Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Behav Immun ; 115: 335-355, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914102

RESUMO

Alzheimer's disease (AD) and other forms of dementia represent major public health challenges but effective therapeutic options are limited. Pathological brain aging is associated with microvascular changes and impaired clearance systems. The application of omega-3 polyunsaturated fatty acids (n-3 or omega-3 PUFAs) is one of the most promising nutritional interventions in neurodegenerative disorders from epidemiological data, clinical and pre-clinical studies. As essential components of neuronal membranes, n-3 PUFAs have shown neuroprotection and anti-inflammatory effects, as well as modulatory effects through microvascular pathophysiology, amyloid-beta (Aß) clearance and glymphatic pathways. This review meticulously explores these underlying mechanisms that contribute to the beneficial effects of n-3 PUFAs against AD and dementia, synthesizing evidence from both animal and interventional studies.


Assuntos
Doença de Alzheimer , Ácidos Graxos Ômega-3 , Animais , Barreira Hematoencefálica/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Encéfalo/metabolismo , Doença de Alzheimer/metabolismo
2.
Transl Neurodegener ; 13(1): 28, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811997

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons, resulting in global health burden and limited post-diagnosis life expectancy. Although primarily sporadic, familial ALS (fALS) cases suggest a genetic basis. This review focuses on SOD1, the first gene found to be associated with fALS, which has been more recently confirmed by genome sequencing. While informative, databases such as ALSoD and STRENGTH exhibit regional biases. Through a systematic global examination of SOD1 mutations from 1993 to 2023, we found different geographic distributions and clinical presentations. Even though different SOD1 variants are expressed at different protein levels and have different half-lives and dismutase activities, these alterations lead to loss of function that is not consistently correlated with disease severity. Gain of function of toxic aggregates of SOD1 resulting from mutated SOD1 has emerged as one of the key contributors to ALS. Therapeutic interventions specifically targeting toxic gain of function of mutant SOD1, including RNA interference and antibodies, show promise, but a cure remains elusive. This review provides a comprehensive perspective on SOD1-associated ALS and describes molecular features and the complex genetic landscape of SOD1, highlighting its importance in determining diverse clinical manifestations observed in ALS patients and emphasizing the need for personalized therapeutic strategies.


Assuntos
Esclerose Lateral Amiotrófica , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/diagnóstico , Humanos , Superóxido Dismutase-1/genética , Mutação/genética
3.
Aging Dis ; 15(3): 965-976, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38722791

RESUMO

Emerging from several decades of extensive research, key genetic elements and biochemical mechanisms implicated in neuroinflammation have been delineated, contributing substantially to our understanding of neurodegenerative diseases (NDDs). In this minireview, we discuss data predominantly from the past three years, highlighting the pivotal roles and mechanisms of the two principal cell types implicated in neuroinflammation. The review also underscores the extended process of peripheral inflammation that predates symptomatic onset, the critical influence of neuroinflammation, and their dynamic interplay in the pathogenesis of NDDs. Confronting these complex challenges, we introduce compelling evidence supporting the use of mesenchymal stem cell-based cell-free therapy. This therapeutic strategy includes the regulation of microglia and astrocytes, modulation of peripheral nerve cell inflammation, and targeted anti-inflammatory interventions specifically designed for NDDs, while also discussing engineering and safety considerations. This innovative therapeutic approach intricately modulates the immune system across the peripheral and nervous systems, with an emphasis on achieving superior penetration and targeted delivery. The insights offered by this review have significant implications for the better understanding and management of neuroinflammation.


Assuntos
Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Doenças Neuroinflamatórias , Animais , Humanos , Astrócitos/metabolismo , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Microglia/metabolismo , Microglia/imunologia , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/imunologia , Doenças Neuroinflamatórias/terapia , Doenças Neuroinflamatórias/imunologia
4.
Aging Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38739934

RESUMO

Amyotrophic lateral sclerosis (ALS) stands as a rare, yet severely debilitating disorder marked by the deterioration of motor neurons (MNs) within the brain and spinal cord, which is accompanied by degenerated corticobulbar/corticospinal tracts and denervation in skeletal muscles. Despite ongoing research efforts, ALS remains incurable, attributed to its intricate pathogenic mechanisms. A notable feature in the pathology of ALS is the prevalence of TAR DNA-binding protein 43 (TDP-43) proteinopathy, detected in approximately 97% of ALS cases, underscoring its significance in the disease's progression. As a result, strategies targeting the aberrant TDP-43 protein have garnered attention as a potential avenue for ALS therapy. This review delves into the existing drug screening systems aimed at TDP-43 proteinopathy and the models employed for drug efficacy validation. It also explores the hurdles encountered in the quest to develop potent medications against TDP-43 proteinopathy, offering insights into the intricacies of drug discovery and development for ALS. Through this comprehensive analysis, the review sheds light on the critical aspects of identifying and advancing therapeutic solutions for ALS.

5.
Aging Dis ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38739936

RESUMO

Aging-related hypogonadism involves complex mechanisms in humans, predominantly relating to the decline of multiple hormones and senile gonads. Late-onset hypogonadism (LOH) and erectile dysfunction (ED) are the main manifestations in men, while premature ovarian insufficiency (POI) and menopause are the main forms in women. Anti-aging measures include lifestyle modification and resistance training, hormonal supplementation, stem cell therapy, metformin, and rapamycin. In this expert consensus, the mechanisms, efficacy, and side effects of stem cell therapy on aging gonadal function are reviewed. Furthermore, various methods of stem cell therapy, administered intravenously, intracavernously, and intra-ovarially, are exemplified in detail. More clinical trials on aging-related gonadal dysfunction are required to solidify the foundation of this topic.

6.
Cell Stem Cell ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39146934

RESUMO

Endogenous retroviruses (ERVs) occupy a significant part of the human genome, with some encoding proteins that influence the immune system or regulate cell-cell fusion in early extra-embryonic development. However, whether ERV-derived proteins regulate somatic development is unknown. Here, we report a somatic developmental function for the primate-specific ERVH48-1 (SUPYN/Suppressyn). ERVH48-1 encodes a fragment of a viral envelope that is expressed during early embryonic development. Loss of ERVH48-1 led to impaired mesoderm and cardiomyocyte commitment and diverted cells to an ectoderm-like fate. Mechanistically, ERVH48-1 is localized to sub-cellular membrane compartments through a functional N-terminal signal peptide and binds to the WNT antagonist SFRP2 to promote its polyubiquitination and degradation, thus limiting SFRP2 secretion and blocking repression of WNT/ß-catenin signaling. Knockdown of SFRP2 or expression of a chimeric SFRP2 with the ERVH48-1 signal peptide rescued cardiomyocyte differentiation. This study demonstrates how ERVH48-1 modulates WNT/ß-catenin signaling and cell type commitment in somatic development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA