragment in the setting of inhibitory domain deletion, then axon regeneration and recovery are indistinguishable from WT. These data indicated that an amino-terminal Nogo-A fragment derived from the gene trap might promote axon regeneration, but this had not been tested directly and production of this fragment without gene targeting was unclear. Here, we describe posttranslation production of an amino-terminal fragment of Nogo-A from the intact gene product. This fragment is created by proteolysis near amino acid G214-N215 and levels are enhanced by axotomy. Furthermore, this fragment promotes axon regeneration in vitro and acts cell autonomously in neurons, in contrast to the inhibitory extracellular action of other Nogo-A domains.Proteins interacting with the amino-terminal Nogo-A fragment by immunoprecipitation include HSPA8 (HSC70, HSP7C). Suppression of HSPA8 expression by shRNA decreases axon regeneration from cerebral cortical neurons and overexpression increases axon regeneration. Moreover, the amino-terminal Nogo-A fragment increases HSPA8 chaperone activity. These data provide an explanation for varied results in different gene-targeted Nogo-A mice, as well as revealing an axon regeneration promoting domain of Nogo-A.


Assuntos
Axônios , Proteínas da Mielina , Animais , Camundongos , Axônios/metabolismo , Inibidores do Crescimento/metabolismo , Mamíferos/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Regeneração Nervosa/fisiologia , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Proteólise , Feminino , Camundongos Endogâmicos C57BL
3.
Curr Opin Neurol ; 36(6): 516-522, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865850

RESUMO

PURPOSE OF REVIEW: After traumatic spinal cord injury (SCI), neurological deficits persist due to the disconnection of surviving neurons. While repair of connectivity may restore function, no medical therapy exists today.This review traces the development of the neural repair-based therapeutic AXER-204 from animal studies to the recent clinical trial for chronic cervical SCI. RECENT FINDINGS: Molecular studies reveal a Nogo-66 Receptor 1 (NgR1, RTN4R) pathway inhibiting axon regeneration, sprouting, and plasticity in the adult mammalian central nervous system (CNS). Rodent and nonhuman primate studies demonstrate that the soluble receptor decoy NgR(310)ecto-Fc or AXER-204 promotes neural repair and functional recovery in transection and contusion SCI. Recently, this biological agent completed a first-in-human and randomized clinical trial for chronic cervical SCI. The intervention was safe and well tolerated. Across all participants, upper extremity strength did not improve with treatment. However, posthoc and biomarker analyses suggest that AXER-204 may benefit treatment-naïve patients with incomplete SCI in the chronic stage. SUMMARY: NgR1 signaling restricts neurological recovery in animal studies of CNS injury. The recent clinical trial of AXER-204 provides encouraging signals supporting future focused trials of this neural repair therapeutic. Further, AXER-204 studies provide a roadmap for the development of additional and synergistic therapies for chronic SCI.


Assuntos
Axônios , Traumatismos da Medula Espinal , Animais , Humanos , Axônios/metabolismo , Receptores Nogo/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteínas da Mielina/uso terapêutico , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/terapia , Receptor Nogo 1/metabolismo , Recuperação de Função Fisiológica , Medula Espinal , Mamíferos/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
J Biol Chem ; 297(4): 101159, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480901

RESUMO

In Alzheimer's disease (AD), deposition of pathological tau and amyloid-ß (Aß) drive synaptic loss and cognitive decline. The injection of misfolded tau aggregates extracted from human AD brains drives templated spreading of tau pathology within WT mouse brain. Here, we assessed the impact of Aß copathology, of deleting loci known to modify AD risk (Ptk2b, Grn, and Tmem106b) and of pharmacological intervention with an Fyn kinase inhibitor on tau spreading after injection of AD tau extracts. The density and spreading of tau inclusions triggered by human tau seed were unaltered in the hippocampus and cortex of APPswe/PSEN1ΔE9 transgenic and AppNL-F/NL-F knock-in mice. In mice with human tau sequence replacing mouse tau, template matching enhanced neuritic tau burden. Human AD brain tau-enriched preparations contained aggregated Aß, and the Aß coinjection caused a redistribution of Aß aggregates in mutant AD model mice. The injection-induced Aß phenotype was spatially distinct from tau accumulation and could be ameliorated by depleting Aß from tau extracts. These data suggest that Aß and tau pathologies propagate by largely independent mechanisms after their initial formation. Altering the activity of the Fyn and Pyk2 (Ptk2b) kinases involved in Aß-oligomer-induced signaling, or deleting expression of the progranulin and TMEM106B lysosomal proteins, did not alter the somatic tau inclusion burden or spreading. However, mouse aging had a prominent effect to increase the accumulation of neuritic tau after injection of human AD tau seeds into WT mice. These studies refine our knowledge of factors capable of modulating tau spreading.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Neuritos/metabolismo , Proteínas tau/metabolismo , Envelhecimento/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Camundongos , Camundongos Knockout , Proteínas tau/genética
6.
J Biol Chem ; 295(8): 2175-2183, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31748413

RESUMO

Glial signals are known to inhibit axonal regeneration and functional recovery after mammalian central nervous system trauma, including spinal cord injury. Such signals include membrane-associated proteins of the oligodendrocyte plasma membrane and astrocyte-derived, matrix-associated proteins. Here, using cell lines and primary cortical neuron cultures, recombinant protein expression, immunoprecipitation and immunoblot assays, transmission EM of exosomes, and axon regeneration assays, we explored the secretion and activity of the myelin-associated neurite outgrowth inhibitor Nogo-A and observed exosomal release of a 24-kDa C-terminal Nogo-A fragment from cultured cells. We found that the cleavage site in this 1192-amino-acid-long fragment is located between amino acids 961-971. We also detected a Nogo-66 receptor (NgR1)-interacting Nogo-66 domain on the exosome surface. Enzyme inhibitor treatment and siRNA knockdown revealed that ß-secretase 1 (BACE1) is the protease responsible for Nogo-A cleavage. Functionally, exosomes with the Nogo-66 domain on their surface potently inhibited axonal regeneration of mechanically injured cerebral cortex neurons from mice. Production of this fragment was observed in the exosomal fraction from neuronal tissue lysates after spinal cord crush injury of mice. We also noted that, relative to the exosomal marker Alix, a Nogo-immunoreactive, 24-kDa protein is enriched in exosomes 2-fold after injury. We conclude that membrane-associated Nogo-A produced in oligodendrocytes is processed proteolytically by BACE1, is released via exosomes, and is a potent diffusible inhibitor of regenerative growth in NgR1-expressing axons.


Assuntos
Axônios/metabolismo , Exossomos/metabolismo , Regeneração Nervosa , Proteínas Nogo/metabolismo , Animais , Exossomos/ultraestrutura , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Proteínas Nogo/química , Estrutura Secundária de Proteína , Proteólise , Traumatismos da Medula Espinal/patologia
7.
Brain ; 143(6): 1697-1713, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32375169

RESUMO

After CNS trauma such as spinal cord injury, the ability of surviving neural elements to sprout axons, reorganize neural networks and support recovery of function is severely restricted, contributing to chronic neurological deficits. Among limitations on neural recovery are myelin-associated inhibitors functioning as ligands for neuronal Nogo receptor 1 (NgR1). A soluble decoy (NgR1-Fc, AXER-204) blocks these ligands and provides a means to promote recovery of function in multiple preclinical rodent models of spinal cord injury. However, the safety and efficacy of this reagent in non-human primate spinal cord injury and its toxicological profile have not been described. Here, we provide evidence that chronic intrathecal and intravenous administration of NgR1-Fc to cynomolgus monkey and to rat are without evident toxicity at doses of 20 mg and greater every other day (≥2.0 mg/kg/day), and far greater than the projected human dose. Adult female African green monkeys underwent right C5/6 lateral hemisection with evidence of persistent disuse of the right forelimb during feeding and right hindlimb during locomotion. At 1 month post-injury, the animals were randomized to treatment with vehicle (n = 6) or 0.10-0.17 mg/kg/day of NgR1-Fc (n = 8) delivered via intrathecal lumbar catheter and osmotic minipump for 4 months. One animal was removed from the study because of surgical complications of the catheter, but no treatment-related adverse events were noted in either group. Animal behaviour was evaluated at 6-7 months post-injury, i.e. 1-2 months after treatment cessation. The use of the impaired forelimb during spontaneous feeding and the impaired hindlimb during locomotion were both significantly greater in the treatment group. Tissue collected at 7-12 months post-injury showed no significant differences in lesion size, fibrotic scar, gliosis or neuroinflammation between groups. Serotoninergic raphespinal fibres below the lesion showed no deficit, with equal density on the lesioned and intact side below the level of the injury in both groups. Corticospinal axons traced from biotin-dextran-amine injections in the left motor cortex were equally labelled across groups and reduced caudal to the injury. The NgR1-Fc group tissue exhibited a significant 2-3-fold increased corticospinal axon density in the cervical cord below the level of the injury relative to the vehicle group. The data show that NgR1-Fc does not have preclinical toxicological issues in healthy animals or safety concerns in spinal cord injury animals. Thus, it presents as a potential therapeutic for spinal cord injury with evidence for behavioural improvement and growth of injured pathways in non-human primate spinal cord injury.


Assuntos
Receptor Nogo 1/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Axônios/patologia , Medula Cervical/patologia , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Masculino , Atividade Motora/fisiologia , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Receptor Nogo 1/genética , Tratos Piramidais/patologia , Ratos , Receptores Fc/genética , Receptores Fc/metabolismo , Recuperação de Função Fisiológica , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
8.
J Neurosci ; 39(17): 3204-3216, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30804090

RESUMO

After brain or spinal cord trauma, interaction of Nogo-A with neuronal NgR1 limits regenerative axonal sprouting and functional recovery. Cellular signaling by lipid-anchored NgR1 requires a coreceptor but the relevant partner in vivo is not clear. Here, we examined proteins enriched in NgR1 immunoprecipitates by Nogo-A exposure, identifying CRMP2, a cytosolic protein implicated in axon growth inhibition by Semaphorin/Plexin complexes. The Nogo-A-induced association of NgR1 with CRMP2 requires PlexinA2 as a coreceptor. Non-neuronal cells expressing both NgR1 and PlexinA2, but not either protein alone, contract upon Nogo-A exposure. Inhibition of cortical axon regeneration by Nogo-A depends on a NgR1/PlexinA2 genetic interaction because double-heterozygous NgR1+/-, PlexinA2+/- neurons, but not single-heterozygote neurons, are rescued from Nogo-A inhibition. NgR1 and PlexinA2 also interact genetically in vivo to restrict corticospinal sprouting in mouse cervical spinal cord after unilateral pyramidotomy. Greater post-injury sprouting in NgR1+/-, PlexinA2+/- mice supports enhanced neurological recovery of a mixed female and male double-heterozygous cohort. Thus, a NgR1/PlexinA2/CRMP2 ternary complex limits neural repair after adult mammalian CNS trauma.SIGNIFICANCE STATEMENT Several decades of molecular research have suggested that developmental regulation of axon growth is distinct in most regards from titration of axonal regenerative growth after adult CNS trauma. Among adult CNS pathways, the oligodendrocyte Nogo-A inhibition of growth through NgR1 is thought to have little molecular relationship to axonal guidance mechanisms active embryonically. Here, biochemical analysis of NgR1 function uncovered a physical complex with CRMP cytoplasmic mediators, and this led to appreciation of a role for PlexinA2 in concert with NgR1 after adult trauma. The data extend molecular understanding of neural repair after CNS trauma and link it to developmental processes.


Assuntos
Axônios/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nogo/metabolismo , Receptor Nogo 1/metabolismo , Tratos Piramidais/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Células COS , Chlorocebus aethiops , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas Nogo/genética , Tratos Piramidais/lesões , Receptores de Superfície Celular/genética , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/metabolismo
9.
J Neurosci ; 39(10): 1910-1929, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30626696

RESUMO

The intracellular tyrosine kinase Pyk2 (PTK2B) is related to focal adhesion kinase and localizes to postsynaptic sites in brain. Pyk2 genetic variation contributes to late onset Alzheimer's disease (AD) risk. We recently observed that Pyk2 is required for synapse loss and for learning deficits in a transgenic mouse model of AD. Here, we explore the cellular and biochemical basis for the action of Pyk2 tyrosine kinase in amyloid-ß oligomer (Aßo)-induced dendritic spine loss. Overexpression of Pyk2 reduces dendritic spine density of hippocampal neurons by a kinase-dependent mechanism. Biochemical isolation of Pyk2-interacting proteins from brain identifies Graf1c, a RhoA GTPase-activating protein inhibited by Pyk2. Aßo-induced reductions in dendritic spine motility and chronic spine loss require both Pyk2 kinase and RhoA activation. Thus, Pyk2 functions at postsynaptic sites to modulate F-actin control by RhoA and regulate synapse maintenance of relevance to AD risk.SIGNIFICANCE STATEMENT Genetic variation at the Pyk2 locus is a risk for Alzheimer's disease. We have observed that Pyk2 is required for AD transgenic synapse loss and memory dysfunction. However, the cellular and biochemical basis for Pyk2 function related to AD is not defined. Here, we show that brain Pyk2 interacts with the RhoGAP protein Graf1 to alter dendritic spine stability via RhoA GTPase. Amyloid-ß oligomer-induced dendritic spine loss requires the Pyk2/Graf1 pathway.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Espinhas Dendríticas/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Hipocampo/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Feminino , Quinase 2 de Adesão Focal/genética , Células HEK293 , Hipocampo/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
10.
J Neurosci ; 39(4): 758-772, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30518596

RESUMO

Dozens of genes have been implicated in late onset Alzheimer's disease (AD) risk, but none has a defined mechanism of action in neurons. Here, we show that the risk factor Pyk2 (PTK2B) localizes specifically to neurons in adult brain. Absence of Pyk2 has no major effect on synapse formation or the basal parameters of synaptic transmission in the hippocampal Schaffer collateral pathway. However, the induction of synaptic LTD is suppressed in Pyk2-null slices. In contrast, deletion of Pyk2 expression does not alter LTP under control conditions. Of relevance for AD pathophysiology, Pyk2-/- slices are protected from amyloid-ß-oligomer (Aßo)-induced suppression of LTP in hippocampal slices. Acutely, a Pyk2 kinase inhibitor also prevents Aßo-induced suppression of LTP in WT slices. Female and male transgenic AD model mice expressing APPswe/PSEN1ΔE9 require Pyk2 for age-dependent loss of synaptic markers and for impairment of learning and memory. However, absence of Pyk2 does not alter Aß accumulation or gliosis. Therefore, the Pyk2 risk gene is directly implicated in a neuronal Aßo signaling pathway impairing synaptic anatomy and function.SIGNIFICANCE STATEMENT Genetic variation at the Pyk2 (PTK2B) locus is a risk for late onset Alzheimer's disease (AD), but the pathophysiological role of Pyk2 is not clear. Here, we studied Pyk2 neuronal function in mice lacking expression with and without transgenes generating amyloid-ß (Aß) plaque pathology. Pyk2 is not required for basal synaptic transmission or LTP, but participates in LTD. Hippocampal slices lacking Pyk2 are protected from AD-related Aß oligomer suppression of synaptic plasticity. In transgenic AD model mice, deletion of Pyk2 rescues synaptic loss and learning/memory deficits. Therefore, Pyk2 plays a central role in AD-related synaptic dysfunction mediating Aß-triggered dysfunction.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Quinase 2 de Adesão Focal/genética , Sinapses/patologia , Animais , Comportamento Animal , Feminino , Gliose/genética , Gliose/patologia , Aprendizagem/fisiologia , Potenciação de Longa Duração/genética , Depressão Sináptica de Longo Prazo/genética , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fatores de Risco , Transdução de Sinais/genética
11.
J Neurosci ; 39(28): 5562-5580, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31061088

RESUMO

We previously identified that ngr1 allele deletion limits the severity of experimental autoimmune encephalomyelitis (EAE) by preserving axonal integrity. However, whether this favorable outcome observed in EAE is a consequence of an abrogated neuronal-specific pathophysiological mechanism, is yet to be defined. Here we show that, Cre-loxP-mediated neuron-specific deletion of ngr1 preserved axonal integrity, whereas its re-expression in ngr1-/- female mice potentiated EAE-axonopathy. As a corollary, myelin integrity was preserved under Cre deletion in ngr1flx/flx , retinal ganglion cell axons whereas, significant demyelination occurred in the ngr1-/- optic nerves following the re-introduction of NgR1. Moreover, Cre-loxP-mediated axon-specific deletion of ngr1 in ngr1flx/flx mice also demonstrated efficient anterograde transport of fluorescently-labeled ChTxß in the optic nerves of EAE-induced mice. However, the anterograde transport of ChTxß displayed accumulation in optic nerve degenerative axons of EAE-induced ngr1-/- mice, when NgR1 was reintroduced but was shown to be transported efficiently in the contralateral non- recombinant adeno-associated virus serotype 2-transduced optic nerves of these mutant mice. We further identified that the interaction between the axonal motor protein, Kinesin-1 and collapsin response mediator protein 2 (CRMP2) was unchanged upon Cre deletion of ngr1 Whereas, this Kinesin-1/CRMP2 association was reduced when NgR1 was re-expressed in the ngr1-/- optic nerves. Our data suggest that NgR1 governs axonal degeneration in the context of inflammatory-mediated demyelination through the phosphorylation of CRMP2 by stalling axonal vesicular transport. Moreover, axon-specific deletion of ngr1 preserves axonal transport mechanisms, blunting the induction of inflammatory demyelination and limiting the severity of EAE.SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is commonly induced by aberrant immune-mediated destruction of the protective sheath of nerve fibers (known as myelin). However, it has been shown that MS lesions do not only consist of this disease pattern, exhibiting heterogeneity with continual destruction of axons. Here we investigate how neuronal NgR1 can drive inflammatory-mediated axonal degeneration and demyelination within the optic nerve by analyzing its downstream signaling events that govern axonal vesicular transport. We identify that abrogating the NgR1/pCRMP2 signaling cascade can maintain Kinesin-1-dependent anterograde axonal transport to limit inflammatory-mediated axonopathy and demyelination. The ability to differentiate between primary and secondary mechanisms of axonal degeneration may uncover therapeutic strategies to limit axonal damage and progressive MS.


Assuntos
Transporte Axonal , Encefalomielite Autoimune Experimental/metabolismo , Bainha de Mielina/metabolismo , Receptor Nogo 1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Axônios/metabolismo , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cinesinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Receptor Nogo 1/genética , Células Ganglionares da Retina/metabolismo , Transdução de Sinais
12.
J Biol Chem ; 294(15): 6042-6053, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30787106

RESUMO

Oligomeric assemblies of amyloid-ß (Aß) peptide (Aßo) in the brains of individuals with Alzheimer's disease (AD) are toxic to neuronal synapses. More than a dozen Aß receptor candidates have been suggested to be responsible for various aspects of the molecular pathology and memory impairment in mouse models of AD. A lack of consistent experimental design among previous studies of different receptor candidates limits evaluation of the relative roles of these candidates, producing some controversy within the field. Here, using cell-based assays with several Aß species, including Aßo from AD brains obtained by autopsy, we directly compared the Aß-binding capacity of multiple receptor candidates while accounting for variation in expression and confirming cell surface expression. In a survey of 15 reported Aß receptors, only cellular prion protein (PrPC), Nogo receptor 1 (NgR1), and leukocyte immunoglobulin-like receptor subfamily B member 2 (LilrB2) exhibited direct binding to synaptotoxic assemblies of synthetic Aß. Both PrPC and NgR1 preferentially bound synaptotoxic oligomers rather than nontoxic monomers, and the method of oligomer preparation did not significantly alter our binding results. Hippocampal neurons lacking both NgR1 and LilrB2 exhibited a partial reduction of Aßo binding, but this reduction was lower than in neurons lacking PrPC under the same conditions. Finally, binding studies with soluble Aßo from human AD brains revealed a strong affinity for PrPC, weak affinity for NgR1, and no detectable affinity for LilrB2. These findings clarify the relative contributions of previously reported Aß receptors under controlled conditions and highlight the prominence of PrPC as an Aß-binding site.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptor Nogo 1/metabolismo , Proteínas PrPC/metabolismo , Receptores Imunológicos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Receptor Nogo 1/genética , Proteínas PrPC/genética , Receptores Imunológicos/genética
13.
Neurobiol Dis ; 145: 105059, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858147

RESUMO

There is a strong unmet need for translational progress towards Alzheimer's disease (AD) modifying therapy. Unfortunately, preclinical modeling of the disease has been disappointing, relying primarily on transgenic mouse overexpression of rare dominant mutations. Clinical manifestation of AD symptoms is known to reflect interaction between environmental and genetic risks. Mild traumatic brain injury (mTBI) is an environmental risk for dementia, including Alzheimer's, but there has been limited mechanistic analysis of mTBI contribution to AD. Here, we investigate the interplay between mTBI and Aß precursor protein gene mutation in AD pathogenesis. We employed a knock-in (KI) model of AD that expresses the Aß-containing exons from human APP bearing the Swedish and Iberian mutations, namely AppNL-F/NL-F mice. Without environmental risk, this genetic variation yields minimal mouse symptomatology. Anesthetized 4-month-old KI mice and their age-matched wild type (WT) controls were subjected to repeated mild closed head injury (rmCHI), once daily for 14 days. Anesthetized, uninjured genotype- and age-matched mice were used as sham controls. At 3- and 8-months post-injury, amyloid-ß, phospho-tau and Iba1 expression in the injured KI cortices were assessed. Our data reveal that rmCHI enhances accumulation of amyloid-ß and hyperphosphorylated tau inclusions, as well as neuroinflammation in AppNL-F/NL-F mice. Furthermore, novel object recognition and Morris water maze tests demonstrated that rmCHI greatly exacerbates persistent cognitive deficits in APPNL-F/NL-F mice. Therefore, study of gene-environment interaction demonstrates that combining risk factors provides a more robust model for AD, and that repeated mTBI substantially accelerates AD pathology in a genetically susceptible situation.


Assuntos
Doença de Alzheimer/etiologia , Precursor de Proteína beta-Amiloide/genética , Concussão Encefálica/complicações , Interação Gene-Ambiente , Animais , Técnicas de Introdução de Genes , Humanos , Camundongos , Fatores de Risco
14.
J Neurosci ; 37(38): 9207-9221, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28842420

RESUMO

Biochemical and genetic evidence implicate soluble oligomeric amyloid-ß (Aßo) in triggering Alzheimer's disease (AD) pathophysiology. Moreover, constitutive deletion of the Aßo-binding cellular prion protein (PrPC) prevents development of memory deficits in APPswe/PS1ΔE9 mice, a model of familial AD. Here, we define the role of PrPC to rescue or halt established AD endophenotypes in a therapeutic disease-modifying time window after symptom onset. Deletion of Prnp at either 12 or 16 months of age fully reverses hippocampal synapse loss and completely rescues preexisting behavioral deficits by 17 months. In contrast, but consistent with a neuronal function for Aßo/PrPC signaling, plaque density, microgliosis, and astrocytosis are not altered. Degeneration of catecholaminergic neurons remains unchanged by PrPC reduction after disease onset. These results define the potential of targeting PrPC as a disease-modifying therapy for certain AD-related phenotypes after disease onset.SIGNIFICANCE STATEMENT The study presented here further elucidates our understanding of the soluble oligomeric amyloid-ß-Aßo-binding cellular prion protein (PrPC) signaling pathway in a familial form of Alzheimer's disease (AD) by implicating PrPC as a potential therapeutic target for AD. In particular, genetic deletion of Prnp rescued several familial AD (FAD)-associated phenotypes after disease onset in a mouse model of FAD. This study underscores the therapeutic potential of PrPC deletion given that patients already present symptoms at the time of diagnosis.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Transtornos Mentais/fisiopatologia , Proteínas Priônicas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Animais , Animais Geneticamente Modificados , Encéfalo/patologia , Progressão da Doença , Feminino , Deleção de Genes , Masculino , Transtornos Mentais/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sinapses/patologia
15.
J Neurosci ; 37(30): 7125-7139, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28637841

RESUMO

Leukocyte common antigen-related (LAR) class protein tyrosine phosphatases (PTPs) are critical for axonal guidance; however, their relation to specific guidance cues is poorly defined. We here show that PTP-3, a LAR homolog in Caenorhabditis elegans, is involved in axon guidance regulated by Semaphorin-2A-signaling. PTPδ, one of the vertebrate LAR class PTPs, participates in the Semaphorin-3A (Sema3A)-induced growth cone collapse response of primary cultured dorsal root ganglion neurons from Mus musculus embryos. In vivo, however, the contribution of PTPδ in Sema3A-regualted axon guidance was minimal. Instead, PTPδ played a major role in Sema3A-dependent cortical dendritic growth. Ptpδ-/- and Sema3a-/- mutant mice exhibited poor arborization of basal dendrites of cortical layer V neurons. This phenotype was observed in both male and female mutants. The double-heterozygous mutants, Ptpδ+/-; Sema3a+/-, also showed a similar phenotype, indicating the genetic interaction. In Ptpδ-/- brains, Fyn and Src kinases were hyperphosphorylated at their C-terminal Tyr527 residues. Sema3A-stimulation induced dephosphorylation of Tyr527 in the dendrites of wild-type cortical neurons but not of Ptpδ-/- Arborization of cortical basal dendrites was reduced in Fyn-/- as well as in Ptpδ+/-; Fyn+/- double-heterozygous mutants. Collectively, PTPδ mediates Sema3A-signaling through the activation of Fyn by C-terminal dephosphorylation.SIGNIFICANCE STATEMENT The relation of leukocyte common antigen-related (LAR) class protein tyrosine phosphatases (PTPs) and specific axon guidance cues is poorly defined. We show that PTP-3, a LAR homolog in Caenorhabditis elegans, participates in Sema2A-regulated axon guidance. PTPδ, a member of vertebrate LAR class PTPs, is involved in Sema3A-regulated cortical dendritic growth. In Sema3A signaling, PTPδ activates Fyn and Src kinases by dephosphorylating their C-terminal Tyr residues. This is the first evidence showing that LAR class PTPs participate in Semaphorin signaling in vivo.


Assuntos
Córtex Cerebral/fisiologia , Dendritos/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Semaforina-3A/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/ultraestrutura , Dendritos/ultraestrutura , Ativação Enzimática , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Tirosina Quinases/metabolismo
16.
Cereb Cortex ; 27(7): 3660-3674, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27365298

RESUMO

Synaptic loss is critical in Alzheimer's disease (AD), but the dynamics of synapse turnover are poorly defined. We imaged dendritic spines in transgenic APPswe/PSen1∆E9 (APP/PS1) cerebral cortex. Dendritic spine turnover is increased far from plaque in aged APP/PS1 mice, and in young APP/PS1 mice prior to plaque formation. Dysregulation occurs in the presence of soluble Aß oligomer and requires cellular prion protein (PrPC). APP/PS1 mice lack responsiveness of spine turnover to sensory stimulation. Critically, enhanced spine turnover is coupled with the loss of persistent spines starting early and continuing with age. To evaluate mechanisms of experience-independent supranormal spine turnover, we analyzed the transcriptome of young APP/PS1 mouse brain when turnover is altered but synapse density and memory are normal, and plaque and inflammation are absent. Early PrPC-dependent expression changes occur in synaptic and lipid-metabolizing genes. Thus, pathologic synaptic dysregulation underlying AD begins at a young age prior to Aß plaque.


Assuntos
Doença de Alzheimer/patologia , Córtex Cerebral/patologia , Espinhas Dendríticas/patologia , Hipocampo/patologia , Placa Amiloide/patologia , Privação Sensorial , Fatores Etários , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análise de Variância , Animais , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imageamento Tridimensional , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neuroimagem , Placa Amiloide/etiologia , Presenilina-1/genética , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Tempo , Vibrissas/inervação
17.
J Biol Chem ; 291(33): 17112-21, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27325698

RESUMO

The dysfunction and loss of synapses in Alzheimer disease are central to dementia symptoms. We have recently demonstrated that pathological Amyloid ß oligomer (Aßo) regulates the association between intracellular protein mediators and the synaptic receptor complex composed of cellular prion protein (PrP(C)) and metabotropic glutamate receptor 5 (mGluR5). Here we sought to determine whether Aßo alters the physiological signaling of the PrP(C)-mGluR5 complex upon glutamate activation. We provide evidence that acute exposure to Aßo as well as chronic expression of familial Alzheimer disease mutant transgenes in model mice prevents protein-protein interaction changes of the complex induced by the glutamate analog 3,5-dihydroxyphenylglycine. We further show that 3,5-dihydroxyphenylglycine triggers the phosphorylation and activation of protein-tyrosine kinase 2-ß (PTK2B, also referred to as Pyk2) and of calcium/calmodulin-dependent protein kinase II in wild-type brain slices but not in Alzheimer disease transgenic brain slices or wild-type slices incubated with Aßo. This study further distinguishes two separate Aßo-dependent signaling cascades, one dependent on extracellular Ca(2+) and Fyn kinase activation and the other dependent on the release of Ca(2+) from intracellular stores. Thus, Aßo triggers multiple distinct PrP(C)-mGluR5-dependent events implicated in neurodegeneration and dementia. We propose that targeting the PrP(C)-mGluR5 complex will reverse aberrant Aßo-triggered states of the complex to allow physiological fluctuations of glutamate signaling.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Glutâmico/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas PrPC/metabolismo , Agregação Patológica de Proteínas/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/genética , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Proteínas PrPC/genética , Agregação Patológica de Proteínas/genética , Receptor de Glutamato Metabotrópico 5/genética
18.
Biochem Biophys Res Commun ; 483(4): 1143-1147, 2017 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-27639648

RESUMO

Soluble oligomers of amyloid-beta (Aßo) are implicated by biochemical and genetic evidence as a trigger for Alzheimer's disease (AD) pathophysiology. A key step is Aßo interaction with the neuronal surface to initiate a cascade of altered signal transduction leading to synaptic dysfunction and damage. This review discusses neuronal cell surface molecules with high affinity selectively for oligomeric disease-associated states of Aß, with a particular focus on the role of cellular prion protein (PrPC) in this process. Additional receptors may contribute to mediation of Aßo action, but PrPC appears to play a primary role in a number of systems. The specificity of binding, the genetic necessity in mouse models of disease and downstream signaling pathways are considered. Signal transduction downstream of Aßo complexes with PrPC involves metabotropic glutamate receptor 5 (mGluR5), Fyn kinase and Pyk2 kinase, with deleterious effects on synaptic transmission and maintenance. Current data support the hypothesis that a substantial portion of Aßo toxicity in AD is mediated after initial interaction with PrPC on the neuronal surface. As such, the interaction of Aßo with PrPC is a potential therapeutic intervention site for AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas PrPC/metabolismo , Animais , Humanos , Camundongos , Ligação Proteica , Transdução de Sinais
19.
Acta Neuropathol ; 133(5): 785-807, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28070672

RESUMO

Progranulin (PGRN) is implicated in Alzheimer's disease (AD) as well as frontotemporal lobar degeneration. Genetic studies demonstrate an association of the common GRN rs5848 variant that results in reduced PGRN levels with increased risk for AD. However, the mechanisms by which PGRN reduction from the GRN AD risk variant or mutation exacerbates AD pathophysiology remain ill defined. Here, we show that the GRN AD risk variant has no significant effects on florbetapir positron emission tomographic amyloid imaging and cerebrospinal fluid (CSF) Aß levels, whereas it is associated with increased CSF tau levels in human subjects of the Alzheimer's disease neuroimaging initiative studies. Consistent with the human data, subsequent analyses using the APPswe/PS1ΔE9 (APP/PS1) mouse model of cerebral amyloidosis show that PGRN deficiency has no exacerbating effects on Aß pathology. In contrast and unexpectedly, PGRN deficiency significantly reduces diffuse Aß plaque growth in these APP/PS1 mice. This protective effect is due, at least in part, to enhanced microglial Aß phagocytosis caused by PGRN deficiency-induced expression of TYROBP network genes (TNG) including an AD risk factor Trem2. PGRN-deficient APP/PS1 mice also exhibit less severe axonal dystrophy and partially improved behavior phenotypes. While PGRN deficiency reduces these amyloidosis-related phenotypes, other neuronal injury mechanisms are increased by loss of PGRN, revealing a multidimensional interaction of GRN with AD. For example, C1q complement deposition at synapses is enhanced in APP/PS1 mice lacking PGRN. Moreover, PGRN deficiency increases tau AT8 and AT180 pathologies in human P301L tau-expressing mice. These human and rodent data suggest that global PGRN reduction induces microglial TNG expression and increases AD risk by exacerbating neuronal injury and tau pathology, rather than by accelerating Aß pathology.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Amiloidose/metabolismo , Animais , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal/patologia , Granulinas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Camundongos , Camundongos Transgênicos , Microglia/patologia , Placa Amiloide/patologia , Progranulinas
20.
Brain ; 139(Pt 2): 526-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26667279

RESUMO

Alzheimer's disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer's disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-ß oligomers, by mouse brain Alzheimer's disease transgenes or by human Alzheimer's disease pathology. Amyloid-ß oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp-Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer's disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer's disease pathogenesis, and the complex is a potential target for disease-modifying intervention.


Assuntos
Doença de Alzheimer/metabolismo , Líquido Intracelular/metabolismo , Príons/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Proteínas Priônicas , Príons/genética , Ligação Proteica/fisiologia , Receptor de Glutamato Metabotrópico 5/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA