Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Chembiochem ; 25(5): e202300784, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116890

RESUMO

Recently, the post-transcriptional modification of RNA with N-glycans was reported, changing the paradigm that RNAs are not commonly N-glycosylated. Moreover, glycan modifications of RNA are investigated for therapeutic targeting purposes. But the glyco-RNA field is in its infancy with many challenges to overcome. One question is how to accurately characterize glycosylated RNA constructs. Thus, we generated glycosylated forms of Y5 RNA mimics, a short non-coding RNA. The simple glycans lactose and sialyllactose were attached to the RNA backbone using azide-alkyne cycloadditions. Using nuclease digestion followed by LC-MS, we confirmed the presence of the glycosylated nucleosides, and characterized the chemical linkage. Next, we probed if glycosylation would affect the cellular response to Y5 RNA. We treated human foreskin fibroblasts in culture with the generated compounds. Key transcripts in the innate immune response were quantified by RT-qPCR. We found that under our experimental conditions, exposure of cells to the Y5 RNA did not trigger an interferon response, and glycosylation of this RNA did not have an impact. Thus, we have identified a successful approach to chemically characterize synthetic glyco-RNAs, which will be critical for further studies to elucidate how the presence of complex glycans on RNA affects the cellular response.


Assuntos
Alcinos , Azidas , Humanos , Glicosilação , Reação de Cicloadição , Nucleosídeos , RNA
2.
J Biol Chem ; 295(43): 14618-14629, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32817340

RESUMO

Motility in archaea is facilitated by a unique structure termed the archaellum. N-Glycosylation of the major structural proteins (archaellins) is important for their subsequent incorporation into the archaellum filament. The identity of some of these N-glycans has been determined, but archaea exhibit extensive variation in their glycans, meaning that further investigations can shed light not only on the specific details of archaellin structure and function, but also on archaeal glycobiology in general. Here we describe the structural characterization of the N-linked glycan modifications on the archaellins and S-layer protein of Methanothermococcus thermolithotrophicus, a methanogen that grows optimally at 65 °C. SDS-PAGE and MS analysis revealed that the sheared archaella are composed principally of two of the four predicted archaellins, FlaB1 and FlaB3, which are modified with a branched, heptameric glycan at all N-linked sequons except for the site closest to the N termini of both proteins. NMR analysis of the purified glycan determined the structure to be α-d-glycero-d-manno-Hep3OMe6OMe-(1-3)-[α-GalNAcA3OMe-(1-2)-]-ß-Man-(1-4)-[ß-GalA3OMe4OAc6CMe-(1-4)-α-GalA-(1-2)-]-α-GalAN-(1-3)-ß-GalNAc-Asn. A detailed investigation by hydrophilic interaction liquid ion chromatography-MS discovered the presence of several, less abundant glycan variants, related to but distinct from the main heptameric glycan. In addition, we confirmed that the S-layer protein is modified with the same heptameric glycan, suggesting a common N-glycosylation pathway. The M. thermolithotrophicus archaellin N-linked glycan is larger and more complex than those previously identified on the archaellins of related mesophilic methanogens, Methanococcus voltae and Methanococcus maripaludis This could indicate that the nature of the glycan modification may have a role to play in maintaining stability at elevated temperatures.


Assuntos
Proteínas Arqueais/química , Methanococcaceae/química , Polissacarídeos/análise , Sequência de Aminoácidos , Sequência de Carboidratos , Glicosilação , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular
3.
J Bacteriol ; 201(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30692173

RESUMO

Campylobacter jejuni and Campylobacter coli are the most common causes of bacterial gastroenteritis in the world. Ganglioside mimicry by C. jejuni lipooligosaccharide (LOS) is the triggering factor of Guillain-Barré syndrome (GBS), an acute polyneuropathy. Sialyltransferases from glycosyltransferase family 42 (GT-42) are essential for the expression of ganglioside mimics in C. jejuni Recently, two novel GT-42 genes, cstIV and cstV, have been identified in C. coli Despite being present in ∼11% of currently available C. coli genomes, the biological role of cstIV and cstV is unknown. In the present investigation, mutation studies with two strains expressing either cstIV or cstV were performed and mass spectrometry was used to investigate differences in the chemical composition of LOS. Attempts were made to identify donor and acceptor molecules using in vitro activity tests with recombinant GT-42 enzymes. Here we show that CstIV and CstV are involved in C. coli LOS biosynthesis. In particular, cstV is associated with LOS sialylation, while cstIV is linked to the addition of a diacetylated nonulosonic acid residue.IMPORTANCE Despite the fact that Campylobacter coli a major foodborne pathogen, its glycobiology has been largely neglected. The genetic makeup of the C. coli lipooligosaccharide biosynthesis locus was largely unknown until recently. C. coli harbors a large set of genes associated with lipooligosaccharide biosynthesis, including genes for several putative glycosyltransferases involved in the synthesis of sialylated lipooligosaccharide in Campylobacter jejuni In the present study, C. coli was found to express lipooligosaccharide structures containing sialic acid and other nonulosonate acids. These findings have a strong impact on our understanding of C. coli ecology, host-pathogen interaction, and pathogenesis.


Assuntos
Vias Biossintéticas/genética , Campylobacter coli/genética , Campylobacter coli/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lipopolissacarídeos/biossíntese , Espectrometria de Massas , Metaboloma , Mutação
4.
Rapid Commun Mass Spectrom ; 33(15): 1240-1247, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31034685

RESUMO

RATIONALE: Porous graphic carbon chromatography (PGC) has a different mechanism in the retention of tryptic peptides compared with reversed-phase chromatography and in this study we show that coupling PGC with tandem mass spectrometry offer advantages for the quantitation of phosphorylation stoichiometry and characterization of site-specific glycosylation. METHODS: Digests of protein standards (horse myoglobin, bovine fetuin and ß-casein) were analyzed with a capillary liquid chromatography/tandem mass spectrometry (LC/MS/MS) system by coupling an Agilent 1100 HPLC system to a Synapt G2-Si HDMS (Waters). Peptides were separated using a HyperCarb PGC column (300 µm i.d. × 100 mm) packed with 3 µm particles. MS/MS data were collected in data-dependent mode and three MS/MS scans were acquired after the full MS scan. RAW data were transformed to .mgf by PLGS (Waters) and searched against the Swissprot database by Mascot. Chromatograms and MS/MS spectra of identified compounds were extracted with Masslynx (Waters) and imported to Origin for analysis. Glycan composition and peptide sequence were manually annotated. RESULTS: PGC/MS/MS enabled accurate quantitation of the stoichiometry of specific phosphorylation sites from ß-casein by efficient separation of the phosphopeptide and its non-phosphorylated counterpart, which cannot be achieved by reversed-phase chromatography. PGC/MS/MS also enabled comprehensive characterization of protein sialoglycosylation as isomeric glycopeptides with different combinations of α2-3- and α2-6-linked sialic acids can be separated and the ratios of each combination were verified by exoglycosidase digestion. CONCLUSIONS: PGC has demonstrated superior separation of peptides with phosphorylation and glycosylation and can be used as an alternative in the proteomic characterization of post-translational modifications (PTMs) by polar groups.


Assuntos
Caseínas/química , Cromatografia/métodos , Fetuínas/química , Mioglobina/química , Animais , Carbono/química , Bovinos , Cromatografia/instrumentação , Glicosilação , Cavalos , Peptídeos/química , Fosforilação , Polissacarídeos/química , Porosidade , Espectrometria de Massas em Tandem
5.
Infect Immun ; 86(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29844237

RESUMO

Sialylation of lacto-N-neotetraose (LNnT) extending from heptose I (HepI) of gonococcal lipooligosaccharide (LOS) contributes to pathogenesis. Previously, gonococcal LOS sialyltransterase (Lst) was shown to sialylate LOS in Triton X-100 extracts of strain 15253, which expresses lactose from both HepI and HepII, the minimal structure required for monoclonal antibody (MAb) 2C7 binding. Ongoing work has shown that growth of 15253 in cytidine monophospho-N-acetylneuraminic acid (CMP-Neu5Ac)-containing medium enables binding to CD33/Siglec-3, a cell surface receptor that binds sialic acid, suggesting that lactose termini on LOSs of intact gonococci can be sialylated. Neu5Ac was detected on LOSs of strains 15253 and an MS11 mutant with lactose only from HepI and HepII by mass spectrometry; deleting HepII lactose rendered Neu5Ac undetectable. Resistance of HepII lactose Neu5Ac to desialylation by α2-3-specific neuraminidase suggested an α2-6 linkage. Although not associated with increased factor H binding, HepII lactose sialylation inhibited complement C3 deposition on gonococci. Strain 15253 mutants that lacked Lst or HepII lactose were significantly attenuated in mice, confirming the importance of HepII Neu5Ac in virulence. All 75 minimally passaged clinical isolates from Nanjing, China, expressed HepII lactose, evidenced by reactivity with MAb 2C7; MAb 2C7 was bactericidal against the first 62 (of 75) isolates that had been collected sequentially and were sialylated before testing. MAb 2C7 effectively attenuated 15253 vaginal colonization in mice. In conclusion, this novel sialylation site could explain the ubiquity of gonococcal HepII lactose in vivo Our findings reinforce the candidacy of the 2C7 epitope as a vaccine antigen and MAb 2C7 as an immunotherapeutic antibody.


Assuntos
Gonorreia/microbiologia , Heptoses/metabolismo , Lactose/metabolismo , Lipopolissacarídeos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neisseria gonorrhoeae/metabolismo , Neisseria gonorrhoeae/patogenicidade , Adulto , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , China , Modelos Animais de Doenças , Feminino , Voluntários Saudáveis , Humanos , Lipopolissacarídeos/química , Masculino , Espectrometria de Massas , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Ácido N-Acetilneuramínico/análise , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/isolamento & purificação
6.
Anal Chem ; 90(19): 11409-11416, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30192525

RESUMO

Neoantigen-based therapeutic vaccines have a high potential impact on tumor eradication and patient survival. Mass spectrometry (MS)-based immunopeptidomics has the capacity to identify tumor-associated epitopes and pinpoint mutation-bearing major histocompatibility complex (MHC)-binding peptides. This approach presents several challenges, including the identification of low-abundance peptides. In addition, MHC peptides have much lower MS/MS identification rates than tryptic peptides due to their shorter sequence and lack of basic amino acid at C-termini. In this study, we report the development and application of a novel chemical derivatization strategy that combines the analysis of native, dimethylated, and alkylamidated peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to expand the coverage of the MHC peptidome. The results revealed that dimethylation increases hydrophobicity and ionization efficiency of MHC class I peptides, while alkylamidation significantly improves the fragmentation by producing more y-ions during MS/MS fragmentation. Thus, the combination of dimethylation and alkylamidation enabled the identification of peptides that could not be identified from the analysis of their native form. Using this strategy, we identified 3148 unique MHC I peptides from HCT 116 cell lines, compared to only 1388 peptides identified in their native form. Among these, 10 mutation-bearing peptides were identified with high confidence, indicating that this chemical derivatization strategy is a promising approach for neoantigen discovery in clinical applications.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/análise , Sequência de Aminoácidos , Compostos Aza/química , Benzotiazóis/química , Cromatografia Líquida de Alta Pressão , Células HCT116 , Humanos , Metilação , Peptídeos/química , Peptídeos/imunologia , Espectrometria de Massas em Tandem
7.
Rapid Commun Mass Spectrom ; 32(10): 763-774, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29520892

RESUMO

Mass spectrometry (MS) has played a vital role across a broad range of fields and applications in proteomics. The development of high-resolution MS has significantly advanced biology in areas such as protein structure, function, post-translational modification and global protein dynamics. The two most widely used MS ionization techniques in proteomics are electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). ESI typically yields multiple charge values for each molecular mass and an isotopic cluster for each nominal mass-to-charge (m/z) value. Although MALDI mass spectra typically contain only singly charged ions, overlapping isotope patterns can be problematic for accurate mass measurement. To overcome these challenges of overlapping isotope patterns associated with complex samples in MS-based proteomics research, deconvolution strategies are being used. This manuscript describes a wide variety of deconvolution strategies, including de-isotoping and de-charging processes, deconvolution of co-eluting isomers or peptides with different sequences in data-dependent acquisition (DDA) and data-independent acquisition (DIA) modes, and data analysis in intact protein mass determination, ion mobility MS, native MS, and hydrogen/deuterium exchange MS. It concludes with a discussion of future prospects in the development of bioinformatics and potential new applications in proteomics.


Assuntos
Espectrometria de Massas/métodos , Proteínas/química , Proteômica/métodos , Animais , Medição da Troca de Deutério/métodos , Humanos , Modelos Moleculares , Peptídeos/análise , Polissacarídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos
8.
PLoS Pathog ; 11(12): e1005290, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26630657

RESUMO

Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5'-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation ("serum-resistance"). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance. While all NulOs except Pse5Ac7Ac were incorporated into the LNnT-LOS, only Neu5Gc incorporation yielded high-level serum-resistance and FH binding that was comparable to Neu5Ac, whereas Neu5Ac9Az and Leg5Ac7Ac incorporation left bacteria fully serum-sensitive and did not enhance FH binding. Neu5Ac9Ac and Neu5Gc8Me rendered bacteria resistant only to low serum concentrations. While serum-resistance mediated by Neu5Ac was associated with classical pathway inhibition (decreased IgG binding and C4 deposition), Leg5Ac7Ac and Neu5Ac9Az incorporation did not inhibit the classical pathway. Remarkably, CMP-Neu5Ac9Az and CMP-Leg5Ac7Ac each prevented serum-resistance despite a 100-fold molar excess of CMP-Neu5Ac in growth media. The concomitant presence of Leg5Ac7Ac and Neu5Ac on LOS resulted in uninhibited classical pathway activation. Surprisingly, despite near-maximal FH binding in this instance, the alternative pathway was not regulated and factor Bb remained associated with bacteria. Intravaginal administration of CMP-Leg5Ac7Ac to BALB/c mice infected with gonorrhea (including a multidrug-resistant isolate) reduced clearance times and infection burden. Bacteria recovered from CMP-Leg5Ac7Ac-treated mice were sensitive to human complement ex vivo, simulating in vitro findings. These data reveal critical roles for the Sia exocyclic side-chain in gonococcal serum-resistance. Such CMP-NulO analogs may provide a novel therapeutic strategy against the global threat of multidrug-resistant gonorrhea.


Assuntos
Monofosfato de Citidina/análogos & derivados , Resistência Microbiana a Medicamentos/imunologia , Resistência a Múltiplos Medicamentos/imunologia , Gonorreia/imunologia , Ácidos Siálicos/farmacologia , Animais , Western Blotting , Proteínas do Sistema Complemento/imunologia , Monofosfato de Citidina/farmacologia , Ácido N-Acetilneuramínico do Monofosfato de Citidina/análogos & derivados , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Gonorreia/metabolismo , Humanos , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Neisseria gonorrhoeae/imunologia , Neisseria gonorrhoeae/metabolismo
9.
J Bacteriol ; 198(20): 2829-40, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27481928

RESUMO

UNLABELLED: Despite the importance of lipooligosaccharides (LOSs) in the pathogenicity of campylobacteriosis, little is known about the genetic and phenotypic diversity of LOS in Campylobacter coli In this study, we investigated the distribution of LOS locus classes among a large collection of unrelated C. coli isolates sampled from several different host species. Furthermore, we paired C. coli genomic information and LOS chemical composition for the first time to investigate possible associations between LOS locus class sequence diversity and biochemical heterogeneity. After identifying three new LOS locus classes, only 85% of the 144 isolates tested were assigned to a class, suggesting higher genetic diversity than previously thought. This genetic diversity is at the basis of a completely unexplored LOS structural heterogeneity. Mass spectrometry analysis of the LOSs of nine isolates, representing four different LOS classes, identified two features distinguishing C. coli LOS from that of Campylobacter jejuni 2-Amino-2-deoxy-d-glucose (GlcN)-GlcN disaccharides were present in the lipid A backbone, in contrast to the ß-1'-6-linked 3-diamino-2,3-dideoxy-d-glucopyranose (GlcN3N)-GlcN backbone observed in C. jejuni Moreover, despite the fact that many of the genes putatively involved in 3-acylamino-3,6-dideoxy-d-glucose (Quip3NAcyl) were apparently absent from the genomes of various isolates, this rare sugar was found in the outer core of all C. coli isolates. Therefore, regardless of the high genetic diversity of the LOS biosynthesis locus in C. coli, we identified species-specific phenotypic features of C. coli LOS that might explain differences between C. jejuni and C. coli in terms of population dynamics and host adaptation. IMPORTANCE: Despite the importance of C. coli to human health and its controversial role as a causative agent of Guillain-Barré syndrome, little is known about the genetic and phenotypic diversity of C. coli LOSs. Therefore, we paired C. coli genomic information and LOS chemical composition for the first time to address this paucity of information. We identified two species-specific phenotypic features of C. coli LOS, which might contribute to elucidating the reasons behind the differences between C. jejuni and C. coli in terms of population dynamics and host adaptation.


Assuntos
Proteínas de Bactérias/genética , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Campylobacter coli/metabolismo , Variação Genética , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/química , Animais , Proteínas de Bactérias/metabolismo , Doenças das Aves/microbiologia , Aves , Campylobacter coli/classificação , Campylobacter coli/genética , Campylobacter coli/isolamento & purificação , Galinhas , Finlândia , Humanos , Filogenia , Doenças das Aves Domésticas/microbiologia , Suínos , Doenças dos Suínos/microbiologia
10.
Proc Natl Acad Sci U S A ; 110(19): 7868-73, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610430

RESUMO

Bacterial capsules are surface layers made of long-chain polysaccharides. They are anchored to the outer membrane of many Gram-negative bacteria, including pathogens such as Escherichia coli, Neisseria meningitidis, Haemophilus influenzae, and Pasteurella multocida. Capsules protect pathogens from host defenses including complement-mediated killing and phagocytosis and therefore represent a major virulence factor. Capsular polysaccharides are synthesized by enzymes located in the inner (cytoplasmic) membrane and are then translocated to the cell surface. Whereas the enzymes that synthesize the polysaccharides have been studied in detail, the structure and biosynthesis of the anchoring elements have not been definitively resolved. Here we determine the structure of the glycolipid attached to the reducing terminus of the polysialic acid capsular polysaccharides from E. coli K1 and N. meningitidis group B and the heparosan-like capsular polysaccharide from E. coli K5. All possess the same unique glycolipid terminus consisting of a lyso-phosphatidylglycerol moiety with a ß-linked poly-(3-deoxy-d-manno-oct-2-ulosonic acid) (poly-Kdo) linker attached to the reducing terminus of the capsular polysaccharide.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Cápsulas Bacterianas/metabolismo , Escherichia coli/metabolismo , Glicolipídeos/metabolismo , Neisseria meningitidis/metabolismo , Polissacarídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Bactérias Gram-Negativas/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metilação , Mutação , Fatores de Virulência/metabolismo
11.
PLoS Pathog ; 9(8): e1003559, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009500

RESUMO

The emergence of ceftriaxone-resistant strains of Neisseria gonorrhoeae may herald an era of untreatable gonorrhea. Vaccines against this infection are urgently needed. The 2C7 epitope is a conserved oligosaccharide (OS) structure, a part of lipooligosaccharide (LOS) on N gonorrhoeae. The epitope is expressed by 94% of gonococci that reside in the human genital tract (in vivo) and by 95% of first passaged isolates. Absence of the 2C7 epitope shortens the time of gonococcal carriage in a mouse model of genital infection. To circumvent the limitations of saccharide immunogens in producing long lived immune responses, previously we developed a peptide mimic (called PEP1) as an immunologic surrogate of the 2C7-OS epitope and reconfigured it into a multi-antigenic peptide, (MAP1). To test vaccine efficacy of MAP1, female BALB/c mice were passively immunized with a complement-dependent bactericidal monoclonal antibody specific for the 2C7 epitope or were actively immunized with MAP1. Mice immunized with MAP1 developed a TH1-biased anti-LOS IgG antibody response that was also bactericidal. Length of carriage was shortened in immune mice; clearance occurred in 4 days in mice passively administered 2C7 antibody vs. 6 days in mice administered control IgG3λ mAb in one experiment (p = 0.03) and 6 vs. 9 days in a replicate experiment (p = 0.008). Mice vaccinated with MAP1 cleared infection in 5 days vs. 9 days in mice immunized with control peptide (p = 0.0001 and p = 0.0002, respectively in two replicate experiments). Bacterial burden was lower over the course of infection in passively immunized vs. control mice in both experiments (p = 0.008 and p = 0.0005); burdens were also lower in MAP1 immunized mice vs. controls (p<0.0001) and were inversely related to vaccine antibodies induced in the vagina (p = 0.043). The OS epitope defined by mAb 2C7 may represent an effective vaccine target against gonorrhea, which is rapidly becoming incurable with currently available antibiotics.


Assuntos
Anticorpos Antibacterianos/farmacologia , Anticorpos Monoclonais Murinos/farmacologia , Epitopos/farmacologia , Gonorreia/prevenção & controle , Neisseria gonorrhoeae/imunologia , Polissacarídeos Bacterianos/farmacologia , Adulto , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais Murinos/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/microbiologia , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Gonorreia/genética , Gonorreia/imunologia , Humanos , Imunização Passiva , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neisseria gonorrhoeae/genética , Peptídeos/imunologia , Peptídeos/farmacologia , Polissacarídeos Bacterianos/imunologia , Células Th1/imunologia , Células Th1/patologia
12.
J Lipid Res ; 54(2): 457-66, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23187822

RESUMO

N-acylethanolamines (NAEs) are endogenous lipid-based signaling molecules best known for their role in the endocannabinoid system in mammals, but they are also known to play roles in signaling pathways in plants. The regulation of NAEs in vivo is partly accomplished by the enzyme fatty acid amide hydrolase (FAAH), which hydrolyses NAEs to ethanolamine and their corresponding fatty acid. Inhibition of FAAH has been shown to increase the levels of NAEs in vivo and to produce desirable phenotypes. This has led to the development of pharmaceutical-based therapies for a variety of conditions targeting FAAH. Recently, our group identified a functional FAAH homolog in Dictyostelium discoideum, leading to our hypothesis that D. discoideum also possesses NAEs. In this study, we provide a further characterization of FAAH and identify NAEs in D. discoideum for the first time. We also demonstrate the ability to modulate their levels in vivo through the use of a semispecific FAAH inhibitor and confirm that these NAEs are FAAH substrates through in vitro studies. We believe the demonstration of the in vivo modulation of NAE levels suggests that D. discoideum could be a good simple model organism in which to study NAE-mediated signaling.


Assuntos
Amidoidrolases/metabolismo , Biologia Computacional , Dictyostelium/enzimologia , Etanolaminas/metabolismo , Amidoidrolases/isolamento & purificação , Animais , Inibidores Enzimáticos/farmacologia , Humanos , Hidrólise/efeitos dos fármacos , Cinética , Camundongos , Filogenia
13.
Proteomics ; 12(15-16): 2510-22, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22821818

RESUMO

The development of glycomics increasingly requires the detection and quantification of large numbers of glycans, which is only partially achieved by current glycomics approaches. Taking advantage of selected reaction monitoring to enhance both sensitivity and selectivity, we report here a strategy termed targeted glycomics that enables highly sensitive and consistent identification and quantification of diverse glycans across multiple samples at the same time. In this proof-of-principle study, we validated the method by analyzing global N-glycans expressed in different systems: single proteins, cancer cells, and serum samples. A dynamic range of three orders of magnitude was obtained for the detection of all five glycans released from ribonuclease B. The limit of detection of 80 attomole for Man(9)GlcNAc(2) demonstrated the excellent sensitivity of the method. The capability of the strategy to identify diverse glycans was demonstrated by identification and detection of 162 different glycans and isomers from pancreatic cancer cells. The sensitivity of the method was illustrated further by the ability to detect eight glycans from 250 cancer cells and five glycans released from 100 cancer cells. In serum obtained from rabbits fed control diet or diet enriched with 2% cholesterol, differences to 42 glycans were accurately measured and this indicates that this strategy might find use in studies of biomarker discovery and validation.


Assuntos
Glicômica/métodos , Espectrometria de Massas/métodos , Polissacarídeos/metabolismo , Animais , Sequência de Carboidratos , Linhagem Celular Tumoral , Cromatografia Líquida , Humanos , Íons , Isomerismo , Limite de Detecção , Dados de Sequência Molecular , Neoplasias Pancreáticas/metabolismo , Polissacarídeos/sangue , Polissacarídeos/química , Coelhos , Padrões de Referência , Reprodutibilidade dos Testes , Ribonucleases/metabolismo
14.
J Vis Exp ; (184)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35848837

RESUMO

Protein glycosylation is one of the most common and complex post-translational modifications. Many techniques have been developed to characterize the specific roles of glycans, the relationship between their structures and their impact on the functions of proteins. A common method for glycan analysis is to employ exoglycosidase cleavage to release N-linked glycans from glycoproteins or glycopeptides using Peptide-N-Glycosidase F (PNGase F). However, the glycan-protein linkages in bacteria are different and there is no enzyme available to release glycans from bacterial glycoproteins. In addition, free glycans have also been described in mammalian cells, bacteria, yeast, plants, and fish. In this article, we present a method that can characterize the N-linked glycosylation system in Campylobacter jejuni by detecting asparagine (Asn)-linked and free glycans that are not attached to their target proteins. In this method, total proteins from C. jejuni were digested by Pronase E with a higher enzyme to protein ratio (2:1-3:1) and a longer incubation time (48-72 h). The resulted Asn-glycans and free glycans were then purified using porous graphitic carbon cartridges, permethylated, and analyzed by mass spectrometry.


Assuntos
Glicômica , Glicoproteínas , Animais , Asparagina/metabolismo , Bactérias/metabolismo , Glicômica/métodos , Glicoproteínas/metabolismo , Mamíferos/metabolismo , Polissacarídeos/química , Proteólise
15.
Food Chem Toxicol ; 168: 113387, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36041660

RESUMO

Spontaneous oxidation of ß-carotene yields a polymer-rich product (OxBC) together with minor amounts of many apocarotenoids. OxBC's activity extends ß-carotene's benefits beyond vitamin A, finding utility in supporting health in livestock, pets, and humans. Although the naturally occurring form of OxBC is consumed in foods and feeds, a direct demonstration of synthetic OxBC's safety provides additional support for its usage. A toxicological study in rats showed a maximum tolerated single oral dose of 5000 mg/kg, an LD50 of more than 10,000 mg/kg, and a NOAEL of 1875 mg/kg body weight. A repeat-dose 90-day oral toxicity study showed no adverse physiological or pathological effects. A study of OxBC uptake by mice over 2-5 days showed OxBC already was naturally present. The highest levels were in liver, lung, and hamstring. Dosing did not increase levels in liver, kidney, lung, and muscle. Increases occurred in urine, intestinal content, plasma, feces, spleen, and cecum with preferential elimination of polymer, consistent with processing of OxBC. Compared to the 4:1 polymer: apocarotenoid ratio of OxBC, polymer was enriched in liver and spleen and depleted in lung, kidney, hamstring, and abdominal muscle. The apparent control of OxBC in major tissues further supports its safety.


Assuntos
Vitamina A , beta Caroteno , Animais , Transporte Biológico , Humanos , Fígado , Camundongos , Polímeros , Ratos , beta Caroteno/farmacologia
16.
Glycobiology ; 21(10): 1266-76, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21321054

RESUMO

Morganella morganii is a commensal Gram-negative bacterium that has long been known to produce an antigen bearing phosphocholine groups. We determined the structure of this O-chain antigen and found that its repeating unit also contains a free amino group and a second phosphate: This alternating charge character places the M. morganii O-chain polysaccharide into a small family of zwitterionic polysaccharides (ZPSs) known to induce T-cell-dependent immune responses via presentation by class II major histocompatibility complex (MHCII) molecules. In vitro binding assays demonstrate that this O-chain interacts with MHCII in a manner that competes with binding of the prototypical ZPS antigen PSA from Bacteroides fragilis, despite its lack of a helical structure. Cellular studies also showed that the M. morganii polysaccharide induces activation of CD4(+) T-cells. Antibody binding experiments using acid hydrolyzed fragments representing the monomer and higher oligomers of the repeating unit showed that the phosphocholine group was the dominant element of the epitope with an overall affinity (K(D)) of about 5 × 10(-5) M, a typical value for an IgM anti-carbohydrate antibody but much lower than the affinity for phosphocholine itself. These data show that the structure of the M. morganii polysaccharide contains a unique zwitterionic repeating unit which allows for immune recognition by T-cells, making it the first identified T-cell-dependent O-chain antigen.


Assuntos
Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/imunologia , Morganella morganii/imunologia , Antígenos O/química , Antígenos O/imunologia , Sítios de Ligação , Linfócitos T CD4-Positivos/imunologia , Humanos , Íons , Cinética , Morganella morganii/metabolismo , Antígenos O/metabolismo
17.
Viruses ; 13(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946875

RESUMO

Lentiviral vectors (LVs) are a powerful tool for gene and cell therapy and human embryonic kidney cells (HEK293) have been extensively used as a platform for production of these vectors. Like most cells and cellular tissues, HEK293 cells release extracellular vesicles (EVs). EVs released by cells share similar size, biophysical characteristics and even a biogenesis pathway with cell-produced enveloped viruses, making it a challenge to efficiently separate EVs from LVs. Thus, EVs co-purified with LVs during downstream processing, are considered "impurities" in the context of gene and cell therapy. A greater understanding of EVs co-purifying with LVs is needed to enable improved downstream processing. To that end, EVs from an inducible lentivirus producing cell line were studied under two conditions: non-induced and induced. EVs were identified in both conditions, with their presence confirmed by transmission electron microscopy and Western blot. EV cargos from each condition were then further characterized by a multi-omic approach. Nineteen proteins were identified by mass spectrometry as potential EV markers to differentiate EVs in LV preparations. Lipid composition of EV preparations before and after LV induction showed similar enrichment in phosphatidylserine. RNA cargos in EVs showed enrichment in transcripts involved in viral processes and binding functions. These findings provide insights on the product profile of lentiviral preparations and could support the development of improved separation strategies aimed at removing co-produced EVs.


Assuntos
Vesículas Extracelulares/metabolismo , Vetores Genéticos/biossíntese , Vetores Genéticos/genética , Células HEK293/metabolismo , Lentivirus/genética , Transporte Biológico , Técnicas de Cultura de Células , Cromatografia Líquida , Biologia Computacional/métodos , Meios de Cultivo Condicionados , Exossomos , Vesículas Extracelulares/ultraestrutura , Humanos , Lipidômica , Espectrometria de Massas , Proteômica/métodos
18.
J Bacteriol ; 192(1): 208-16, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19854897

RESUMO

The lipooligosaccharide (LOS) of Neisseria meningitidis contains heptose (Hep) residues that are modified with phosphoethanolamine (PEtn) at the 3 (3-PEtn) and/or 6 (6-PEtn) position. The lpt3 (NMB2010) and lpt6 (NMA0408) genes of N. meningitidis, which are proposed to encode the required HepII 3- and 6-PEtn transferases, respectively, were cloned and overexpressed as C-terminally polyhistidine-tagged fusion proteins in Escherichia coli and found to localize to the inner membrane, based on sucrose density gradient centrifugation. Lpt3-His(6) and Lpt6-His(6) were purified from Triton X-100-solubilized membranes by nickel chelation chromatography, and dot blot analysis of enzymatic reactions with 3-PEtn- and 6-PEtn-specific monoclonal antibodies demonstrated conclusively that Lpt3 and Lpt6 are phosphatidylethanolamine-dependent LOS HepII 3- and 6-PEtn transferases, respectively, and that both enzymes are capable of transferring PEtn to both fully acylated LOS and de-O-acylated (de-O-Ac) LOS. Further enzymatic studies using capillary electrophoresis-mass spectrometry (MS) demonstrated that both Lpt3 and Lpt6 are capable of transferring PEtn to de-O-Ac LOS molecules already containing PEtn at the 6 and 3 positions of HepII, respectively, demonstrating that there is no obligate order of PEtn addition in the generation of 3,6-di-PEtn LOS moieties in vitro.


Assuntos
Proteínas de Bactérias/metabolismo , Etanolaminofosfotransferase/metabolismo , Lipopolissacarídeos/metabolismo , Neisseria meningitidis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Eletroforese em Gel de Poliacrilamida , Etanolaminofosfotransferase/química , Etanolaminofosfotransferase/genética , Espectrometria de Massas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Peso Molecular , Neisseria meningitidis/genética , Especificidade por Substrato
19.
J Bacteriol ; 191(22): 6950-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19767423

RESUMO

Pasteurella multocida is classified into 16 serotypes according to the Heddleston typing scheme. As part of a comprehensive study to define the structural and genetic basis of this scheme, we have determined the structure of the lipopolysaccharide (LPS) produced by P. multocida strains M1404 (B:2) and P1702 (E:5), the type strains for serotypes 2 and 5, respectively. The only difference between the LPS structures made by these two strains was the absence of a phosphoethanolamine (PEtn) moiety at the 3 position of the second heptose (Hep II) in M1404. Analysis of the lpt-3 gene, required for the addition of this PEtn residue, revealed that the gene was intact in P1702 but contained a nonsense mutation in M1404. Expression of an intact copy of lpt-3 in M1404 resulted in the attachment of a PEtn residue to the 3 position of the Hep II residue, generating an LPS structure identical to that produced by P1702. We identified and characterized each of the glycosyltransferase genes required for assembly of the serotype 2 and 5 LPS outer core. Monoclonal antibodies raised against serotype 2 LPS recognized the serotype 2/5-specific outer core LPS structure, but recognition of this structure was inhibited by the PEtn residue on Hep II. These data indicate that the serological classification of strains into Heddleston serotypes 2 and 5 is dependent on the presence or absence of PEtn on Hep II.


Assuntos
Lipopolissacarídeos/química , Pasteurella multocida/classificação , Pasteurella multocida/metabolismo , Sorotipagem/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Eletroforese Capilar , Etanolaminas/química , Immunoblotting , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Molecular , Pasteurella multocida/genética , Espectrometria de Massas por Ionização por Electrospray
20.
Anal Chem ; 81(20): 8472-8, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19772334

RESUMO

N-glycosylation of proteins is recognized as one of the most common post-translational modifications. It was believed that N-glycosylation occurred exclusively in eukaryotes until the recent discovery of the general protein glycosylation pathway (Pgl) in Campylobacter jejuni, which has similarities to the eukaryotic system and adds proteins en bloc from a lipid carrier to a protein acceptor. In addition to N-linked glycans, a number of pathogenic bacteria such as Pseudomonas aeruginosa and Neisseria species have been shown to O-glycosylate their proteins through polyisoprene-linked intermediates. To date, most techniques to analyze lipid-linked oligosaccharides (LLOs) of these pathways involve the use of radiolabels and chromatographic separation. With the increasing frequency of reports of bacterial protein glycosylation that proceed through lipid-mediated steps, there is a need for technologies capable of characterizing these newly described bacterial systems as well as eukaryotic pathways from biologically relevant samples in an accurate, rapid, and cost-effective manner. In this paper, a new glycomics strategy based on porous graphite carbon (PGC) liquid chromatography mass spectrometry (LC-MS) was devised and validated on the C. jejuni N-glycan pathway. Lipid-linked oligosaccharide intermediates of the Pgl pathway from crude lipid extracts were separated using online chromatography on a capillary PGC column with a chloroform gradient. By exploiting the retention properties of hydrophobic and polar analytes on PGC, baseline separation of LLOs with minor changes in oligosaccharide structure and polyisoprene chain length was obtained. This method is capable of analyzing low levels of LLOs (from approximately 10(6) bacterial cells) and distinguishing the LLOs that differ by as little as one monosaccharide or polyisoprene unit. Furthermore, we have demonstrated for the first time that oligosaccharides of the C. jejuni Pgl pathway are assembled on different polyisoprenes, e. g. C(45), C(60), and apparent hydroxylated forms, in addition to those previously reported (i.e., C(50) and C(55)). The hydroxylated forms of the LLOs are believed to be an intermediate in the degradation of accumulated LLOs for polyisoprene carrier recycling.


Assuntos
Bactérias/química , Cromatografia Líquida/métodos , Glicômica/métodos , Grafite/química , Oligossacarídeos/análise , Fosfatos de Poli-Isoprenil/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Carboidratos , Glicosilação , Metabolismo dos Lipídeos , Dados de Sequência Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA