Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
2.
Nature ; 549(7671): 247-251, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28905895

RESUMO

The ability to control chemical and physical structuring at the nanometre scale is important for developing high-performance thermoelectric materials. Progress in this area has been achieved mainly by enhancing phonon scattering and consequently decreasing the thermal conductivity of the lattice through the design of either interface structures at nanometre or mesoscopic length scales or multiscale hierarchical architectures. A nanostructuring approach that enables electron transport as well as phonon transport to be manipulated could potentially lead to further enhancements in thermoelectric performance. Here we show that by embedding nanoparticles of a soft magnetic material in a thermoelectric matrix we achieve dual control of phonon- and electron-transport properties. The properties of the nanoparticles-in particular, their superparamagnetic behaviour (in which the nanoparticles can be magnetized similarly to a paramagnet under an external magnetic field)-lead to three kinds of thermoelectromagnetic effect: charge transfer from the magnetic inclusions to the matrix; multiple scattering of electrons by superparamagnetic fluctuations; and enhanced phonon scattering as a result of both the magnetic fluctuations and the nanostructures themselves. We show that together these effects can effectively manipulate electron and phonon transport at nanometre and mesoscopic length scales and thereby improve the thermoelectric performance of the resulting nanocomposites.

3.
Nano Lett ; 22(10): 4083-4089, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35549361

RESUMO

The monoclinic α-Cu2Se phase is the first multipolar antiferroelectric semiconductor identified recently by electron microscopy. As a semiconductor, although there are no delocalized electrons to form a static macroscopic polarization, a spontaneous and localized antiferroelectric polarization was found along multiple directions. In conventional ferroelectrics, the polarity can be switched by an applied electric field, and a ferroelectric to paraelectric transition can be modulated by temperature. Here, we show that a reversible and robust antiferroelectric to paraelectric switching in a Cu2Se semiconductor can be tuned electrically by low-voltage and high-frequency electric pulses, and the structural transformations are imaged directly by transmission electron microscopy (TEM). The atomic mechanism of the transformation was assigned to an electrically triggered cation rearrangement with a low-energy barrier. Due to differences of the antiferroelectric and paraelectric phases regarding their electrical, mechanical, and optical properties, such an electrically tunable transformation has a great potential in various applications in microelectronics.

4.
Inorg Chem ; 61(21): 8233-8240, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35580355

RESUMO

We report three new mixed-anion two-dimensional (2D) compounds: SrFPbBiS3, SrFAg0.5Bi1.5S3, and Sr2F2Bi2/3S2. Their structures as well as the parent compound SrFBiS2 were refined using single-crystal X-ray diffraction data, with the sequence of SrFBiS2, SrFPbBiS3, and SrFAg0.5Bi1.5S3 defining the new homologous series SrFMnBiSn+2 (M = Pb, Ag0.5Bi0.5; n = 0, 1). Sr2F2Bi2/3S2 has a different structure, which is modulated with a q vector of 1/3b* and was refined in superspace group X2/m(0ß0)00 as well as in the 1 × 3 × 1 superstructure with space group C2/m (with similar results). Sr2F2Bi2/3S2 features hexagonal layers of alternating [Sr2F2]2+ and [Bi2/3S2]2-, and the modulated structure arises from the unique ordering pattern of Sr2+ cations. SrFPbBiS3, SrFAg0.5Bi1.5S3, and Sr2F2Bi2/3S2 are semiconductors with band gaps of 1.31, 1.21, and 1.85 eV, respectively. The latter compound exhibits room temperature red photoluminescence at ∼700 nm.

5.
Angew Chem Int Ed Engl ; 61(36): e202208281, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35821569

RESUMO

We have determined the complex atomic structure of high-temperature α-Ag9 GaTe6 phase with a hexagonal lattice (P63 mc space group, a=b=8.2766 Å, c=13.4349 Å). The structure has outer [GaTe4 ]5- tetrahedrons and inner [Ag9 Te2 ]5+ clusters. All of the Ag ions are disorderly distributed in the lattice. Seven types of the Ag atoms constitute the cage-like [Ag9 Te2 ]5+ clusters. The highly disordered Ag ions vibrate in-harmonically, producing strong coupling between low frequency optical phonons and acoustic phonons. This in conjunction with a low sound velocity of 1354 m s-1 leads to an ultralow thermal conductivity of 0.20 W m-1 K-1 at 673 K. Meanwhile, the deficiency of Ga in Ag9 Ga1-x Te6 compounds effectively optimizes the electronic transport properties. Ag9 Ga0.91 Te6 attains a highest power factor of 0.40 mW m-1 K-2 at 673 K. All these contribute to a much-improved ZT value of 1.13 at 623 K for Ag9 Ga0.95 Te6 , which is 41 % higher than that of the pristine Ag9 GaTe6 sample.

6.
Inorg Chem ; 60(12): 8890-8897, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110152

RESUMO

ZrTe5 has unique features of a temperature-dependent topological electronic structure and anisotropic crystal structure and has obtained intensive attention from the thermoelectric community. This work revealed that the sintered polycrystalline bulk ZrTe5 possesses both (020) and (041) preferred orientations. The transport properties of polycrystalline bulk p-type ZrTe5 exhibits an obvious anisotropic characteristic, that is, the room-temperature resistivity and thermal conductivity, possessing anisotropy ratios of 0.71 and 1.49 perpendicular and parallel to the pressing direction, respectively. The polycrystalline ZrTe5 obtained higher ZT values in the direction perpendicular to the pressing direction, as compared to that in the other direction. The highest ZT value of 0.11 is achieved at 350 K. Depending on the temperature-dependent topological electronic structure, the electronic transport of p-type ZrTe5 is dominated by high-mobility electrons from linear bands and low-mobility holes from the valence band, which, however, are merely influenced by valence band holes at around room temperature. Furthermore, external magnetic fields are detrimental to thermoelectric properties of our ZrTe5, mainly arising from the more prominent negative effects of electrons under fields. This research is instructive to understand the transport features of ZrTe5 and paves the way for further optimizing their ZTs.

7.
Entropy (Basel) ; 22(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321966

RESUMO

A shock wave that is characterized by sharp physical gradients always draws the medium out of equilibrium. In this work, both hydrodynamic and thermodynamic nonequilibrium effects around the shock wave are investigated using a discrete Boltzmann model. Via Chapman-Enskog analysis, the local equilibrium and nonequilibrium velocity distribution functions in one-, two-, and three-dimensional velocity space are recovered across the shock wave. Besides, the absolute and relative deviation degrees are defined in order to describe the departure of the fluid system from the equilibrium state. The local and global nonequilibrium effects, nonorganized energy, and nonorganized energy flux are also investigated. Moreover, the impacts of the relaxation frequency, Mach number, thermal conductivity, viscosity, and the specific heat ratio on the nonequilibrium behaviours around shock waves are studied. This work is helpful for a deeper understanding of the fine structures of shock wave and nonequilibrium statistical mechanics.

8.
J Am Chem Soc ; 141(47): 18900-18909, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31680516

RESUMO

Doping in a lattice refers to the introduction of very small quantities of foreign atoms and has a generally small effect on decreasing the lattice thermal conductivity, unlike alloying which involves large fractions of other elements and strongly enhances point defect phonon scattering. Here, we report that, by alloying only 3% of In on the Cu sites of the diamond-like lattice of CuFeS2 chalcopyrite compound (Cu1-xInxFeS2, x = 0.03) has a disproportionally large effect in reducing the lattice thermal conductivity of the compound from 2.32 to 1.36 Wm-1K-1 at 630 K. We find that In is not fully ionized to +3 when on the Cu sublattice and exists mainly in the +1 oxidation state. The 5s2 lone pair of electrons of In+ makes this atom incompatible (referred to as discordant) with the tetrahedral geometry of the crystallographic site. This causes strong local bond distortions thereby softening the In-S and Cu-S chemical bonds and introducing localized low frequency vibrations. The latter couple with the base phonon frequencies of the CuFeS2 matrix enhancing the anharmonicity and decreasing the phonon velocity, and consequently the lattice thermal conductivity. The control material in which the In doping is on the Fe3+ site of the structure at the same doping level (and found in the site-compatible In3+ state), has a far smaller effect on the phonon scattering.

9.
J Am Chem Soc ; 141(27): 10905-10914, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31203611

RESUMO

Understanding the nature of phonon transport in solids and the underlying mechanism linking lattice dynamics and thermal conductivity is important in many fields, including the development of efficient thermoelectric materials where a low lattice thermal conductivity is required. Herein, we choose the pair of synthetic chalcopyrite CuFeS2 and talnakhite Cu17.6Fe17.6S32 compounds, which possess the same elements and very similar crystal structures but very different phonon transport, as contrasting examples to study the influence of lattice dynamics and chemical bonding on the thermal transport properties. Chemically, talnakhite derives from chalcopyrite by inserting extra Cu and Fe atoms in the chalcopyrite lattice. The CuFeS2 compound has a lattice thermal conductivity of 2.37 W m-1 K-1 at 625 K, while Cu17.6Fe17.6S32 features Cu/Fe disorder and possesses an extremely low lattice thermal conductivity of merely 0.6 W m-1 K-1 at 625 K, approaching the amorphous limit κmin. Low-temperature heat capacity measurements and phonon calculations point to a large anharmonicity and low Debye temperature in Cu17.6Fe17.6S32, originating from weaker chemical bonds. Moreover, Mössbauer spectroscopy suggests that the state of Fe atoms in Cu17.6Fe17.6S32 is partially disordered, which induces the enhanced alloy scattering. All of the above peculiar features, absent in CuFeS2, contribute to the extremely low lattice thermal conductivity of the Cu17.6Fe17.6S32 compound.

10.
J Am Chem Soc ; 141(40): 16169-16177, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31508945

RESUMO

PbTe-based thermoelectric materials are some of the most promising for converting heat into electricity, but their n-type versions still lag in performance the p-type ones. Here, we introduce midgap states and nanoscale precipitates using Ga-doping and GeTe-alloying to considerably improve the performance of n-type PbTe. The GeTe alloying significantly enlarges the energy band gap of PbTe and subsequent Ga doping introduces special midgap states that lead to an increased density of states (DOS) effective mass and enhanced Seebeck coefficients. Moreover, the nucleated Ga2Te3 nanoscale precipitates and off-center discordant Ge atoms in the PbTe matrix cause intense phonon scattering, strongly reducing the thermal conductivity (∼0.65 W m-1 K-1 at 623 K). As a result, a high room-temperature thermoelectric figure of merit ZT ∼ 0.59 and a peak ZTmax of ∼1.47 at 673 K were obtained for the Pb0.98Ga0.02Te-5%GeTe. The ZTavg value that is most relevant for devices is ∼1.27 from 400 to 773 K, the highest recorded value for n-type PbTe.

11.
J Am Chem Soc ; 141(1): 635-642, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30537833

RESUMO

The new compound NaCu4Se4 forms by the reaction of CuO and Cu in a molten sodium polyselenide flux, with the existence of CuO being unexpectedly critical to its synthesis. It adopts a layered hexagonal structure (space group P63/ mmc with cell parameters a = 3.9931(6) Å and c = 25.167(5) Å), consisting of infinite two-dimensional [Cu4Se4]- slabs separated by Na+ cations. X-ray photoelectron spectroscopy suggests that NaCu4Se4 is mixed-valent with the formula (Na+)(Cu+)4(Se2-)(Se-)(Se2)2-. NaCu4Se4 is a p-type metal with a carrier density of ∼1021 cm-3 and a high hole mobility of ∼808 cm2 V-1 s-1 at 2 K based on electronic transport measurements. First-principles calculations suggest the density of states around the Fermi level are composed of Cu-d and Se-p orbitals. At 2 K, a very large transverse magnetoresistance of ∼1400% was observed, with a nonsaturating, linear dependence on field up to 9 T. Our results indicate that the use of metal oxide chemical precursors can open reaction paths to new low-dimensional compounds.

12.
Nature ; 500(7460): 59-63, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23863931

RESUMO

Research in stretchable conductors is fuelled by diverse technological needs. Flexible electronics, neuroprosthetic and cardiostimulating implants, soft robotics and other curvilinear systems require materials with high conductivity over a tensile strain of 100 per cent (refs 1-3). Furthermore, implantable devices or stretchable displays need materials with conductivities a thousand times higher while retaining a strain of 100 per cent. However, the molecular mechanisms that operate during material deformation and stiffening make stretchability and conductivity fundamentally difficult properties to combine. The macroscale stretching of solids elongates chemical bonds, leading to the reduced overlap and delocalization of electronic orbitals. This conductivity-stretchability dilemma can be exemplified by liquid metals, in which conduction pathways are retained on large deformation but weak interatomic bonds lead to compromised strength. The best-known stretchable conductors use polymer matrices containing percolated networks of high-aspect-ratio nanometre-scale tubes or nanowires to address this dilemma to some extent. Further improvements have been achieved by using fillers (the conductive component) with increased aspect ratio, of all-metallic composition, or with specific alignment (the way the fillers are arranged in the matrix). However, the synthesis and separation of high-aspect-ratio fillers is challenging, stiffness increases with the volume content of metallic filler, and anisotropy increases with alignment. Pre-strained substrates, buckled microwires and three-dimensional microfluidic polymer networks have also been explored. Here we demonstrate stretchable conductors of polyurethane containing spherical nanoparticles deposited by either layer-by-layer assembly or vacuum-assisted flocculation. High conductivity and stretchability were observed in both composites despite the minimal aspect ratio of the nanoparticles. These materials also demonstrate the electronic tunability of mechanical properties, which arise from the dynamic self-organization of the nanoparticles under stress. A modified percolation theory incorporating the self-assembly behaviour of nanoparticles gave an excellent match with the experimental data.

13.
Sensors (Basel) ; 19(3)2019 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-30691088

RESUMO

The Industrial Internet of Things (IIoT) has a wide range of applications, such as intelligent manufacturing, production process optimization, production equipment monitoring, etc. Due to the complex circumstance in underground mining, the performance of WSNs faces enormous challenges, such as data transmission delay, packet loss rate, and so on. The MAC (Media Access Control) protocol based on TDMA (Time Division Multiple Access) is an effective solution, but it needs to ensure the clock synchronization between the transmission nodes. As the key technology of IIoT, synchronization needs to consider the factors of tunnel structure, energy consumption, etc. Traditional synchronization methods, such as TPSN (Timing-sync Protocol for Sensor Networks), RBS (Reference Broadcast Synchronization), mainly focus on improving synchronization accuracy, ignoring the impact of the actual environment, cannot be directly applied to the IIoT in underground mining. In underground mining, there are two kinds of nodes: base-station node and sensor node, which have different topologies, so they constitute a hybrid topology. In this paper, according to hybrid topology of unground mining, a clock synchronization scheme based on a dynamic superframe is designed. In this scheme, the base-station and sensor have different synchronization methods, improving the TPSN and RBS algorithm, respectively, and adjusts the period of the superframe dynamically by estimating the clock offset. The synchronization scheme presented in this paper can reduce the network communication overhead and energy consumption, ensuring the synchronization accuracy. Based on theCC2530 (Asystem-on-chip solution for IEEE 802.15.4, Zigbee and RF4CE applications), the experiments are compared and analyzed, including synchronization accuracy, energy consumption, and robustness tests. Experimental results show that the synchronization accuracy of the proposed method is at least 11% higher than that of the existing methods, and the energy consumption can be reduced by approximately 13%. At the same time, the proposed method has better robustness.

14.
Sensors (Basel) ; 20(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905772

RESUMO

Wireless sensor networks (WSNs) and the Internet of Things (IoT) have been widely used in industrial, construction, and other fields. In recent years, demands for pedestrian localization have been increasing rapidly. In most cases, these applications work in harsh indoor environments, which have posed many challenges in achieving high-precision localization. Ultra-wide band (UWB)-based localization systems and pedestrian dead reckoning (PDR) algorithms are popular. However, both have their own advantages and disadvantages, and both exhibit a poor performance in harsh environments. UWB-based localization algorithms can be seriously interfered by non-line-of-sight (NLoS) propagation, and PDR algorithms display a cumulative error. For ensuring the accuracy of indoor localization in harsh environments, a hybrid localization approach is proposed in this paper. Firstly, UWB signals cannot penetrate obstacles in most cases, and traditional algorithms for improving the accuracy by NLoS identification and mitigation cannot work in this situation. Therefore, in this study, we focus on integrating a PDR and UWB-based localization algorithm according to the UWB communication status. Secondly, we propose an adaptive PDR algorithm. UWB technology can provide high-precision location results in line-of-sight (LoS) propagation. Based on these, we can train the parameters of the PDR algorithm for every pedestrian, to improve the accuracy. Finally, we implement this hybrid localization approach in a hardware platform and experiment with it in an environment similar to industry or construction. The experimental results show a better accuracy than traditional UWB and PDR approaches in harsh environments.

15.
J Am Chem Soc ; 140(7): 2673-2686, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29350916

RESUMO

In this study, a series of Ge1-xMnxTe (x = 0-0.21) compounds were prepared by a melting-quenching-annealing process combined with spark plasma sintering (SPS). The effect of alloying MnTe into GeTe on the structure and thermoelectric properties of Ge1-xMnxTe is profound. With increasing content of MnTe, the structure of the Ge1-xMnxTe compounds gradually changes from rhombohedral to cubic, and the known R3m to Fm-3m phase transition temperature of GeTe moves from 700 K closer to room temperature. First-principles density functional theory calculations show that alloying MnTe into GeTe decreases the energy difference between the light and heavy valence bands in both the R3m and Fm-3m structures, enhancing a multiband character of the valence band edge that increases the hole carrier effective mass. The effect of this band convergence is a significant enhancement in the carrier effective mass from 1.44 m0 (GeTe) to 6.15 m0 (Ge0.85Mn0.15Te). In addition, alloying with MnTe decreases the phonon relaxation time by enhancing alloy scattering, reduces the phonon velocity, and increases Ge vacancies all of which result in an ultralow lattice thermal conductivity of 0.13 W m-1 K-1 at 823 K. Subsequent doping of the Ge0.9Mn0.1Te compositions with Sb lowers the typical very high hole carrier concentration and brings it closer to its optimal value enhancing the power factor, which combined with the ultralow thermal conductivity yields a maximum ZT value of 1.61 at 823 K (for Ge0.86Mn0.10Sb0.04Te). The average ZT value of the compound over the temperature range 400-800 K is 1.09, making it the best GeTe-based thermoelectric material.

16.
Inorg Chem ; 57(19): 12125-12131, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30212191

RESUMO

This work shows that the thermoelectric properties of Cr2Se3 material are improved by doping with Ag. The influence of doping with Ag on the phase composition, microstructure, and thermoelectric properties of Ag2 xCr2-2 xSe3 ( x = 0-0.02) compounds was thoroughly investigated. Ag atoms prefer to occupy the 6c Wyckoff position of the space group, accompanied expansion of the lattice and distortion of the octahedral structure units. The electrical conductivity increases at elevated temperature, while the lattice thermal conductivity decreases significantly through Ag doping, which is primarily attributed to the distorted structure and enhanced alloy scattering. Therefore, it produces a peak ZT value of 0.27 at 673 K for Ag0.04Cr1.96Se3, which shows an increase of 23% compared with that of the undoped Cr2Se3 compound.

17.
Phys Chem Chem Phys ; 16(43): 23576-83, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25178356

RESUMO

Mg2Si1-xSnx solid solutions are promising thermoelectric materials for power generation applications in the 500-800 K range. Outstanding n-type forms of these solid solutions have been developed in the past few years with the thermoelectric figure of merit ZT as high as 1.4. Unfortunately, no comparable performance has been achieved so far with p-type forms of the structure. In this work, we use Li doping on Mg sites in an attempt to enhance and control the concentration of hole carriers. We show that Li as well as Ga is a far more effective p-type dopant in comparison to Na or K. With the increasing content of Li, the electrical conductivity rises rapidly on account of a significantly enhanced density of holes. While the Seebeck coefficient decreases concomitantly, the power factor retains robust values supported by a rather high mobility of holes. Theoretical calculations indicate that Mg2Si0.3Sn0.7 intrinsically possesses the almost convergent double valence band structure (the light and heavy band), and Li doping retains a low density of states (DOS) on the top of the valence band, contrary to the Ga doping at the sites of Si/Sn. Low temperature specific heat capacity studies attest to a low DOS effective mass in Li-doped samples and consequently their larger hole mobility. The overall effect is a large power factor of Li-doped solid solutions. Although the thermal conductivity increases as more Li is incorporated in the structure, the enhanced carrier density effectively shifts the onset of intrinsic excitations (bipolar effect) to higher temperatures, and the beneficial role of phonon Umklapp processes as the primary limiting factor to the lattice thermal conductivity is thus extended. The final outcome is the figure of merit ZT ∼ 0.5 at 750 K for x = 0.07. This represents a 30% improvement in the figure of merit of p-type Mg2Si1-xSnx solid solutions over the literature values. Hence, designing low DOS near Fermi level EF for given carrier pockets can serve as an effective approach to optimize the PF and thus ZT value.

18.
ACS Appl Mater Interfaces ; 16(30): 39495-39505, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39024645

RESUMO

CuGaTe2-based compounds show great promise in the application for high-temperature thermoelectric power generation; however, its wide bandgap feature poses a great challenge for enhancing thermoelectric performance via structural defects modulation and doping the system. Herein, it is discovered that the presence of GaCu antisite defects in the CuGaTe2 compound promotes the formation of Cu vacancies, and vice versa, which tends to form the charge-neutral structure defects combination with one GaCu antisite defect and two Cu vacancies. The accumulation of Cu vacancies in the structure of the (Cu2Te)x(Ga2Te3)1-x compounds evolves into twins and stacking faults. This in conjunction with GaCu antisite defects intensify the point defects phonon scattering, yielding a dramatic reduction on lattice thermal conductivity from 6.95 W m-1 K-1 for the pristine CuGaTe2 sample to 2.98 W m-1 K-1 for the (Cu2Te)0.45(Ga2Te3)0.55 sample at room temperature. Furthermore, the high concentration of charge-neutral defects combination narrows the band gap and increases the carrier concentration, leading to an improved power factor of 1.58 mW/mK2 at 600 K for the (Cu2Te)0.49(Ga2Te3)0.51 sample, which is 41% higher than for the pristine CuGaTe2 sample. Consequently, the highest ZT value of 0.82 is achieved at 915 K for Cu0.015(Cu2Te)0.48(Ga2Te3)0.52, which represents an enhancement of about 22% over that of the pristine CuGaTe2 compound.

19.
ACS Appl Mater Interfaces ; 16(1): 1148-1157, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38163297

RESUMO

Ag2TexS1-x usually undergo various phase structures upon heating or cooling processes; however, the correlation between the heat treatment, the phase structure, and the physical properties is still a controversy. Herein, three different phases are realized for Ag2TexS1-x (0.35 ≤ x ≤ 0.65) samples during the heat treatment, including the low-temperature crystalline phase, amorphous phase, and high-temperature cubic phase. The metastable amorphous phase is an intermediate phase formed during transition from the high-temperature cubic phase to the low-temperature crystalline phase upon cooling via a solid-state conversion rather than the conventional liquid quenching process. The relative content of these three phases is highly sensitive to the heat treatment process. This as-formed low-temperature crystalline phase, amorphous phase, and high-temperature cubic phase convert into the low-temperature crystalline phase and high-temperature cubic phase through long-time dwelling at the temperature below or above the transition temperature around 567 K, respectively. The status of the low-temperature crystalline phase, amorphous phase, and high-temperature cubic phase significantly affects the thermoelectric properties, resulting in the thermal hysteresis of thermoelectric properties. Below the phase transition temperature (TM), the electrical conductivity of the amorphous phase surpasses that of the low-temperature crystalline phase, which shows a growth of 112% for the Ag2Te0.60S0.40 sample annealed at 823 K in comparison with that of the sample annealed at 473 K. For Ag2Te0.50S0.50 samples annealed at 473 K, the maximum ZT value reaches 1.02 at 623 K during the initial test, while the maximum ZT value is improved to 1.34 at 523 K in the second-round test.

20.
ACS Appl Mater Interfaces ; 16(28): 36637-36648, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968080

RESUMO

The stabilization at low temperatures of the Ag2S cubic phase could afford the design of high-performance thermoelectric materials with excellent mechanical behavior, enabling them to withstand prolonged vibrations and thermal stress. In this work, we show that the Ag2TexS1-x solid solutions, with Te content within the optimal range 0.20 ≤ x ≤ 0.30, maintain a stable cubic phase across a wide temperature range from 300 to 773 K, thus avoiding the detrimental phase transition from monoclinic to cubic phase observed in Ag2S. Notably, the Ag2TexS1-x (0.20 ≤ x ≤ 0.30) samples showed no fractures during bending tests and displayed superior ductility at room temperature compared to Ag2S, which fractured at a strain of 6.6%. Specifically, the Ag2Te0.20S0.80 sample demonstrated a bending average yield strength of 46.52 MPa at 673 K, significantly higher than that of Ag2S, whose bending average yield strength dropped from 80.15 MPa at 300 K to 12.66 MPa at 673 K. Furthermore, the thermoelectric performance of the Ag2TexS1-x (0.20 ≤ x ≤ 0.30) samples surpassed that of both InSe and pure Ag2S, with the Ag2Te0.30S0.70 sample achieving the highest ZT value of 0.59 at 723 K. These results indicate substantial potential for practical applications due to enhanced durability and thermoelectric performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA