RESUMO
Electrons in a single sheet of graphene behave quite differently from those in traditional two-dimensional electron systems. Like massless relativistic particles, they have linear dispersion and chiral eigenstates. Furthermore, two sets of electrons centred at different points in reciprocal space ('valleys') have this dispersion, giving rise to valley degeneracy. The symmetry between valleys, together with spin symmetry, leads to a fourfold quartet degeneracy of the Landau levels, observed as peaks in the density of states produced by an applied magnetic field. Recent electron transport measurements have observed the lifting of the fourfold degeneracy in very large applied magnetic fields, separating the quartet into integer and, more recently, fractional levels. The exact nature of the broken-symmetry states that form within the Landau levels and lift these degeneracies is unclear at present and is a topic of intense theoretical debate. Here we study the detailed features of the four quantum states that make up a degenerate graphene Landau level. We use high-resolution scanning tunnelling spectroscopy at temperatures as low as 10 mK in an applied magnetic field to study the top layer of multilayer epitaxial graphene. When the Fermi level lies inside the fourfold Landau manifold, significant electron correlation effects result in an enhanced valley splitting for even filling factors, and an enhanced electron spin splitting for odd filling factors. Most unexpectedly, we observe states with Landau level filling factors of 7/2, 9/2 and 11/2, suggestive of new many-body states in graphene.
RESUMO
Many of the properties of graphene are tied to its lattice structure, allowing for tuning of charge carrier dynamics through mechanical strain. The graphene electromechanical coupling yields very large pseudomagnetic fields for small strain fields, up to hundreds of Tesla, which offer new scientific opportunities unattainable with ordinary laboratory magnets. Significant challenges exist in investigation of pseudomagnetic fields, limited by the nonplanar graphene geometries in existing demonstrations and the lack of a viable approach to controlling the distribution and intensity of the pseudomagnetic field. Here we reveal a facile and effective mechanism to achieve programmable extreme pseudomagnetic fields with uniform distributions in a planar graphene sheet over a large area by a simple uniaxial stretch. We achieve this by patterning the planar graphene geometry and graphene-based heterostructures with a shape function to engineer a desired strain gradient. Our method is geometrical, opening up new fertile opportunities of strain engineering of electronic properties of 2D materials in general.
RESUMO
The observation of phonons in graphene by inelastic electron tunneling spectroscopy has been met with limited success in previous measurements arising from weak signals and other spectral features which inhibit a clear distinction between phonons and miscellaneous excitations. Utilizing a back-gated graphene device that allows adjusting the global charge carrier density, we introduce an averaging method where individual tunneling spectra at varying charge carrier density are combined into one representative spectrum. This method improves the signal for inelastic transitions while it suppresses dispersive spectral features. We thereby map the total graphene phonon density of states, in good agreement with density functional calculations. Unexpectedly, an abrupt change in the phonon intensity is observed when the graphene charge carrier type is switched through a variation of the back-gate electrode potential. This sudden variation in phonon intensity is asymmetric in the carrier type, depending on the sign of the tunneling bias.
RESUMO
Heat is a familiar form of energy transported from a hot side to a colder side of an object, but not a notion associated with microscopic measurements of electronic properties. A temperature difference within a material causes charge carriers, electrons or holes to diffuse along the temperature gradient inducing a thermoelectric voltage. Here we show that local thermoelectric measurements can yield high-sensitivity imaging of structural disorder on the atomic and nanometre scales. The thermopower measurement acts to amplify the variations in the local density of states at the Fermi level, giving high differential contrast in thermoelectric signals. Using this imaging technique, we uncovered point defects in the first layer of epitaxial graphene, which generate soliton-like domain-wall line patterns separating regions of the different interlayer stacking of the second graphene layer.
RESUMO
Topological superconductors represent a newly predicted phase of matter that is topologically distinct from conventional superconducting condensates of Cooper pairs. As a manifestation of their topological character, topological superconductors support solid-state realizations of Majorana fermions at their boundaries. The recently discovered superconductor Cu(x)Bi(2)Se(3) has been theoretically proposed as an odd-parity superconductor in the time-reversal-invariant topological superconductor class, and point-contact spectroscopy measurements have reported the observation of zero-bias conductance peaks corresponding to Majorana states in this material. Here we report scanning tunneling microscopy measurements of the superconducting energy gap in Cu(x)Bi(2)Se(3) as a function of spatial position and applied magnetic field. The tunneling spectrum shows that the density of states at the Fermi level is fully gapped without any in-gap states. The spectrum is well described by the Bardeen-Cooper-Schrieffer theory with a momentum independent order parameter, which suggests that Cu(x)Bi(2)Se(3) is a classical s-wave superconductor contrary to previous expectations and measurements.
RESUMO
The relation between macroscopic charge transport properties and microscopic carrier distribution is one of the central issues in the physics and future applications of graphene devices (GDs). We find strong conductance enhancement at the edges of GDs using scanning gate microscopy. This result is explained by our theoretical model of the opening of an additional conduction channel localized at the edges by depleting accumulated charge by the tip.
RESUMO
In graphene, as in most metals, electron-electron interactions renormalize the properties of electrons but leave them behaving like noninteracting quasiparticles. Many measurements probe the renormalized properties of electrons right at the Fermi energy. Uniquely for graphene, the accessibility of the electrons at the surface offers the opportunity to use scanned probe techniques to examine the effect of interactions at energies away from the Fermi energy, over a broad range of densities, and on a local scale. Using scanning tunneling spectroscopy, we show that electron interactions leave the graphene energy dispersion linear as a function of excitation energy for energies within ±200 meV of the Fermi energy. However, the measured dispersion velocity depends on density and increases strongly as the density approaches zero near the charge neutrality point, revealing a squeezing of the Dirac cone due to interactions.
RESUMO
The quantum Hall (QH) effect, a topologically non-trivial quantum phase, expanded the concept of topological order in physics bringing into focus the intimate relation between the "bulk" topology and the edge states. The QH effect in graphene is distinguished by its four-fold degenerate zero energy Landau level (zLL), where the symmetry is broken by electron interactions on top of lattice-scale potentials. However, the broken-symmetry edge states have eluded spatial measurements. In this article, we spatially map the quantum Hall broken-symmetry edge states comprising the graphene zLL at integer filling factors of [Formula: see text] across the quantum Hall edge boundary using high-resolution atomic force microscopy (AFM) and show a gapped ground state proceeding from the bulk through to the QH edge boundary. Measurements of the chemical potential resolve the energies of the four-fold degenerate zLL as a function of magnetic field and show the interplay of the moiré superlattice potential of the graphene/boron nitride system and spin/valley symmetry-breaking effects in large magnetic fields.
RESUMO
Graphene films on SiC exhibit coherent transport properties that suggest the potential for novel carbon-based nanoelectronics applications. Recent studies suggest that the role of the interface between single layer graphene and silicon-terminated SiC can strongly influence the electronic properties of the graphene overlayer. In this study, we have exposed the graphitized SiC to atomic hydrogen in an effort to passivate dangling bonds at the interface, while investigating the results utilizing room temperature scanning tunneling microscopy.
RESUMO
We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.
Assuntos
Arsenicais/química , Cristalização/métodos , Índio/química , Manganês/química , Micromanipulação/métodos , Microscopia de Tunelamento/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
Interacting and tunable quantum dots (QDs) have been extensively exploited in condensed matter physics and quantum information science. Using a low-temperature scanning tunneling microscope (STM), we both create and directly image a new type of coupled QD system in graphene, a highly interacting quantum relativistic system with tunable density. Using detailed scanning tunneling spectroscopy (STS) measurements, we show that Landau quantization inside a potential well enables novel electron confinement via the incompressible strips between partially filled Landau levels (LLs), forming isolated and concentric LL QDs. By changing the charge density and the magnetic field we can tune continuously between single- and double-concentric LL QD systems within the same potential well. In the concentric QD regime, single-electron charging peaks of the two dots intersect, displaying a characteristic avoidance pattern. At moderate fields, we observe an unconventional avoidance pattern that differs significantly from that observed in capacitively coupled double-QD systems. We find that we can reproduce in detail this anomalous avoidance pattern within the framework of the electrostatic double-QD model by replacing the capacitive interdot coupling with a phenomenological charge-counting system in which charges in the inner concentric dot are counted in the total charge of both islands. The emergence of such strange forms of interdot coupling in a single potential well, together with the ease of producing such charge pockets in graphene and other two-dimensional (2D) materials, reveals an intriguing testbed for the confinement of 2D electrons in customizable potentials.
RESUMO
Research in new quantum materials requires multi-mode measurements spanning length scales, correlations of atomic-scale variables with a macroscopic function, and spectroscopic energy resolution obtainable only at millikelvin temperatures, typically in a dilution refrigerator. In this article, we describe a multi-mode instrument achieving a µeV tunneling resolution with in-operando measurement capabilities of scanning tunneling microscopy, atomic force microscopy, and magnetotransport inside a dilution refrigerator operating at 10 mK. We describe the system in detail including a new scanning probe microscope module design and sample and tip transport systems, along with wiring, radio-frequency filtering, and electronics. Extensive benchmarking measurements were performed using superconductor-insulator-superconductor tunnel junctions, with Josephson tunneling as a noise metering detector. After extensive testing and optimization, we have achieved less than 8 µeV instrument resolving capability for tunneling spectroscopy, which is 5-10 times better than previous instrument reports and comparable to the quantum and thermal limits set by the operating temperature at 10 mK.
RESUMO
Quantum-relativistic matter is ubiquitous in nature; however, it is notoriously difficult to probe. The ease with which external electric and magnetic fields can be introduced in graphene opens a door to creating a tabletop prototype of strongly confined relativistic matter. Here, through a detailed spectroscopic mapping, we directly visualize the interplay between spatial and magnetic confinement in a circular graphene resonator as atomic-like shell states condense into Landau levels. We directly observe the development of a "wedding cake"-like structure of concentric regions of compressible-incompressible quantum Hall states, a signature of electron interactions in the system. Solid-state experiments can, therefore, yield insights into the behavior of quantum-relativistic matter under extreme conditions.
RESUMO
In graphene and other massless two-dimensional Dirac materials, Klein tunneling compromises electron confinement, and momentum-space contours can be assigned a Berry phase which is either zero or π. Consequently, in such systems the energy spectrum of circular potential wells exhibits an interesting discontinuity as a function of magnetic field B: for a given angular momentum the ladder of eigen-resonances is split at an energy-dependent critical field B c. Here we show that introducing a mass term Δ in the Hamiltonian bridges this discontinuity in such a way that states below B c are adiabatically connected to states above B c whose principal quantum number differs by unity depending on the sign of Δ. In the B-Δ plane, the spectrum of these circular resonators resembles a spiral staircase, in which a particle prepared in the â£n, m⟩ resonance state can be promoted to the â£n± 1, m⟩ state by an adiabatic circuit of the Hamiltonian about B c, the sign depending on the direction of the circuit. We explain the phenomenon in terms of the evolving Berry phase of the orbit, which in such a circuit changes adiabatically by 2π.
RESUMO
In this study, we examine several reduced ternary molybdates in the family of yellow rare earth molybdenum bronzes produced by electrochemical synthesis with composition LnMo16O44. These compounds contain an array of electrically isolated but magnetically interacting multi-atom clusters with composition Mo8O36. These arrayed superatom clusters support a single hole shared among the eight molybdenum atoms in the unit, corresponding to a net spin moment of 1µB, and exhibit magnetic exchange between the units via the MoO4 tetrahedra (containing Mo6+ ions) and the LnO8 cubes (containing Ln3+ ions). The findings presented here expand on the physics of the unusual collective properties of multi-atom clusters and extend the discussion of such assemblages to the rich structural chemistry of molybdenum bronzes.
RESUMO
The phase of a quantum state may not return to its original value after the system's parameters cycle around a closed path; instead, the wave function may acquire a measurable phase difference called the Berry phase. Berry phases typically have been accessed through interference experiments. Here, we demonstrate an unusual Berry phase-induced spectroscopic feature: a sudden and large increase in the energy of angular-momentum states in circular graphene p-n junction resonators when a relatively small critical magnetic field is reached. This behavior results from turning on a π Berry phase associated with the topological properties of Dirac fermions in graphene. The Berry phase can be switched on and off with small magnetic field changes on the order of 10 millitesla, potentially enabling a variety of optoelectronic graphene device applications.
RESUMO
We report a rectangular charge density wave (CDW) phase in strained 1T-VSe2 thin films synthesized by molecular beam epitaxy on c-sapphire substrates. The observed CDW structure exhibits an unconventional rectangular 4a×â3a periodicity, as opposed to the previously reported hexagonal 4a×4a structure in bulk crystals and exfoliated thin layered samples. Tunneling spectroscopy shows a strong modulation of the local density of states of the same 4a×â3a CDW periodicity and an energy gap of 2ΔCDW = (9.1 ± 0.1) meV. The CDW energy gap evolves into a full gap at temperatures below 500 mK, indicating a transition to an insulating phase at ultra-low temperatures. First-principles calculations confirm the stability of both 4a×4a and 4a×â3a structures arising from soft modes in the phonon dispersion. The unconventional structure becomes preferred in the presence of strain, in agreement with experimental findings.
RESUMO
We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separation from the graphene-aluminum edges. The spectra were well described by Bardeen-Cooper-Schrieffer (BCS) theory. The decay length for the superconducting energy gap in graphene was determined to be greater than 400 nm. Deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers.
RESUMO
Our ability to access and explore the quantum world has been greatly advanced by the power of atomic manipulation and local spectroscopy with scanning tunneling and atomic force microscopes, where the key technique is the use of atomically sharp probe tips to interact with an underlying substrate. Here we employ atomic manipulation to modify and quantify the interaction between the probe and the system under study that can strongly affect any measurement in low charge density systems, such as graphene. We transfer Co atoms from a graphene surface onto a probe tip to change and control the probe's physical structure, enabling us to modify the induced potential at a graphene surface. We utilize single Co atoms on a graphene field-effect device as atomic scale sensors to quantitatively map the modified potential exerted by the scanning probe over the whole relevant spatial and energy range.
RESUMO
Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk.