Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Glob Chang Biol ; 30(9): e17501, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39239976

RESUMO

Otoliths are frequently used as proxies to examine the impacts of climate change on fish growth in marine and freshwater ecosystems worldwide. However, the large sensitivity differences in otolith growth responses to typical changing environmental factors (i.e., temperature and CO2 concentration), coupled with unclear drivers and potential inconsistencies with fish body growth, fundamentally challenge the reliability of such otolith applications. Here, we performed a global meta-analysis of experiments investigating the direct effects of warming (297 cases) and CO2 acidification (293 cases) on fish otolith growth and compared them with fish body growth responses. Hierarchical models were used to assess the overall effect and quantify the influence of nine explanatory factors (e.g., fish feeding habit, life history stage, habitat type, and experimental amplitude and duration). The overall effects of warming and acidification on otolith growth were positive and significant, and the effect size of warming (effect size = 0.4003, otolith size of the treatment group increased by 49.23% compared to that of the control group) was larger than that of acidification (0.0724, 7.51%). All factors examined contributed to the heterogeneity of effect sizes, with larger responses commonly observed in carnivorous fish, marine species, and young individuals. Warming amplitudes and durations and acidification amplitudes increased the effect sizes, while acidification durations decreased the effect sizes. Otolith growth responses were consistent with, but greater than, fish body growth responses under warming. In contrast, fish body growth responses were not significant under acidification (effect size = -0.0051, p = .6185) and thus cannot be estimated using otoliths. Therefore, our study highlights that the reliability of applying otoliths to examine climate change impacts is likely varied, as the sensitivity of otolith growth responses and the consistency between the growth responses of otoliths and fish bodies are context-dependent.


Assuntos
Dióxido de Carbono , Mudança Climática , Peixes , Membrana dos Otólitos , Animais , Membrana dos Otólitos/crescimento & desenvolvimento , Peixes/crescimento & desenvolvimento , Peixes/fisiologia , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Concentração de Íons de Hidrogênio , Ecossistema , Temperatura , Água do Mar/química
2.
J Anim Ecol ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39268554

RESUMO

Clarifying the effects of biodiversity on ecosystem stability in the context of global environmental change is crucial for maintaining ecosystem functions and services. Asynchronous changes between trophic levels over time (i.e. trophic community asynchrony) are expected to increase trophic mismatch and alter trophic interactions, which may consequently alter ecosystem stability. However, previous studies have often highlighted the stabilising mechanism of population asynchrony within a single trophic level, while rarely examining the mechanism of trophic community asynchrony between consumers and their food resources. In this study, we analysed the effects of population asynchrony within and between trophic levels on community stability under the disturbances of climate warming, fishery decline and de-eutrophication, based on an 18-year monthly monitoring dataset of 137 phytoplankton and 91 zooplankton in a subtropical lake. Our results showed that species diversity promoted community stability mainly by increasing population asynchrony both for phytoplankton and zooplankton. Trophic community asynchrony had a significant negative effect on zooplankton community stability rather than that of phytoplankton, which supports the match-mismatch hypothesis that trophic mismatch has negative effects on consumers. Furthermore, the results of the structural equation models showed that warming and top-down effects may simultaneously alter community stability through population dynamics processes within and between trophic levels, whereas nutrients act on community stability mainly through the processes within trophic levels. Moreover, we found that rising water temperature decreased trophic community asynchrony, which may challenge the prevailing idea that climate warming increases the trophic mismatch between primary producers and consumers. Overall, our study provides the first evidence that population and trophic community asynchrony have contrasting effects on consumer community stability, which offers a valuable insight for addressing global environmental change.

3.
Glob Chang Biol ; 29(17): 5000-5013, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37428468

RESUMO

Positive feedback is key to producing alternative stable states and largely determines ecological resilience in response to external perturbations. Understanding the positive feedback mechanisms in macrophyte-dominated lakes is crucial for resilience-based management and restoration. Based on the field investigation of submerged macrophyte communities in 35 lakes in China, we found that morphological complexity (MC) and morphological plasticity (MP) are correlated with the stoichiometric homeostasis of phosphorus (HP ) and are related to ecosystem structure, functioning, and stability. We also found that the positive feedback strength of lakes dominated by macrophytes is biomass- and diversity-dependent. Eutrophication can decrease the community biomass by decreasing community MC, MP, and HP and the species diversity through low-light availability, ultimately decreasing the positive feedback strength and resilience of clear water states. We argue that functional traits and species diversity should be considered to build more resilient ecosystems in future changing environment scenarios.

4.
J Plant Res ; 135(1): 41-53, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34669087

RESUMO

Above- and belowground biomass allocation is an essential plant functional trait that reflects plant survival strategies and affects belowground carbon pool estimation in grasslands. However, due to the difficulty of distinguishing living and dead roots, estimation of biomass allocation from field-based studies currently show large uncertainties. In addition, the dependence of biomass allocation on plant species, functional type as well as plant density remains poorly addressed. Here, we conducted greenhouse manipulation experiments to study above- and belowground biomass allocation and its density regulation for six common grassland species with different functional types (i.e., C3 vs C4; annuals vs perennials) from temperate China. To explore the density regulation on the biomass allocation, we used five density levels: 25, 100, 225, 400, and 625 plant m-2. We found that mean root to shoot ratio (R/S) values ranged from 0.04 to 0.92 across the six species, much lower than those obtained in previous field studies. We also found much lower R/S values in annuals than in perennials (C. glaucum and S. viridis vs C. squarrosa, L. chinensis, M. sativa and S. grandis) and in C4 plants than in C3 plants (C. squarrosa vs L. chinensis, M. sativa and S. grandis). In addition to S. grandis, plant density had significant effects on the shoot and root biomass fraction and R/S for the other five species. Plant density also affected the allometric relationships between above- and belowground biomass significantly. Our results suggest that R/S values obtained from field investigations may be severely overestimated and that R/S values vary largely across species with different functional types. Our findings provide novel insights into approximating the difficult-to-measure belowground living biomass in grasslands, and highlight that species composition and intraspecific competition will regulate belowground carbon estimation.


Assuntos
Pradaria , Plantas , Biomassa , Carbono , China , Ecossistema , Raízes de Plantas
5.
Sci Total Environ ; 951: 175669, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39168317

RESUMO

Benthivorous fish disturbance and density-dependent competition from adjacent macrophytes are two important biotic factors that significantly impact the growth of submerged macrophyte pioneer species, which is crucial for the success of eutrophication lake restoration. We conducted an outdoor mesocosm experiment to explore the individual and combined effects of these two factors on water quality and the growth of Vallisneria natans. The experiment involved two levels of fish (Misgurnus anguillicaudatus) disturbance crossed with two levels of Hydrilla verticillata vegetative propagule (shoot) intensity. The results showed that fish disturbance significantly increased the water column total nitrogen (TN), ammonia nitrogen (N-NH4), total phosphorus (TP), and phosphate­phosphorus (P-PO4). V. natans exhibited restricted plant height elongation and decreased soluble carbohydrate (SC) and starch concentration in fish treatments. Fish disturbance inhibited the growth advantage of V. natans by increasing the extinction coefficient of the water column. There was no statistical significance in total biomass between the two macrophytes in increased vegetative propagule and fish treatments. H. verticillata exhibited a higher relative growth rate (RGR) and summed dominance ratio (SDR3) than V. natans in four treatments and the treatment with three shoots of H. verticillata and one M anguillicaudatus, respectively. Fish disturbance and vegetative propagules showed cumulative effects that negatively affected the RGR_V.H (V. natans relative to H. verticillata). Our findings indicated that benthivorous fish disturbance and vegetative propagules could individually and cumulatively reduce the growth advantage of the pioneer species, V. natans. Our study sheds light on the accumulated effects of multiple disturbances that simultaneously occur in lakes, which holds theoretical and practical importance for lake restoration efforts.


Assuntos
Eutrofização , Hydrocharitaceae , Lagos , Animais , Hydrocharitaceae/fisiologia , Hydrocharitaceae/crescimento & desenvolvimento , Fósforo , Nitrogênio , Peixes/fisiologia , Qualidade da Água , China
6.
Water Res ; 267: 122466, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39303580

RESUMO

Rebuilding a clear-water state dominated by submerged macrophytes is essential for addressing eutrophication, yet the impact of benthic fish on water quality is complex. We conducted two experiments to explore the interaction of submerged plants and benthic fish on the water quality. Experiment I investigated the water clearing effects of submerged macrophytes with varying coverage (from 0% to 40%) before and after the removal of benthic fish. Experiment II explored the impacts of benthic fish at different densities on aquatic ecosystems with and without submerged macrophytes. The results showed that an increase in submerged macrophytes coverage significantly enhanced the reduction of some major water quality parameters. We assert that the coverage of submerged macrophytes should not be lower than 40% to establish and sustain a clear-water state in shallow lakes. However, benthic fish significantly weaken the ability of submerged macrophytes to improve water quality. Surprisingly, the presence or absence of macrophytes may reverse the role of benthic fish in freshwater ecosystems. When macrophytes are present, benthic fish can cause water quality to deteriorate. Conversely, when macrophytes are absent, benthic fish with a density of ≤ 10 g/m3 can restrict the growth of phytoplankton by directly consuming algae or by disturbing sediments to increase turbidity, thereby potentially improving water quality. But the detrimental effects of benthic fish with higher densities may gradually outweigh their benefits to water clarity. Therefore, the percentage of submerged macrophyte cover in combination with the density of benthic fish play crucial roles in shaping the ecological effects of benthic fish and overall ecosystem dynamics. These findings underscore the importance of understanding ecosystem interactions and have practical implications for the management of shallow lakes.

7.
Chemosphere ; 332: 138899, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169089

RESUMO

Submerged macrophytes can improve water quality and buffer the effects of external nutrient loading, which helps to maintain a clear-water state in shallow lakes. We constructed 12 large enclosures with contrasting coverages (treatments) of submerged macrophytes (SMC) to elucidate their buffering capacity and resilience to nutrient pulses. We found that aquatic ecosystems with high SMC had higher buffering capacity and resilience, vice versa, i. e, the enclosures with high SMC quickly buffered the nutrient pulse and rebounded to clear-water state after a short stay in turbid-water state dominated by algae, while the treatments with low SMC could not fully buffer the pulse and rebound to clear-water state, and they slowly entered the transitional state after staying in turbid-water state. This means that the enclosures with high SMC had a better water quality than those with low SMC, i.e., the levels of nutrients and Chl-a were lower in the treatments with high plant coverage. In addition, plant coverage had a significantly positive buffering effect against nitrogen and phosphorus pulses, i.e., the nutrient concentrations in the treatments with high SMC took shorter time to return to the pre-pulse level. Overall, our results evidenced that the higher that the SMCs is, the better is the water quality and buffering capacity against nutrient pulses, i.e. the more stable is the clear-water state. However, low SMC may not be able to resist the impact of such strong nutrient pulse. Our results provide reference and guidance for water pollution control and water ecological restoration.


Assuntos
Ecossistema , Lagos , Plantas , Nutrientes , Fósforo
8.
Water Res ; 216: 118364, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367940

RESUMO

There have been many studies on the effects of eutrophication on beta diversity (ß-diversity) of species assemblages. However, few studies have focused on the effects of nutrient reduction on ß-diversity and community structure, and long-time series analyses are particularly scarce. We conducted a 19-year case study on the impacts of management intervention on the temporal ß-diversity of aquatic grazers in a lake at the Yangtze River Basin. In our study, we compared the changes in temporal ß-diversity as well as its two components, nestedness and turnover, and the synchrony of the rotifer community after management intervention. Our results showed that while the abundance of some sensitive species increased, there was no trend in species richness. Moreover, both the seasonality and interannual stabilities of rotifer assemblages increased. The species synchrony decreased in both spring and summer after management intervention. We also found that management intervention significantly reduced nutrient concentrations but not water clarity and phytoplankton abundance. The total nitrogen (TN): total phosphorous (TP) ratio was reduced after management intervention, causing an increase in the abundance of cyanobacteria that may contribute to the increase of rotifer synchrony in autumn. Our results imply that stable environmental fluctuations after management intervention may increase temporal ß-diversity and stability of herbivorous assemblages. However, imbalanced changes in TN and TP after management intervention may weaken the top-down control of zooplankton on phytoplankton and slow down water clarity improvement.


Assuntos
Lagos , Rotíferos , Animais , China , Eutrofização , Limnologia , Nitrogênio/análise , Nutrientes/análise , Fósforo/análise , Fitoplâncton
9.
Sci Total Environ ; 850: 158092, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985576

RESUMO

Plant trait network analysis can calculate the topology of trait correlations and clarify the complex relationships among traits, providing new insights into ecological topics, including trait dimensions and phenotypic integration. However, few studies have focused on the relationships between network topology and community structure, functioning, and adaptive strategies, especially in natural submerged macrophyte communities. In this study, we collected 15 macrophyte community-level traits from 12 shallow lakes in the Yangtze River Basin in the process of eutrophication and analyzed the changes in trait network structure (i.e., total phosphorus, TP) by using a moving window method. Our results showed that water TP significantly changed the topology of trait networks. Specifically, under low or high nutrient levels, the network structure was more dispersed, with lower connectance and higher modularity than that found at moderate nutrient levels. We also found that network connectance was positively correlated with community biomass and homeostasis, while network modularity was negatively correlated with community biomass and homeostasis. In addition, modules and hub traits also changed with the intensity of eutrophication, which can reflect the trait integration and adaptation strategies of plants in a stressful environment. At low or high nutrient levels, more modules were differentiated, and those modules with higher strength were related to community nutrition. Our results clarified the dynamics of community structure and functioning from a new perspective of plant trait networks, which is key to predicting the response of ecosystems to environmental changes.


Assuntos
Ecossistema , Eutrofização , Lagos/química , Fósforo/análise , Plantas , Água/análise
10.
Sci Total Environ ; 821: 153434, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35090915

RESUMO

Human activities, such as land use change and eutrophication, threaten freshwater biodiversity and ecosystem function. In this study, we examined both the α- and ß-diversity of plankton communities, that is, bacteria/prokaryotic algae, eukaryotic algae, and zooplankton/metazoans, using both classical microscopy and high-throughput sequencing methods across 40 lakes of the Yangtze River Basin. The spatial variations in plankton communities were explained by environmental variables such as trophic status index (TSI) and environmental heterogeneity according to non-metric multidimensional scaling analyses, mantel tests, and structural equation model. Our results showed that the compositional dissimilarities of bacteria, cyanobacteria, eukaryotic algae, and metazoans all decreased with the increasing TSI values, and were significantly positively related to environmental dissimilarity. Both the species richness and compositional dissimilarity of zooplankton had positive effects on zooplankton/phytoplankton biomass ratio. Zooplankton diversity was not directly affected by TSI and environmental dissimilarity; however, it was indirectly affected by the biotic interactions with cyanobacteria or eukaryotic algae. In addition, there were significant positive relationships between bacteria/cyanobacteria and eukaryotic algae dissimilarities. Our results indicated that increased trophic status and decreased environmental dissimilarity as consequences of eutrophication may weaken the trophic cascading effects of planktonic food chain via reducing the top-down effects of zooplankton on phytoplankton.


Assuntos
Cianobactérias , Eutrofização , Plâncton , Animais , Biomassa , Ecossistema , Cadeia Alimentar , Lagos , Fitoplâncton , Zooplâncton
11.
Environ Pollut ; 292(Pt A): 118331, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637833

RESUMO

Significant differences in the morphological and physiological characteristics of submerged macrophytes have been studied following nutrient addition, but little research has investigated the changes in plant trait network topology structures and trait interactions at the whole-plant perspective along nutrient gradients. Plant trait interactions and coordination strongly determine ecosystem structure and functioning. Thirty plant traits were collected from a three-month experiment to construct plant trait networks to clarify the variations in trait connections and network organization arising from five total phosphorus (TP) addition concentrations in water, including a control (CK), 0.1 (TP1), 0.2 (TP2), 0.4 (TP3), and 0.8 (TP4) mg L-1. Nonmetric multidimensional scaling analysis showed a clear difference in the distribution of plant trait space among the different TP treatments. Distinct network structures showed that water TP-deficiency and TP-repletion changed the plant trait network into loose assemblages of more modules, which was related to low plant carbohydrate levels. Most plant functions involving biomass accumulation and carbohydrate synthesis were reduced under high TP conditions compared to moderate TP enrichment. Moreover, the percentage of significant relationships between plant functions and corresponding network modules was lower in the CK and TP4 treatments. These results suggested that low plant carbohydrates in high TP environments induced by high water chlorophyll a and tissue phosphorus could not support rapid resource transport among organs and thus inefficiently performed plant functions. Plant carbohydrates were a vital variable that impacted the network edge density, trait interactions, and plant growth. In summary, we demonstrated that high water TP enrichment reduces plant trait network connectedness and plant functional potentials, which may be correlated with reducing tissue carbohydrates. This study explores the correlations between plant trait network topology and functions to improve our understanding of physiological and ecological rules regulating trait interactions among organs and plant growth under eutrophic conditions.


Assuntos
Ecossistema , Fósforo , Biomassa , Clorofila A , Água
12.
Science ; 376(6595): 865-868, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35587983

RESUMO

Multispecies tree planting has long been applied in forestry and landscape restoration in the hope of providing better timber production and ecosystem services; however, a systematic assessment of its effectiveness is lacking. We compiled a global dataset of matched single-species and multispecies plantations to evaluate the impact of multispecies planting on stand growth. Average tree height, diameter at breast height, and aboveground biomass were 5.4, 6.8, and 25.5% higher, respectively, in multispecies stands compared with single-species stands. These positive effects were mainly the result of interspecific complementarity and were modulated by differences in leaf morphology and leaf life span, stand age, planting density, and temperature. Our results have implications for designing afforestation and reforestation strategies and bridging experimental studies of biodiversity-ecosystem functioning relationships with real-world practices.


Assuntos
Conjuntos de Dados como Assunto , Recuperação e Remediação Ambiental , Agricultura Florestal , Florestas , Árvores , Biodiversidade
13.
Sci Total Environ ; 818: 151742, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34808187

RESUMO

Land-use change can lead to profound changes in the storage of soil organic carbon (SOC) in the tropics. Soil microbial residues make up the majority of persistent SOC pools, yet the impact of land-use change on microbial residue C accumulation in the tropics is not well understood. Here, we investigated how the conversion of tropical primary montane rainforest to secondary forest and the conversions of secondary forest to Prunus salicina plantation and tea plantation, influence the accumulation of soil microbial residue C (indicated by amino sugars). Our results showed that the secondary forest had a higher SOC than that of the primary forest (+63%), while they had no difference in microbial residue C concentration, indicating a relatively slow microbial-derived C accrual during secondary succession. Moreover, the P. salicina plantation and tea plantation had lower SOC than the secondary forest (-53% and -57%, respectively). A decrease in fungal biomass (-51%) resulted in less fungal and total residue C concentrations in the tea plantation than in the secondary forest (-38% and -35%, respectively), indicating microbial-derived C loss following the forest conversion. The change in microbial residue C depended on litter standing crop rather than soil nutrient and root biomass. Litter standing crop affected microbial residue C concentration by regulating fungal biomass and hydrolytic enzyme activities. Taken together, our results highlight that litter-microbe interactions drive microbial residue C accumulation following forest conversions in the tropics.


Assuntos
Carbono , Solo , Carbono/análise , China , Florestas , Solo/química , Microbiologia do Solo , Chá
14.
Ecology ; 102(7): e03370, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961286

RESUMO

Top-down cascade effects are among the most important mechanisms underlying community structure and abundance dynamics in aquatic and terrestrial ecosystems worldwide. A current challenge is understanding the factors controlling trophic cascade strength under global environmental changes. Here, we synthesized 161 global sites to analyze how multiple factors influence consumer-resource interactions with fish in freshwater ecosystems. Fish have a profound negative effect on zooplankton and water clarity but positive effects on primary producers and water nutrients. Furthermore, fish trophic levels can modify the strength of trophic cascades, but an even number of food chain length does not have a negative effect on primary producers in real ecosystems. Eutrophication, warming, and predator abundance strengthen the trophic cascade effects on phytoplankton, suggesting that top-down control will be increasingly important under future global environmental changes. We found no influence or even an increasing trophic cascade strength (e.g., phytoplankton) with increasing latitude, which does not support the widespread view that the trophic cascade strength increases closer to the equator. With increasing temporal and spatial scales, the experimental duration has an accumulative effect, whereas the experimental size is not associated with the trophic cascade strength. Taken together, eutrophication, warming, temporal scale, and predator trophic level and abundance are pivotal to understanding the impacts of multiple environmental factors on the trophic cascade strength. Future studies should stress the possible synergistic effect of multiple factors on the food web structure and dynamics.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Água Doce , Fitoplâncton , Zooplâncton
15.
Water Res ; 202: 117392, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243052

RESUMO

Eutrophication strongly influences plant stoichiometric characteristics and physiological status by altering nutrient and light availability in the water column. However, the mechanisms linking plant functional traits with ecosystem structure and functioning to clarify the decline of submerged macrophytes have not been fully elucidated to date. Therefore, based on a field investigation of 26 macrophytic shallow lakes on the Yangtze Plain, we first constructed a plant trait network at the whole-plant level to determine the hub traits of submerged macrophytes that play central regulatory roles in plant phenotype. Our results suggested that organ (leaf, stem, and root) phosphorus (P), starch, and total nonstructural carbohydrate (TNC) contents were hub traits. Organ starch and TNC were consistent with those in the experiment-based network obtained from a three-month manipulation experiment. Next, the mechanisms underlying the relationships between the hub traits and vital aspects of ecological performance were carefully investigated using field investigation data. Specifically, stoichiometric homeostasis of P (HP), starch, and TNC were positively associated with dominance and biomass at the species level, and community biomass at the community level. Additionally, structural equation modeling clarified not only a hypothesized pathway from eutrophication to water clarity and community TNC, but also combined effects of community TNC and HP on community biomass. That is, ecosystems dominated by more homeostatic communities tended to have more carbon (C)-rich compounds in relatively oligotrophic conditions, which promoted the primary production of macrophytes. Eutrophication was determined to affect community structure by inhibiting the predominance of more homeostatic species and the production of carbohydrates. Finally, reduced community biomass and increased nutrient contents and nutrient:C ratios in plants induced by eutrophication implied a decrease in the C sink in biomass and may potentially lead to an enhancement of litter decomposition rates and nutrient cycling rates. By adjusting plant responses to eutrophication, stoichiometric and physiological mechanisms linking plant traits with ecosystem structure have important implications for understanding ecosystem processes, and these results may contribute to practical management to achieve the restoration of submerged macrophytes and ecosystem services.


Assuntos
Ecossistema , Lagos , Eutrofização , Fenótipo , Fósforo
16.
Sci Total Environ ; 734: 139195, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32470657

RESUMO

Zooplankton could efficiently graze algae and thus improve water quality. However, as thermal stratification commonly occurs in deep lakes, the effect of warming on the trophic interactions of plankton in depth profiles is still not clear. To explore the pressure of crustacean grazing on phytoplanktonic responses to enhanced thermal stratification under warming, we evaluated the monthly changes in the Secchi depth (SD), thermocline depth (TD), and the mean residence depth of zooplankton (zp MRD) and chlorophyll a (Chla MRD) in Lake Qiandaohu from January 2015 to December 2018. The thermal-stratification cycle was divided into weakness (from March to June) and formation periods (from July to February). Linear regression analyses showed that during both periods, the zp MRD was more sensitive to Chla MRD than to TD, and TD was negatively related to the difference between the zp MRD and Chla MRD. Structural equation model (SEM) analyses showed that the TD could be decreased by the direct effect of warming and the indirect effect of the decreased SD during weakness periods. A 0.95 °C increase in air temperature and a 0.85 m decrease in the SD between 1987 and 2018 corresponded to a decrease in the TD. Therefore, decreasing TD would weaken the top-down control on phytoplankton by moving phytoplankton far from zooplankton. Future decreasing TDs under climate warming may decouple crustacean grazing pressure on phytoplankton, which may further deteriorate the water quality.


Assuntos
Lagos , Fitoplâncton , Animais , Clorofila A , Temperatura , Zooplâncton
17.
Front Plant Sci ; 11: 524450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193470

RESUMO

The allocation of limiting elements among plant organs is an important aspect of the adaptation of plants to their ambient environment. Although eutrophication can extremely alter light and nutrient availability, little is known about nutrient partitioning among organs of submerged macrophytes in response to eutrophication. Here, we analyzed the stoichiometric scaling of carbon (C), nitrogen (N), and phosphorus (P) concentrations among organs (leaf, stem, and root) of 327 individuals of seven common submerged macrophytes (three growth forms), sampled from 26 Yangtze plain lakes whose nutrient levels differed. Scaling exponents of stem nutrients to leaf (or root) nutrients varied among the growth forms. With increasing water total N (WTN) concentration, the scaling exponents of stem C to leaf (or root) C increased from <1 to >1, however, those of stem P to root P showed the opposite trend. These results indicated that, as plant nutrient content increased, plants growing in low WTN concentration accumulated leaf C (or stem P) at a faster rate, whereas those in high WTN concentration showed a faster increase in their stem C (or root P). Additionally, the scaling exponents of stem N to leaf (or root) N and stem P to leaf P were consistently large than 1, but decreased with a greater WTN concentration. This suggested that plants invested more N and P into stem than leaf tissues, with a higher investment of N in stem than root tissues, but eutrophication would decrease the allocation of N and P to stem. Such shifts in plant nutrient allocation strategies from low to high WTN concentration may be attributed to changed light and nutrient availability. In summary, eutrophication would alter nutrient allocation strategies of submerged macrophytes, which may influence their community structures by enhancing the competitive ability of some species in the process of eutrophication.

18.
Sci Total Environ ; 713: 136734, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019051

RESUMO

Benthivorous fish disturbance and snail herbivory are two important factors that determine the community structure of submersed macrophytes. We conducted an outdoor mesocosm experiment to examine the separate and combined effects of these two factors on water quality and the growth of two mixed-cultivation submersed macrophytes, Vallisneria natans and Hydrilla verticillata, with different growth forms. The experiment involved two levels of fish (Misgurnus anguillicaudatus) disturbance crossed with two levels of snail (Radix swinhoei) intensity. The results revealed that fish activity rather than snail activity significantly increased the overlying water concentrations of total suspended solids (TSS), total nitrogen (TN), ammonia nitrogen (N-NH4), total phosphorus (TP) and phosphate phosphorus (P-PO4). However, no differences among treatments were observed for chlorophyll a (chl a) concentrations. Fish disturbance or snail herbivory alone did not affect the relative growth rate (RGR) of H. verticillata, but their combined effects significantly decreased the RGR of H. verticillata. Although snail herbivory alone did not affect the RGR of V. natans, fish disturbance alone and the combined effects of these factors drastically reduced its RGR. Both species exhibited increased free amino acid (FAA) contents and decreased ramet numbers, soluble carbohydrate (SC) contents and starch contents in the presence of the fish. Moreover, compared to H. verticillata, V. natans showed exceedingly low ramet numbers and starch contents in the presence of the fish. H. verticillata had a higher RGR and summed dominance ratio (SDR2) than V. natans in all treatments; H. verticillata also displayed a larger competitive advantage in the presence of fish disturbance. The present study suggests that (1) fish disturbance rather than snail activity increases water nutrient concentrations, (2) low snail density may be harmful to submersed macrophyte growth when the plants are under other abiotic stress conditions and (3) the competitive advantage of H. verticillata over V. natans is more preponderant in a turbid environment.


Assuntos
Herbivoria , Qualidade da Água , Animais , Clorofila A , Hydrocharitaceae , Fósforo
19.
Sci Total Environ ; 704: 135269, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31796282

RESUMO

Low underwater light availability and benthivorous fish-mediated disturbance are two important factors that influence the growth of submersed macrophytes. However, the combined effects of these factors remain unclear. To determine the combined effects of low light and fish-mediated disturbance on the growth of two submersed macrophytes with contrasting growth forms, i.e., Vallisneria natans and Hydrilla verticillata, we conducted an outdoor mesocosm experiment with a two-by-two factorial design. The experiment involved two fish-mediated disturbance levels (0 and 1 Misgurnus anguillicaudatus) crossed with two levels of light intensity (ambient light and a low-light environment created by culturing the macrophytes under a shelter). The results showed that the chlorophyll a (chl a) concentration in the overlying water showed no difference among treatments for each macrophyte species. The fish-mediated disturbance significantly decreased the relative growth rate (RGR) of both species in the low-light environment but showed no effects in the ambient light environment. Low light availability and/or fish-mediated disturbance led to increased plant heights of both species compared with the heights under the ambient light regime. Low light availability combined with fish-mediated disturbance significantly reduced the ramet number and soluble carbohydrate (SC) content of both species; however, the free amino acid (FAA) content was not affected. Compared to V. natans, H. verticillata exhibited a high RGR and high ramet numbers in a low-light environment combined with fish-mediated disturbance. Our results indicated that the adaptability of H. verticillata is better than that of V. natans in turbid, shallow and hydrostatic water. Fish-mediated disturbance can negatively influence submersed macrophyte recovery in lakes when light is not abundant.


Assuntos
Clorofila A/análise , Peixes/fisiologia , Hydrocharitaceae/fisiologia , Animais , Lagos , Nitrogênio , Fósforo , Luz Solar
20.
Sci Total Environ ; 684: 578-586, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31158621

RESUMO

Positive feedbacks are generally related to the interactions between biotic processes and abiotic drivers and may lead to the emergence of alternative stable states in ecosystems. Understanding the mechanisms of self-reinforcing feedbacks in a macrophyte-dominant clear state is critical for lake management. Based on a survey of 35 lakes in the Yangtze River floodplain and canonical correspondence analysis (CCA) with forward selection, the results showed that water clarity is the most limiting factor that influences the community structure and biomass of submerged macrophytes. The canopy length of tall macrophytes (i.e., Myriophyllum spicatum L. and Potamogeton malaianus Miq.) showed positive allometry with plant height, while the canopy length of small macrophytes (e.g., Potamogeton maackianus A. Benn.) showed isometry. Our results indicated the existence of positive feedbacks between macrophyte vegetation and water clarity in a "more vegetation, higher water clarity" pattern. We found that the relationships between monospecific community biomass and water clarity differed among community types, indicating that the strength of the positive feedback was interspecific. Furthermore, we found significant differences in the Secchi depth (SD), chlorophyll a (Chl a), light attenuation coefficient (K) and dissolved oxygen (DO) associated with monospecific macrophyte patches. Plant height had significant relationships with the mean values of SD, Chl a, total phosphorus (TP) and K, suggesting that plant height was one of the mechanisms underlying the positive feedbacks. In management practices, efforts to build and maintain the resilience of an ecosystem should be trait-based rather than merely focusing on vegetation abundance.


Assuntos
Biomassa , Lagos/química , Magnoliopsida/fisiologia , Qualidade da Água , China , Análise de Classes Latentes , Modelos Lineares , Magnoliopsida/anatomia & histologia , Magnoliopsida/efeitos dos fármacos , Modelos Biológicos , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA